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Lyapunov Exponents, Entropy Production, and Decoherence

Arjendu K. Pattanayak
Department of Physics, Rice University, Houston, Texas 77251-1892

(Received 13 April 1999)

We establish that the entropy production rate of a classically chaotic Hamiltonian system coupled to
the environment settles, after a transient, to a metastable value given by the sum of positive generalized
Lyapunov exponents. A metastable steady state is generated in this process. This behavior also occurs
in quantum systems close to the classical limit, where it leads to the restoration of quantum-classical
correspondence in chaotic systems coupled to the environment.

PACS numbers: 05.45.Mt, 03.65.Sq, 03.65.Bz, 65.50.+m
The Lyapunov exponents of a chaotic classical
Hamiltonian system characterize the rate of exponential
divergence of neighboring phase-space trajectories thus
defining the microscopic time scales. The question [1]
of their role in the macroscopic behavior of the system is
hence at the foundation of statistical mechanics. It is also
of deep interest to understand how the Lyapunov expo-
nents govern the behavior of the quantum counterparts of
these chaotic systems [2]. For instance, it is predicted [3]
that quantum effects comparable to the classical behavior
should be measurable on a time scale tB � 1

l ln� 1
h̄ �. Here

h̄ is Planck’s constant scaled by a characteristic action
for the system and l is the largest Lyapunov exponent
of the system. This “break time” can be �20 yr for
astronomical systems [4] and is clearly incompatible with
observations. It is argued [4] that this problem may be
resolved by considering the decoherence resulting from
including environmental effects on the system evolution.
Since this can be understood as a dynamical coarse grain-
ing, and statistical properties of the system are typically
obtained through a static coarse graining, a diagnostic of
common primary interest for both issues is the behavior
of the coarse-grained entropy of the system. The Gibbs
entropy SG � Tr�r lnr� and the linear or Renyi entropy
S2 � ln�Tr�r2�� are both useful [5] in this regard. Here r

is the classical phase-space probability distribution rC�x�
or the quantum quasiprobability Wigner distribution
rW �x� as appropriate and Tr denotes the integration over
all phase-space variables x � �q, p�. These entropies
measure the information in the probability distribution and
remain constant for Hamiltonian evolution without coarse
graining. A change in the coarse-grained entropy corre-
sponds to information being lost at the finest scales. Since
in a chaotic system r acquires structure at small scales
exponentially rapidly [2], �S2 typically grows exponentially
rapidly in magnitude initially for such classical systems,
as also for their quantum analogs close to the classical
limit [7]. Numerical studies with static coarse graining
[8] and the analysis of the behavior of a Gaussian wave
packet in the upside-down harmonic oscillator suggest
that for weakly coupled systems �SG settles to a metastable
“constant” after this transient. This metastable value is
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conjectured [4] to be the sum
P

i l
1
i over the positive

Lyapunov exponents of the classical system, independent
of the details of the original distribution. This conjecture
has not yet been verified. Preliminary analyses [9]
indicate that systems may become metastable although the
quantitative conjecture does not hold in general. In this
paper, we consider a variation of this conjecture and are
able to analytically establish it for the general case of an
arbitrary distribution evolving in a chaotic system. We
do so by considering the dynamics of the quantity x�t�
which measures the degree of structure in a phase-space
distribution, and is directly proportional to the entropy
production rate. We demonstrate that under reasonable
approximations the entropy production rate �S2 indeed
settles after an exponential transient to �S2 � 2

P
i L

1
2,i .

The L2,i , as defined below, are generalized Lyapunov
exponents that depend upon the initial distribution in
general. We further show that this is a robust result:
Although for sufficiently weakly coupled systems �S2 in-
creases in magnitude to a constant, for a stronger coupling
the magnitude of �S2 starts high and decreases to the same
constant. The metastable rate is hence independent of the
environmental strength. We also generalize the idea that
for such systems r can evolve to a metastable state [4,10]
and show that for such states the quantum corrections
for classically chaotic systems remain small for all times,
indeed resolving the issue of the anomalously short break
time. We thus obtain a condition for the restoration of
correspondence through decoherence. Finally, we present
numerical results verifying these analytic results for the
particular case of the quantum cat map and its classical
limit, a uniformly hyperbolic K-system satisfying the
assumptions in our arguments [11].

The evolution of rW under the potential V �q� and
coupled to an external environment [4,12] is

≠rW

≠t
� �H, rW � 1

X
n$1

h̄2n�21�n

22n�2n 1 1�!
≠2n11V �q�

≠q2n11

3
≠2n11rW

≠p2n11 1 D=2rW . (1)

The first term on the right is the Poisson bracket, gener-
ating the classical evolution for rW ; the terms in h̄ add
© 1999 The American Physical Society
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the quantal evolution. The environmental effects are
contained in the =2 term; for simplicity we have assumed
coupling to all the phase-space variables, although the re-
sults can be easily generalized. The parameter D depends
strongly upon the form of the coupling and the spectrum
of the environment [12]. The entropy production rate
is then �S2 � 2D

Tr�rW =2rW �
Tr��rW �2� � 22D

Tr�j=rW j2�
Tr��rW �2� 	 22Dx2

where the second equality results from an integration
by parts. The global quantity x2�t� corresponds to
the mean-square radius of the Fourier expansion of
r; it hence measures the structure in the distribution
[2] and also governs the entropy production rate. To
understand the behavior of S2 first consider the clas-
sical Hamiltonian evolution, that is, only the Poisson
bracket terms in Eq. (1). In this case, the point dynamics
satisfy �x � f�x� with the accompanying induced flow
xt � Ftx0 and [2] the phase-space gradient along a
trajectory is governed by =r�xt� � 2M�t, x0�=r�x0�,
where the fundamental matrix M is given by [1] the
time-ordered series M �t, x0� � T exp

Rt
0

≠f�Ftx0�
≠x dt.

This defines a real symmetric matrix MT ? M (the
transpose denoted by MT ) which can be diagonalized [1]
as MT �t, x0� ? M�t, x0� �

P
i ui�t, x0�si�t, x0�uT

i �t, x0�,
whence the ui constitute a local orthonormal tangent
space for the flow. The local Lyapunov exponents are
then given by li�x0� � limt!`

1
2t lnsi�t, x0�. We may

now define the global averages

L2,i�r, t� �
1
2t

ln

∑
Tr�j=ir�x0�j2si�t, x0��

Tr�=ir�x0�j2

∏

�
1
2t

ln

∑
Tr�j=ir�xt�j2�
Tr�=ir�x0�j2

∏
(2)

and their limits L2,i�r� � limt!`L2,i�r, t�. The last
equality in Eq. (2) comes from the orthonormality of
the ui and the dependence of =r�xt� on M . These
L are r dependent versions of the usual generalized
Lyapunov exponents of second order [6] which may be
recovered by replacing j=ir�x0�j2 by the natural invariant
measure r0�x� of the dynamics. For linear systems
si�t, x0� � si�t� and the definitions are independent of r.
For ergodic dynamics L2,i�r, t� � L2,i�r� for all time.
However, numerical evidence suggests that this equality
is valid within small errors for “typical” initial densities r

for other Hamiltonian flows as well. We can always write
L2,i�r, t� � L2,i�r� 1 ji�t where j fluctuates in general
and j�t vanishes with increasing t. The analysis so far
has been exact; hereafter we make the approximation of
neglecting the j term. We now decompose the entropy
production rate into the contribution from the different
stability subspaces as �S2 � 22Dx2 � 22D

P
i x

2
i

where x
2
i � Tr�j=ir�xt�j2��Tr�r2�xt�� 	 
k2

i �r
2
k

is the i
component of x2. The preceding enables us to write

dx
2
i

dt
� 2x2

i L2,i (3)
or equivalently �S2 � 22D
P

i x
2
i �0�e2L2,i t where the r

dependence of L2,i is left implicit hereafter. This shows
the initial behavior of �S2; it is dominated by the largest
positive generalized exponent L

1
2,1, thus recovering an

earlier approximate result [7]. After this initial stage,
the structure reaches the finest scales and hence the
D-dependent diffusion term becomes important. To
include the impact of this we first consider purely
diffusive behavior such that ≠tr � D=2r. Since the
Laplacian is independent of the coordinate system, this
may be decomposed into the same subspaces as above
as ≠tr � D

P
i =

2
i r with the solution being a product

of the distributions as r � Piri�xi�. Each direction
has the standard solution written in terms of the Fourier
components as rki � rki exp�2Dk2

i t� whence the indi-
vidual x

2
i �t� � 
k2

i �r
2
k

�
P

k k2
i jrk�0�j2 exp�22Dk2t��

�
P

k jrk�0�j2 exp�22Dk2t�� have the time dependence

dx
2
i

dt
� 22D�
k4

i �r
2
k

2 
k2
i �2

r
2
k
�

� 24D
k2
i �2

r
2
k

� 24Dx4
i . (4)

The approximation in Eq. (4) is a mean-field one, valid
for the usual Gaussian solution to the diffusion equa-
tion, for example. The various x

2
i therefore behave as

follows: An initial exponential transient entirely kills
these quantities in the stable directions (corresponding to
the negative Lyapunov exponents) and since this is en-
hanced by diffusive effects, these directions have a negli-
gible role thereafter. In the unstable directions, however,
the initial exponential growth is balanced by the diffu-
sion. If we now explicitly set dx

2
i �dt equal to the sum

of the chaotic [Eq. (3)] and diffusive [Eq. (4)] terms, we

get dx
2
i

dt � 2L
1
2,ix

2
i 2 4Dx

4
i for the unstable directions.

This has the stationary solution x
2�
i � L

1
2,i�2D yielding

the stationary entropy production rate �S2
�

� 22Dx2� �
22D

P
i x

2�
i � 2

P
i L

1
2,i with the sum over the positive

exponents only, as just argued. Thus, within the approxi-
mations as above, we have shown that the entropy pro-
duction rate for a chaotic system weakly coupled to the
environment settles after an initial exponential transient
to a metastable value as above, independent of the pre-
cise magnitude of the environmental effects [13]. This
solution is stable under small pertubations; thus, the exact
dynamics arguably leave it unaltered. We now consider
possible constraints on this result. First, note that the tran-
sition from the exponential to the linear regimes happens
at t�

i � �1�2L
1
2,i� ln�L1

2,i�2Dx
2
i �0�� (the shortest scale is

approximated by the largest exponent L
1
2,1 	 l and the

full x2 and we shall use those hereafter). Since t� � 0
for b 	 2l21Dx2�0� � 1, for b ¿ 1, the initial behav-
ior of x

2
i is not the exponential transient but is given by

Eq. (4) instead. For this case, the initial diffusive effects
are balanced by the chaos such that an initially large �S2
decreases to a constant. Second, the difference between
the initial entropy S2�0� and the final entropy S2�`� is
4527
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typically finite. Thus, the system may not have “enough
initial entropy” to evolve to the constant entropy rate as
above. A rough estimate (and numerical results as de-
scribed below) indicates that we need S2�0� 2 S2�`� . 3
for the linear saturation behavior to emerge [14]. Finally,
in contrast to this behavior for chaotic systems, a similar
analysis for nonchaotic systems yields an initial nonexpo-
nential decay of S2 after which the competition from the
diffusive term implies a maximum (~ D21) for �S2, and
a rapid decrease thereafter. As a result of these dynam-
ics, appropriate initial distributions r for chaotic systems
settle to a metastable state with x

2
i as above. This is a re-

markable result, generalizing earlier arguments [4,10] for
a “steady-state Gaussian width.” Further, this enables us
to bound the quantum corrections in Eq. (1). Consider
the first quantum term in Eq. (1), which scales as h̄2x3.
In the absence of the D-dependent terms, x grows ex-
ponentially rapidly as exp�lt�, thus leading to a quantum-
classical break time tb � 1

l ln� 1
h̄ � after which the quantum

“correction” is comparable to the classical evolution and a
classical description of the dynamics is invalid. This loga-
rithmic dependence of tb on h̄ is extremely weak and is a
point of debate in the analysis of quantum chaotic systems
[4]. However, environmental effects saturate x and hence
the first quantum term at z � h̄2�l�2D�3�2 such that this
indeed is a correction of O �h̄2� to the classical evolution
and there is no break time. The condition [15] for restora-
tion of quantum-classical correspondence for chaotic sys-
tems may be summarized as z ø 1 (note that the other
quantum terms are higher order in z ). Physically, quan-
tum effects are important at the smallest scales �h̄ of
phase space. Classically chaotic evolution increases the
support of a distribution at the finest scales exponentially
rapidly, thus enhancing quantum effects. However, noise
or coarse graining washes out the details of the fine-scale
structure, thus restoring quantum-classical correspondence
[16]. For systems where the above inequality is violated,
however, a classical or semiclassical analysis breaks down
and we must use the exact quantum evolution.

We have numerically verified the theory using the
equivalent of Eq. (1) for the classical and quantum cat
map [11]. As this system is linear and ergodic, the
approximations above hold exactly. Some of the data
obtained are shown in Figs. 1–3. First, with a scaled
Planck’s constant 2p h̄ � 1025, we expect [11] essen-
tially classical behavior, even with no added noise. This
is indeed verified as in Fig. 1 where the classical data
for the same initial conditions and D exactly overlie the
quantum results. For an initial sharply localized Gauss-
ian state, corresponding to high initial entropy, when D
is small we see initial exponential entropy production
[7]; this saturates to linear behavior with the predicted
slope. The initial exponential behavior is swamped as D
is increased, as argued previously. For a second initial
state which is spread out and has lower initial entropy,
we see similar stable behavior—although �S2 now satu-
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FIG. 1. Time dependence of the entropy S2�t� for the chaotic
cat map for varying levels of coupling to the environment, as
measured by D. Classical and quantal (2p h̄ � 1025) numerics
were run for identical initial conditions and noise strengths D.
The classical results are shown as points overlaid on the lines
for the corresponding quantal data. There are two different
initial conditions, one with high initial entropy S2�0� and the
other with lower S2�0�. A reference line with slope equal to
L2 � 0.9624 is also shown.

rates earlier, as discussed above—confirming that this
metastability is essentially independent of initial condi-
tions and of D for near-classical systems. Figure 2 shows
the quantum-to-classical transition by comparing various
runs for a single sharply localized initial condition at
2p h̄ � 1023 with their classical equivalents. We see that
for very small D (hence large z ) there is significant quan-
tal deviation from the classical behavior. However, as D
is increased (and z correspondingly decreases below 1),

FIG. 2. Quantal and classical results are shown with 2p h̄ �
1023, a single initial condition and varying D. As D is
increased, the quantal behavior approaches that of the classical
system. As in Fig. 1, a reference line with slope equal to
L2 � 0.9624 is also shown.
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FIG. 3. As in Fig. 2, but with 2p h̄ � 1021. The quantal
system is almost unaffected by small D. The quantal behavior
tends to the classical with increasing D; however, it is then
dominated by noise and the slope is always less than that of the
reference line shown with slope of L2 � 0.9624.

the quantal �S2 approaches the classical linear saturation
behavior as above. A more spread-out initial distribution
has the same qualitative behavior (not shown) except that
it saturates early as expected. We note that the distribu-
tions for both Figs. 1 and 2 are not Gaussian during the
metastable stage of the dynamics. Figure 3 shows results
for 2p h̄ � 0.1. Here the uncertainty principle constrains
the initial r to occupy a substantial portion of the avail-
able phase space. We see again that for z ¿ 1, the quan-
tum behavior is substantially different from the classical
and there is almost no sensitivity to the environment (low
entropy production). As D increases, quantum-classical
correspondence is indeed restored, although D is now so
large the dynamics are essentially that of the noise alone
and �S2 saturates at less than L2. The abruptness of the tail
in all our computations is most probably a numerical arti-
fact due to the extremely small numbers being computed
at that time; a detailed understanding of this tail is still
absent. These results show that the entropy production
rate for an arbitrary distribution in classically chaotic sys-
tem saturates, after an exponentially rapid transient, to the
sum of the positive generalized Lyapunov exponents of
the system; further, the distribution settles to a metastable
state. This is a clear signature of the underlying chaos,
stable against perturbation. This behavior is echoed by
quantum systems close to the classical limit, and the satu-
ration is the precursor for quantum-classical correspon-
dence in chaotic systems coupled to the environment.
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