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Three-Dimensional Kinematic 
Modelling of the Human Shoulder 
Complex—Part I: Physical Model 
and Determination of Joint Sinus 
Cones 
Modelling of the human shoulder complex is essential for the multi-segmented 
mathematical models as well as design of the shoulder mechanism of an
thropometric dummies. In Part I of this paper a three-dimensional kinematic model 
is proposed by utilizing the concepts of kinematic links, joints, and joint sinuses. By 
assigning appropriate coordinate systems, parameters required for complete quan
titative description of the proposed model are identified. The statistical in-vivo data 
base established by Engin and Chen (1986) is cast in a form compatible with the 
model by obtaining a set of unit vectors describing circumductory motion of the up
per arm in a torso-fixed coordinate system. This set of unit vectors is then employed 
in determining the parameters of a composite shoulder complex sinus of a simplified 
version of the proposed model. Two methods, namely the flexible tolerance and the 
direct methods, are formulated and tested for the determination of an elliptical cone 
surface for a given set of generating unit vectors. Numerical results are presented for 
the apex angles and orientation of the composite joint sinus cone with respect to the 
anatomical directions. 

Introduction 

The proper biomechanical description and simulation of the 
human shoulder complex is not only needed for a successful 
multi-segmented mathematical modelling of the total human 
body, but also is essential in designing a human shoulder 
mechanism to be used as a part of an anthropometric dummy. 
Furthermore, the human shoulder complex models provide 
means to identify-risk factors in the treatment of degenerative 
shoulder lesions. The term "shoulder complex" refers to the 
combination of the shoulder joint (the glenohumeral joint) 
and the shoulder girdle which includes the clavicle and scapula 
and their articulations. Thus, the usage of the term shoulder 
joint is somewhat misleading if one does not bear in mind the 
various components of the region and their interactions. The 
research and studies on the shoulder complex has more than a 
century long history, and a brief summary of the subject mat
ter prior to 1980 is provided by Engin (1980). 

Biomechanical models of the human should complex range 
from a qualitative planar kinematic model (Dvir and Berme, 
1978) to that of Hogfors et al. (1987) that aims at prediction of 
muscle forces in the shoulder region as functions of arm posi
tion and external load in static and quasistatic situations in 
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three dimensions. The success of biomechanical modelling cjf 
the shoulder complex is generally hindered by the lack of ap
propriate data base as well as the anatomical complexity of the 
region. Recently, Engin and Chen (1986a) have established a 
statistical in-vivo data base for the shoulder complex sinus of 
male population of ages 18-32. They expressed the numerical 
results in functional expansion form relative to a locally de
fined joint axis system. Engin and Chen (1986b) have also 
determined the three-dimensional passive resistive joint pro
perties beyond the maximal voluntary shoulder complex sinus. 

In this two-part paper, the statistical data base established 
by Engin and Chen (1986a) will be utilized in developing a 
three-dimensional kinematic model of the human shoulder 
complex. In Part I, a physical model, which consists of an 
open loop chain of four links connected to each other by 
universal and sleeve joints, is proposed for the human 
shoulder complex. In order to describe the proposed 
mechanism quantitatively, the statistical database of Engin 
and Chen (1986a) is then converted from a format of single-
valued functional relationship, expressed in a local joint axis 
system, into a set of direction cosines for the humerus in a 
torso-fixed coordinate system. Since the main theme of the 
proposed mechanism is the establishment of individual joint 
sinus cones, Part I also contains mathematical procedure of 
obtaining these cones from a set of direction cosines. 
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Fig. 1 Principal bones and joints of the shoulder complex. The heavy 
lines designate the clavicular, scapular, and humeral links 

Proposed Shoulder Mechanism (Physical Model) 

The most striking feature of the shoulder complex is the 
presence of independent articulations among the bones of the 
shoulder complex, i.e., the clavicle, scapula, humerus, and the 
thorax as depicted in Fig. 1. The sternoclavicular and the 
claviscapular joints are the two articulations of the clavicle. 
The glenohumeral joint is a partial ball and socket joint where 
the humerus articulates with the glenoid cavity of the scapula. 
The motion of the scapula with respect to torso is sometimes 
defined as the forth articulation and named as the 
scapulothoracic joint. However, in the true sense, the 
scapulothoracic articulation is not a joint; but this definition is 
of some value when describing the movements of the scapula 
over the thorax. Brief anatomical and kinesiological descrip
tions of these joints are previously given (Engin, 1980), and 
more detailed descriptions can be found in Steindler (1955) or 
Gray's Anatomy (1973). 

Dempster (1965), in his studies on the range-of-movement 
of shoulder cadaveric specimens, introduced the concept of 
links to explain the relative motions of clavicle, scapula, and 
humerus. A link is defined as a straight line between two 
neighboring articulating joints. Thus, the clavicular link is a 
straight line between the sternoclavicular joint and the 
claviscapular joint; the scapular link is a line from the 
claviscapular joint to the average center of curvature for the 
humeral articular face; and the humeral link is a line between 
the average center of the humeral head and the average center 
of curvature of the capitulum at the elbow joint. In Fig. 1 
these three links are shown by heavy lines. 

Since the terms joint sinus and joint sinus cone are exten
sively used in this paper, let us define these two terms. Joint 
sinus is the total range of angular motion permitted by a mov
ing link of a joint when the other link is rigidly fixed. The joint 
sinus cone is the conical surface enveloping the joint sinus and 
having its apex at the functional center of the joint. Thus, in 
view of Fig. 1, three individual joint sinus cones, namely, ster
noclavicular, claviscapular, and glenohumeral cones can be 
defined. More specifically, the sternoclavicular cone 
represents the joint sinus of the clavicular link with respect to 
the thorax, the claviscapular cone represents the joint sinus of 
the scapular link with respect to the clavicle, and finally the 
glenohumeral cone represents the joint sinus of the humeral 
link with respect to the scapula. It is also possible to define a 
composite "shoulder complex sinus cone" describing the total 
range of angular motion permitted by the upper arm (humeral 
link) with respect to the torso. 

Based on aforementioned concepts a linkage mechanism 
depicted in Fig. 2 is proposed for kinematic representation of 
the shoulder complex. Basic components of this mechanism 
are links, single degree-of-freedom sleeve joints, and two 
degrees-of-freedom universal joints that are composed of two 
single degree-of-freedom revolute joints along two intersecting 
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Fig. 2 Schematic representation of the proposed shoulder complex 
model 

perpendicular axes. Besides these components, universal joint 
stops or templetes representing individual joint sinus cones 
and appropriate mechanical stops for limiting the sleeve rota
tions are added. The shape of these cones was shown to be ap
proximately elliptical by Dempster (1965) according to his 
tests on cadaveric specimens. The universal joints allow the 
links to rotate with respect to each other, whereas the sleeve 
joints provide rotational freedom about individual link axes. 
It should be noted that combined effect of universal joint and 
a sleeve joint is one of a ball and socket. 

Several coordinate systems need to be defined for the quan
titative description of the proposed shoulder mechanism, Fig. 
2. The origin of the torso-fixed right-handed orthogonal coor
dinate system (x0, y0, z0) is defined by establishing three or
thogonal planes in the following manner. The first plane (the 
sagittal plane), x0z0, is established by three bony landmarks 
(suprasternale, cervicale, and mid-spine at the level of the 
tenth rib); the second plane (the frontal plane), y0z0, that is 
perpendicular to the first one is established by two landmarks 
(cervicale and mid-spine at the level of the tenth rib), the third 
plane (the transverse plane), x0y0, which is perpendicular to 
both x0Zo and y0z0 is established by a single landmark (mid-
spine at the level of the tenth rib). In this way, x0, y0- and z0 
axes are, respectively, aligned along the anatomical directions 
anterior-posterior (A-P) toward anterior (A), medial-lateral 
(M-P) toward lateral (L), and superior-inferior (S-I) toward 
inferior (I). The body-fixed coordinate system (xy, yj, zj) may 
be considered as the reference system attached to the frame 
(fixed link) of the shoulder complex mechanism. It is obtained 
by translating the torso-fixed system to the sternoclavicular 
joint center by the vector r. The two moving coordinate 
systems (xc, yc, zc) and (xs, ys, zs) are attached to the distal 
ends of the clavicular and scapular links, respectively, in such 
a way that if one imagines a fictitious orientation of clavicular 
and scapular links becoming collinear and running along in
ferior direction ( + z0-axis), the moving coordinate systems 
take a parallel configuration with the torso-fixed system. The 
sternoclavicular joint sinus cone (Cone I) is fixed to the frame 
(torso) at the sternoclavicular joint center, and its orientation 
is defined by the (x,, y{, z{) coordinate system in such a man
ner that Z\ is along the cone axis, and xx and yx are parallel to 
the major and minor axes of elliptical cross section of the 
cone. The transformation between the body-fixed (xf, ys, zf) 
and Cone I-fixed (xltyuZi) systems is one of rotation and can 
conveniently be described by three Euler angles, o^, /?!, and yx 
for which the associated convention will be defined later. The 
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Fig. 3 Half apex angles and semi-axes of the joint sinus cone 

Fig. 4 Relative orientation of the body-fixed {xf, y,, zt) and joint axis 
(x/t> Vjt' z/() systems, and the spherical angles, <6 and e, defining 
humerus orientation (after Engin and Chen, 1986a) 

size of Cone I, on the other hand, can be defined by the two 
half apex angles r\{ andf, as shown in Fig. 3. Thus, Cone I is 
fully defined by five parameters, namely au (H^y^y^, and f (. 
The claviscapular joint sinus cone (Cone II) is fixed to the 
clavicle at the claviscapular joint center, and its orientation is 
defined by the (x2, y2, z2) coordinate system in the same man
ner as that of Cone I. Five parameters defining Cone II with 
respect to clavicle are a2, /32, y2< 'h. a nd f2, where a2, P2, and 
72 are the Euler angles for the transformation between the 
clavicle-fixed (xc, yc, zc) and Cone II-fixed (x2, y2, z2) coor
dinate systems, and r/2 and f2

 a r e the half apex angles. 
Likewise, the glenohumeral joint sinus cone (Cone III) is 
defined with respect to the scapula by a third set of five 
parameters i.e., a3, /33, y3, T]3, and f3. Note that in this case, 
the Euler angles 73, /33, and 73 refer to the transformation be
tween the scapula-fixed (xs, ys,zs) and Cone Ill-fixed (x3, y3, 
z3) coordinate systems. It is important to point out at this 
stage that in addition to the aforementioned 15 cone 
parameters, one has to specify 12 more parameters to be able 
to utilize the shoulder-upper arm model either in a multi-
segmented mathematical model of the human body or as a 
part of an anthropometric dummy. These additional 
parameters are the 3 components of vector r, Fig. 2, required 
for placement of the sternoclavicular joint with respect to tor
so, the clavicular, scapular and humeral link lengths, and 
finally 6 limiting values for the sleeve rotations of the three 
links in both directions from their respective nominal posi
tions. Note that the first 6 of the 12 additional parameters are 
available from anthropometric measurements (e.g., Demp
ster, 1965). In Part II of this paper, we will present a method 
of determining all remaining parameters except the limiting 
values for the sleeve rotations of the humeral link (i.e., a total 
of 19 parameters) via an optimization scheme. 
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Fig. 5 0(0) for three different runs for all subjects (after Enqin and 
Chen, 1986a) 

Utilization of Available Database 

Dempster (1965) has collected a limited amount of data on 
specially prepared cadaveric specimens which can be used to 
estimate the values of several aforesaid parameters of the pro
posed model. Apart from being incomplete, since the data ob
tained by Dempster (1965) are based on in-vitro measurments 
they may not be considered as indicative of in-vivo conditions. 
As mentioned earlier, Engin and Chen (1986a) were the first to 
provide statistically meaningful in-vivo data base for the 
kinematics of the shoulder complex. Their data collection 
methodology, which utilizes sonic emitters and data analysis 
technique based on selection of the "most accurate" data set, 
had been previously developed (Engin et al., 1984), and ap
plied to provide passive resistive properties of the human 
shoulder complex for one subject (Engin and Peindl, 1985). 
Engin and Chen (1986a) have applied the research program 
described in (Engin and Peindl, 1985), and have statistically 
analyzed the data collected for ten male subjects of ages 18 
through 32 possessing neither musculoskeletal abnormalities 
nor any history of trauma in the shoulder complex region. The 
subjects were instructed to move their arms along the maximal 
voluntary range of circumductory type of motion, and 3-D 
coordinates of a distal point on the humerus (a specific point 
on the elbow) were monitored in the same torso-fixed coor
dinate system (x0, y0, z0) defined earlier. In order to be able to 
express the orientation of the upper arm in a single-valued 
functional relationship a local joint axis system \xJt, yjt, Zj,j 
was established by following a unique procedure. This local 
joint axis system is specified by two spherical angles cj)„ and 6„ 
as shown in Fig. 4 reproduced from Engin and Chen (1986a). 
Sample mean <j>n and 0„ for three test runs of ten subjects were 
calculated as 58.65 and 78.48 deg, respectively. Thus, the 
orientation of the upper arm can now be defined by means of 
the spherical coordinates cj> and 0 measured in the local joint 
axis system in a single-valued functional relationship, i.e., 
0 = 0(</>). The sample means of all subjects 0 = 0(</>) are 
reproduced in Fig. 5 for three different runs. Any point of 
0 = 0(</>) represents a particular orientation of the upper arm in 
local joint axis system. However, what is needed for the pro
posed shoulder complex model is the expression of the same in 
the torso-fixed (or the parallel body-fixed) coordinate system. 
Let u be a unit vector describing upper arm orientation, Fig. 4. 
This unit vector is represented in local joint axis and body-
fixed systems by ujt and Uj, respectively. It is clear from Fig. 4 
that 

uJt = [xjtyjlZjl]
T = [SeC<t> S0S<l> C01/ (1) 

where S and C stand for sine and cosine functions, respective
ly. The local joint axis system (xJt, yjt, Zj,) is obtained from 
the body-fixed system (xf, yf, Z/) by first rotating an angle <j>„ 
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about Zf axis, then rotating the intermediate axis system by an 
angle 6„ about intermediate yf axis, as implied in Fig. 4. By 
utilizing elementary transformation matrices in the prescribed 
order we can then get 

uf={xfysZjY = [M\Uj< 

where 

[M] = 

CdnC4>„ 

cdns<t>„ 

-S8„ 

- S 0 „ 

cin 

0 

S0„C</>„ 

s ,̂s^„ 

C8„ 

(2) 

(3) 

The set of tij- unit vectors now available can be utilized to 
quantitatively determine the composite shoulder complex 
sinus cone which was previously defined. This composite cone 
represents the combined effects of all three joints of the 
shoulder complex, and leads us to a simplified version of the 
proposed mechanism as shown in Fig. 6. In this mechanism 
only the motion of humerus is considered with respect to tor
so; however, the motions of clavicular and scapular links are 
inherently present since the composite cone covers the motions 
of all the links. Clearly, the position r ' , of the single universal 
joint does not correspond to a particular joint. The method of 
determining the vector r ' from the 3-D coordinate data of a 
distal point on the humerus during circumductory motion of 
the upper arm is reported elsewhere (Engin and Turner, 1987). 
The following section describes the method by which the set of 
Uf unit vectors are utilized to define the elliptical cone for the 
composite sinus of the simplified mechanism. The same 
method will also be used later on in Part II of this paper for 
the quantitative determination of the individual joint sinus 
cones of the initially proposed shoulder complex mechanism. 

Determination of the Composite Sinus Cone 

Consider Fig. 6, which shows the composite sinus cone. Let 
O 'C be unity, so that the half apex angles of the cone, 1/, and 
f, are related to the lengths a, and b, of the semi-axes of ellip
tic cross section at C, by 

a, = tani)„ Z?,=tanf, (4) 

Let u be a unit vector lying on the generating surface of the 
cone, represented by uf= [Xf yf Zf\T in body-fixed, and u, = [x, 
y, zt]

T in cone-fixed systems. Knowing the parametric equa
tion of the elliptical cone in the cone-fixed system, the follow
ing relation can be written between the components of ut: 

(f)'*(t)'-« 
The transformation between u, and Uf can be accomplished by 
three Euler angles a„ &t, and y, according to the rotation se
quence shown in Fig. 7, and the resulting transformation 
matrix [i?]/( 'is given by 

[*]/,= 

rj\ 

Q3,C7 , 

SarS|8,C7( + Ca tSy, 

-Ca,S/3tCyt + SutSyt 

UNIVERSAL JOINT 

Fig. 6 Simplified version of the proposed shoulder complex model: 
composite joint sinus cone 

t xf.x 

Fig. 7 Cone-fixed (x,, yt, zt) system obtained by successive rotations 
« ( , 0,, and 7, from the body-fixed {xt, yf, z,) system 

We next pick 32 equally spaced points from Fig. 5 within inter
val 0<$<27r. The uf vectors corresponding to these 32 data 
points are calculated from equations (1) thru (3). At this point 
the results were checked by noting that for the unit vector 
" / = [Xf y/ Zf]T, the equation of x/ + y/ + z/ = 1 is satisfied to 
the fifth decimal point accuracy. 

The problem is now one of finding the parameters of the 
elliptical cone (a,, /3,, y„ a,, b,) from equations (5) thru (7) 
for 32 sets of uf available. The redundant data permits an op
timization scheme to be used to find the best-fitted elliptical 
cone surface in the least squares sense. For a typical fth unit 
vector on the cone surface, u/ -[x/ y/ z/]T, the following 
relation can be written from equations (5) thru (7): 

ti(al,P„yt,a„bt) = (rnXf+r2iyf+rnzf)2 

b] 
(rl2Xf+r22yf+r32Zf)2 

-C0,Sy, S/3, 

-Sa,S,3,Sy, + Ca;,CY, -Sc^Cft 

Cct/Sfi/Sy, + Sa/Cy, CatC(3t 

(6) 

Therefore 

ut = [R]j,uf 

(rnx
,f+r2iy'f+rnz

i
fr = 0 »'=!, . (8) 

(7) where rk, are given by equation (6), and n = 32. Clearly for 
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« > 5 there is no solution for equation (8), but for fixed a,, 0,, 
y,,at, b, we can evaluate /, as: 

ti(ot„p„y„a„bt)=£i (9) 

Then, the problem of finding the best-fitted cone in the least 
squares sense can be formulated as the following optimization 
problem: Find the parameter values a„ @t, y,, a,, and b, such 
that 

1 " 
* ( a „ /3„ 7 „ f l ,A)= — £ £ ? (10) 

1 l 

is a minimum. This is a highly nonlinear optimization problem 
and requires numerical solution. It is a well-known fact that 
the numerical solution to such problems can hot be relied 
upon unless they are checked for accuracy and stability. For 
this reason a change of variables is performed and an alter
native form of equation (8) is obtained 

ti',OL,^l,ynal,bt)=A,{rnx
ij+rnyj+r^zij)2 

+ B<(.rl2x'f+r22y'f+rnz
i
f)

2 

~ (/•l3*}+/'23>'}+'-33Z})2=0 1=1, . . . ,n (11) 

where A, = \/at
2 and B, = 1/b,1. By comparing the results of 

both formulations, the numerical stability and effectiveness of 
a particular numerical technique can be checked. Further
more, two completely different optimization techniques are 
employed and the results are compared for the same reason. 
The first is a direct formulation of the problem expressed in 
equation (10), and the second is a nonlinear programming 
technique called the flexible tolerance method (Himmelblau, 
1972). In what follows, these methods are presented for the 
second formulation only (i.e., equation (11)). 

Direct Method. The minimum of the function $(a ( , 0,, 7,, 
At,B,) occurs when 

The equations (12), together with expression for e,- (equation 
(11)), constitute five highly nonlinear, strongly coupled 
algebraic equations to be solved for the unknowns a,, /3,, y,, 
A„ and B,. An IMSL library routine called ZSCNT is 
employed for the solution of a system of nonlinear equations. 
This routine requires initial guesses to be supplied by the user. 

Flexible Tolerance Method. This is a direct search method 
which, in general, can accommodate any nonlinear equality 
and/or inequality constraints, and does not need derivatives to 
be supplied. An initial tolerance criterion as well as initial 
guesses are required to initiate the search. The method is ex
plained in detail and a fortran code is provided by Him
melblau (1972). This fortran code was modified to suit the 
complier of the VAX-11 computer available, and was tested 
with several optimization problems of known solutions. The 
present problem was then solved by introducing the following 
inequality constraints: 

A„Bt>0, 0<a,,/3,,7,<27r (13) 

Comparison of Methods of Cone Fitting and Results. The 
cone optimization problem was solved for both formulation 
with both methods. It may be surmised that both formulations 
should naturally give the same results. However, during test 
runs it was discovered that this is so for a reasonably behaving 
set of unit vectors. In the case where unit vectors do not 
describe approximately a conical surface, e.g., if they all lie on 
a single plane, two formulations were found to give complete
ly different results for the flexible tolerance method, and to 
fail to give a solution in the case of the direct method. Failure 
to get the same results from both formulations therefore in
dicates an ill-conditioned problem giving rise to numerical in
stabilities. An exhaustive search was made to identify any 
local minimum or saddle point by trying several sets of initial 
guesses. Some of the results that are believed to be represen
tative of the effectiveness of the two methods are given in 
Table 1. In the first two rows of the table different results are 
obtained for the same initial guesses from the two methods 
with formulation I of equation (8). Although a, and (3, 
parameters defining the orientation of the cone axis are almost 
the same, the apex angles are quite different, the flexible 
tolerance method yielding an elliptical cone and the direct 
method a circular one. To see which solution is the correct 
one, the results obtained from the direct method are supplied 
as initial guesses for the flexible tolerance as shown in row 3 of 
Table 1, and the results of the flexible tolerance method are 
given as initial guesses for the direct method in row 4. It can be 
seen from the table that both methods now give the results ob
tained initially from the flexible tolerance, i.e., those of row 1. 
This indicates that the direct method results are not reliable 
and dependent upon initial guesses. To see if this behavior is 
due to numerical instabilities or an inherent feature of the 

direct method, in row 5 we gave the results of row 2 as initial 
guesses for the direct method with formulation II of equation 
(11). Since the results of rows 5 and 2 are the same, there are 
no numerical instabilities involved, thus indicating that the 
direct method leads to a local minimum or possibly to a saddle 
point unless initial guesses are reasonably close to the global 
minimum. This is further verified by the test of row 6 where 
the results of row 4, i.e., correct solution (global minimum) 
are supplied as initial guesses to the direct method again with 
formulation II, yielding the same correct solution. In row 7, 
the flexible tolerance method is checked with formulation II 
by using the same initial guesses of row 1, yielding the same 
results. Finally, it should be noted that the flexible tolerance 
method locates the global minimum no matter how far the in
itial guesses are from the solution, as can be observed from 
rows 1 and 7. All these results indicate that the flexible 

a* 

a * 

a * 

Y~*„ , . , • / drn dr21 dr31 .\ 

. / dr„ dr22 dr,2 \ 
+ Bl{rnX'f+r22yf+rnZ'f)(-^X'f+ - * - f r - J S - , , ) 

. / drn drn dr,, \ 
-(rnX-f+r22yf+r3}Z})(-^X>+ _^J- ?f+ _J2_ 4) = 

n 

= D^/( ' 'n4+ r2i .y}+'-3iZ/)= 0 

1 
n 

0 (12) 
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Table 1 Comparison of cone optimization methods 

(Apex angles: >;, = tan ' a , o r t a n 'VlA4,; f, = tan [b, or tan" 1 V l / 5 , ) 

Test 
No. 

1 

2 

3 

4 

5 

6 

7 

Method 

Flexible 
tolerance 

Direct 
method 

Flexible 
tolerance 

Direct 
method 

Direct 
method 

Direct 
method 

Flexible 
tolerance 

Formulation 
I: equation (8) 

II: equation (11) 

I 

I 

I 

I 

II 

II 

II 

Initial Guesses 
a, or A,, b, or B, 
a,, (Sn 7, (radians) 

a, = 0.7, b, = 0.7 
-1 .57 , 0.0, 0.0 

a, = 0.7, 6, = 0.7 
-1 .57 , 0.0, 0.0 

a, = 4.40, 6, = 4.40 
-1 .55 , 0.61, 0.88 

e, = 3.37, 6, = 8.65 
-1 .54 , 0.59, 1.74 

A, = 0.052, 5 , = 0.052 
-1 .55 , 0.61, 0.88 

A, = 0.088, B, = 0.013 
-1 .54 , 0.59, 1.74 

A, = 2.04, B, = 2.04 
-1 .57 , 0.0, 0.0 

Results 
a, or A,, b, or Bt 
a,, (St, y, (radians) 

a, = 3.37, b, = 8.65 
-1 .54,0 .59, 1.74 

a, = 4.40, b, = 4.40 
-1 .55 , 0.61, 0.88 

a, = 3.37, 6, = 8.65 
-1.54, 0.59, 1.74 

a, = 3.37, ft, = 8.64 
-1 .54, 0.59, 1.74 

,4, = 0.052, Bt = 0.052 
-1 .55 , 0.61, 0.1 

A, = 0.088, 5 , = 0.013 
-1 .54, 0.59, 1.74 

A, = 0.088, B, =0.013 
-1 .55 , 0.59, 1.74 

Apex angles 
2 ij , 

2f, 
147 deg 
168 deg 

154 deg 
154 deg 

147 deg 
168 deg 

147 deg 
168 deg 

154 deg 
154 deg 

147 deg 
168 deg 

147 deg 
168 deg 

tolerance method is much more reliable than the direct 
method. It should, however, be pointed out that the direct 
method is much faster in execution than the flexible tolerance 
method. 

In view of the foregoing discussion along with the results 
presented in Table 1, the following values can confidently be 
quoted as the desired composite sinus cone parameters. 

Cone size (apex angles): t\, = 147 deg, f, = 168 deg 
Orientation of the cone: a, = — 88 deg, j8, = 34 deg, 

7, = 100 deg 

The above results were obtained by utilizing 32 equally spaced 
data points on the S = d(4>) curve of Fig. 5. as can be seen 
from Fig. 5, S = 5(4>) curve shows steep slopes in some 
regions, suggesting inclusion of additional data points in these 
regions. In fact, the data points were increased from 32 to 48 
and cone parameters were reevaluated. With this extended 
data set the orientation of the cone remained unchanged, and 
apex angles changed no more than 2 degrees (148 deg, 170 
deg). 

The resulting Euler angles given above for the orientation of 
the cone can be better interpreted either by means of projected 
angles on the cardinal planes, or spherical angles measured 
with respect to the anatomical directions. The axis of the com
posite sinus cone makes 1.5 deg with the lateral direction and 
88.5 deg with the inferior direction in the frontal plane (y0Zo), 
and makes 33.8 deg with the lateral direction and 56.2 deg 
with the anterior direction in the transverse plane (x0y0). The 
major axis of the cone, which corresponds to 170 deg apex 
angle, makes 10 deg with the anterior direction, and 80 deg 
with the superior direction in the sagittal plane (x0z0). In 
terms of the spherical angles with respect to the anatomical 
directions, cone axis makes 56.2, 33.8, and 88.8 deg with 
respect to x0,y0, and z,0 axes of the torso-fixed system, respec
tively. The major axis of the cone cross section makes 35.0, 
57.1, and 79.5 deg, whereas the minor axis makes 82.0, 83.0, 
and 10.6 deg with respect to the aforementioned anatomical 
directions x0, y0, and z0, respectively. 

Concluding Remarks 

In this paper a three-dimensional kinematic model of the 
human shoulder complex has been proposed by utilizing the 
concepts of kinematic links as well as joint sinuses. By assign
ing appropriate coordinate systems, parameters required for 
complete quantitative description of the proposed model have 

been identified. In order to determine the values of these 
parameters, available statistical data base for the shoulder 
complex has been cast in a form compatible with the model, 
i.e., a set of unit vectors describing the circumductory motion 
of the upper arm. This set of unit vectors has been employed 
in determining the parameters of a composite shoulder com
plex sinus of a simplified version of the proposal model. Two 
methods, namely the flexible tolerance and direct methods, 
have been formulated and tested for the determination of the 
elliptical cone describing the composite sinus. Various salient 
features of the two methods have been discussed, and inter
pretation of the results have been presented. 

The mathematical modelling and its solution for the initially 
proposed more comprehensive kinematic model will be dealt 
with in Part II of this paper. 
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