The Solution of Three-Dimensional,
Composite Media Heat Conduction
Problems by Synthesis Methods

A wmethod, known as synthesis, is applied to the task of oblaining approximaie solutions
to the static heat conduction equation for three-dimensional, composite media problems
with mixed boundary conditions. The method is based wpon an expansion in terms of
known two-dimensional solutions of the problem of interest. These known two-dimen-
stonal solutions (trial functions) are blended over the remaining dimension by unknown
mixing coefficients which are defined by means of variational techniques. A modified
canonical variationel principle is derived which permits the use of discontinuous lrial
Sfunctions, which expands the class of problems to which the synthesis method can be
applied. The equations defining the mixing coefficients are derived in some detail, and
the results of several test problems display the poiential of this method for analyzing
realistic heat conducting systems.
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Introduction

THE problem of solving the equilibrium heat conduc-
tion equation in three dimensions for composite media is indeed
very difficult. Such problems usually arise in designing any heat

designer to describe the removal of heat from the device in an
optimum fashion. In addition an accurate temperature distribu-
tion yields a detailed description of thermal stress sources in the
device. Hence it is very desirable to know as much as possible
about the spatial temperature distribution when designing

producing mechanism, and when accurately solved permit the jeglistic heat producing devices.

For three-dimensional composite media problems, such classical
solution techniques as expansions in terms of orthogonal func-
tions are not, in general, feasible; and since exact analytical
solutions are certainly not attainable, one must resort to some
approximation method. Quite often a designer obtains some
knowledge of the three-dimensional temperature distribution by
solving more tractable equivalent two-dimensional problems,
However, this is not often possible or desirable if accurate tem-
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Nomenclature
7 = temperature @ = x-y cross sectional area M = number of discontinuous
k = thermal conductivity ¢ = contourof @ trial functions used
S = heat source Z = denotes axial dimension of Pz, P¥, P = heat flow mixing coefficients
® = volume of interest system : (7); = denotes quantity averaged
8§ = external surface of ® &, = axial regions where % is con- about mesh point 2
81, 82, 83, 8 = connected segments of § tinuous 8:0; 0;,; = Kronecker delta function
H = ftrial funetion L = axial size of test problem B, C; = terms in synthesis equa-
Z = mixing coefficient R = radial size of test problem tions (see equation (40))
f = unit normal surface vector deg ' = degrees Fahrenheit
T, = surface temperature £ = Lagrangian density Subscripts
V = gradient operator U = integral of surface term in . . .
. . . n = index of summation in synthesis
h = convective surface coeffi- functional .
. . expansion
cient p = vector valued generalized . . N .
7 = axial mesh point indicator; inter-
¢» = normal surface heat flow momenta T
. . nal surface and volume indica-~
N = number of trial functions Pz Py P, = components of p tor
& = variation operator 3¢ = Hamiltonian density R .
- L . s . . 2z = 0, 2 = evaluation on surface z =
V1, V2 = variational functionals §; = internal swrfaces on which onz =z
V', Vo' = reduced functionals trial functions arve dis- . .
. . . 7, k = components of matrix
$; = internal swrfaces on which continuous . . .
- . : . . m(7) = index of summation about mesh
k is discontinuous ®; = volume regions in which .
. . . point 2;
Z = summation symbol trial functions are con-
(4+), (=) = denotes one-sided evalua- tinuous
tion of a discontinuous 2; = axial mesh points Superscripts
function A; = axial mesh spacing T = transpose of a matrix
{,> = volume integration symbol sy ;= unitstep functions —1 = inverse of a matrix
{: } = surface integration symbol I = number of axial mesh points =z, y,2z = =z, y, or 2z component
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perature shapes are required. An obvious remedy is to superim-
pose a finite mesh structure on the domain of interest and obtain
numerical solutions. This may be feasible if only a crude ap-
proximation is desired, but if an accurate temperature distribu-
tion is required, then a detailed mesh must be used. This can be
a prohibitively expensive task even with today’s fast digital
computers.

This paper describes a method of constructing accurate numeri-
cal solutions for equilibrium composite media heat conduction
problems in three dimensions. This method, which constructs
three-dimensional solutions from known lesser dimension solu-
tions of the problem of interest, is known as the synthesis ap-
proximation [1].2  Synthesis techniques have been applied with
much success to the solution of the neutron group diffusion prob-
tem and other problems arising in reactor theory {2].

The Synthesis Concept

The synthesis method is based on a ‘“bracket-blend’’ idea which
we now proceed to describe. Consider, for example, the problem
of solving the heat conduction equation,

~V-kVT = 8
T =0

n R
ey

on §

for the heat conducting device shown in Fig. 1. In equation (1)
T = T(x, y, 2) is the temperature, k = k(z, y, 2) is the thermal
conduetivity, and § = S(&, v, z) is the heat source. R is the
volume enclosing the device which is bounded by the surface §.
Let Hi(x, y) and H.(z,y) be two-dimensional temperature dis-
tributions obtained for z-y slices through axial compositions 1 and
2, respectively. Now it is reasonable to assume that H, and H,
are good approximations to the true x-y temperature shape in the
cenfral portion of axial compositions 1 and 2, respectively. In
addition a linear combination of H; and H, should yield a good
approximation to the a-y temperature shape near the interface
z = z/. Then for this problem, we see that the trial functions H,
and H: in some sense ‘“bracket’’ the true z-y shape of the tem-
perature. The three-dimensional temperature distribution is
then synthesized as

T(x, y, 2) = Hi(z, ¥)Z:(z) + Ha(z, y)Z(z) (2)

where the unknown mixing coefficients “blend” the trial func-
tions H: and H. The basic difference between the synthesis
approximation and usual expansion type approximations is that
the synthesis trial functions are found directly from the problem
of interest. Since these trial functions are so tailoved to the specific

2 Numbers in brackets designate References at end of paper.
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Fig. 1 Heat conducting geometry to illustrate the synthesis method
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problem to be solved, an aceurate solution can be obtained by
using only a few such functions. In general, the procedure to be
followed is to subdivide the geometry of interest into ‘‘axial
compositions,” within which & and S are either independent of,
or only slowly varying functions of 2. Then we obtain an a-y
temperature trial function for each different axial composition hy
solving the two-dimensional heat conduction equation for slices
through each of these axial compositions. If there are N such
axial compositions in the problem of interest we use the ap-
proximate form

N
T(w,y,2) = Y. Hu(z, 1)Z,() (3)

n=1

where H ,(z, 1) is the known trial function found from axial com=
position n. For problems in which there is a drastic change in
material in going from one axial composition to the next, one can
include additional trial functions in the form (3) which may help
in approximating the temperature shape near this interface. Such
functions will be referred to as “transition trial functions.” The
unknown mixing coefficients, Z,(z), can be obtained by either of
two methods. The first is the method of weighted residuals {3],
for which the equations defining the mixing coefficients are found
by substituting the approximate form (3) into the heat conduc-
tlon equation (1), multiplying the resulting equation in turn by
each of the trial functions and then integrating these N equations
over the a-y cross section of the heat conducting system. This
results in N coupled ordinary second order differential equations
which define the mixing functions, Z,(z). The second way of
finding the functions Z,(z) is to use the form (3) with an ap-
propriate variational principle. The variational formulation will
be used in this presentation since it is the most systematic
method and because it will lead to certain generalizations which
will extend the usefulness of the synthesis procedure, We shall
refer to the approximation based on the expansion (3) as “‘con-
tinuous synthesis” since both the trial functions H,(z, y) and the
mixing coefficients Z,(z) are required to be spatially continuous
functions throughout the domain of interest.

The Continuous Synthesis Method

We now focus our attention on obtaining approximate solutions
to the heat conduction problem

VkvT +8 =0 in® (4)
subject to the boundary conditions
VT -7 =0 on $, (5a)
T =174 on 8, (5b)
kT - + T — 1) =0 on 8, (5c)
EVT % = gq, on 8 (5d)

where ® is the volume enclosing the heat conducting system of
interest, which is bounded by the external surface § = § - 8.
+ 8 - 84

Within the framework of the continuous synthesis approxima-
tion, the temperature is approximated as

N
Tix, y,2) & 3 Hulx, y)2.(2) (6)

n=1

where the H,(x, y) are the predetermined trial functions which
bracket the true solution in the sense that they are two-dimen-
sional solutions representative of z-y slices through the heat
conducting medium of interest at several 2z elevations where &
and S are independent of, or only slowly varying functions of z.
The Z,(z) are the unknown mixing coefficients which blend the
trial functions in such a way as to obtain the best (in a variational
sense) solution of the form (6). 'The variational principle to be
used is
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oVi[T] =0 (7)

wI[T] = fff (VT -kVT — 2T8)dr
®

+ b tr — 10— 2,108 ®)
8
This principle admits functions 7(r), which are continuous with at
least piecewise continuous first derivatives in ®, and has as its
stationary conditions equations (4) and (5).
In order to simplify the algebra we define the matrix notation

Z(z) Hi(z, y)

Z(2) = and H, y)=

Zy(2) Hy(z, y)

Then if superseript T' denotes a transpose of a matrix we may
replace the synthesis expansion (6) by

Tz, y, 2) =2 Z"(2)H(x, ). 9

In addition we define the following integration notation

(A4, 0B) = f f AOBdady
a
(OB) = f f OBdzdy
a

where @ is the a-y cross-sectional area of the system of interest,

and
{4,0B} = ]{ AOBdc

c

where ¢ is the closed line contowr bounding the z-y area a. The 2
dimension of the system of interest is defined by 0 <z < z.

We now substitute the synthesis form (9) into the functional
(8) and perform the z-y integrations. This results in a reduced
functional of Z, which when its first variation is required to vanish
vields the stationary conditions

d ]
— =, kHTY — 7 + [(VH, kVHT) + {H, hH?}1Z
dz dz

= (SH) + {(WTs + ¢,)H} for zind; (10)
subject to the boundary conditions
1
— (H, 10HT>Z=07;; Z(0) + (H, RHTY,0Z(0)
= <(hTS + qn)y H>Z=0
(11)
l
(H, kH )z~ 2(2) + (H, hH")2osZ(2)
2
= {(Ts + q.), H)ss
and the continuity conditions
o d d
(H, k(=) HT) — Z(—) = H, k(+)HT) — Z(+)
dz dz at 2=z,
Z(—) = Z(+)
(12)

where the z; are those axial positions where k is discontinuous,
and the ¥, denote the axial regions wherein & varies continuously
with z.

Equation (10) is a set of N X N coupled differential equations,
subject to the boundary conditions (11) and continuity conditions
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(12), which completely define the synthesis mixing coefficients,
Z (2).

In equation (10), Z(z) is the column matrix of unknown mixing
coefficients

Z\(2)
Zg(z)

Z(z) = ) (13)

Zn(2)

(H,kH")is a N X N matrix whose j, kth element is

<H7 kHT)j.lc = ff Hj(z, y)k(%; Y, Z)Hk(z: 1/)(1-’17(111/, (14)
a
(VH, kVHT)is a N X N matrix whose j, kth element is
(VH, kVH"); . = ff VH (x, y)-k(z, y, 2)VH(x, y)dady, (15)
a
(SH)is an N element column matrix whose jth element is
(SH); = ff H (z, y)S(z, y, 2)dady, (16)
a
{H , hH™ is an N X N matrix whose 7, kth element is
J
{H! hHT}j.k = f H]-(fl;, y)}l‘(:vi Y, z)Hk(:E; y)dc) (17)

c

and {(hT's + ¢,)H} is an N element column matrix whose jth ele-
ment is

{(hTS + qn)H}j = f Hj(m» ’l[)[h(il), Y, Z)TS(:U) Y, Z)

c

+ ¢a(x, v, 2)lde. (18)

Continuous Synthesis Test Prohlems

In order to display the utility of the continuous synthesis
method for obtaining accurate numerical solutions to multidimen-
sional, composite media, heat conduction problems, we describe
the results of two two-dimensional test problems. Both problems
used the axially symmetric cylindrical heat conducting system
described in Fig. 2. For these problems equations (10)-(12), in
cylindrical geometry, were solved numerically, using a modified
neutron diffusion theory synthesis program [4]. For purposes of
comparison, an »-z finite difference solution [3] of the heat con-
duction equation was obtained for each test problem, utilizing the
same mesh structure as was used for the solution of the synthesis
equations (10)-(12). These pointwise temperatures were ac-
curate to 0.001 deg F.

In all, six radial trial functions were considered in the synthesis
solutions of test problems 1 and 2. Trial functions Hi(r), Ha(r)
and H;(r) were one-dimensional finite difference solutions [6] of
the heat conduction equation representing radial slices through
axial compositions 1, 2, and 3, respectively. Trial functions Hy(r)
and H;(r) were transition type functions, which were one-dimen-
sional finite difference solutions using material properties which
are averages for axial compositions 1-2 and 2-3, respectively.
These first five trial functions vanished at the radial boundary
r = R. The final trial function, He(r) = 1 for 0 <r» < R.

Test Problem 1. This problem was concerned with approximat-
ing the temperature distribution for the system in Fig. 2, subject,
to the boundary conditions

e}
— T(rz2) =0 at z=0,L,

oz
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Fig. 2 Axially symmetric cylindrical conducting medium

T(R,2) = 80degF for 0<z<a2,
T(R,z) = 100deg F for & <2z <z,
T(R,2) = 80 degF for zm<z<UL

The synthesis expansion was then constructed as

6
T(r,2) =2 Y Z,(H, (), (19)

n=1

d
with —Z,(2) = 0,atz = 0, L.
dz

H(r), was included to accommodate the nonzero boundary con-
ditions at » = R. Fig. 3 presents a comparison of the synthesis
solution (19) and the r-z finite difference solution for this problem.

Test Problem 2. The second test problem again considered the
heat conducting system of Fig. 2. The boundary conditions
for this problem included convective conditions over a portion of
the external surface. Specifically the boundary conditions were

Note that the unit trial function,

o]
— T(r,2) =0 at 2 =0,L,
oz
T(R,z) = 80 deg F for 0<z<z,
e}
k > T(R,2) + h[T(R,z) — Tg] =0 for 21 <2< 2,
r
where h = T = 100
T(R,2z) = 80 deg ¥ for 2z, <z< L.

The synthesis solution was obtained using all six trial functions,
as in (19). The resulting synthesized temperature distribution
is shown in Fig. 4, along with the »-z finite difference solution of
this problem at several radial points.

The preceding test problems show that the continuous syn-
thesis method can yield very accurate approximate temperature
distributions. However, this method does have some deficiencies.
Consider the application of the continuous synthesis approxima-
tion to a heat conduction problem involving a material system

with a great deal of complexity in the axial direction (i.e., a heat
conducting system with many different axial compositions). In
order to obtain an accurate solution for such a problem it may be
necessary to use a large number of trial functions which, in turn,
would result in a large, expensive computation effort. One would
like to be able to switch sets of trial functions for problems of this
type. That is, for z near the bottom of the system one would like
fo use only those trial functions relevant to the lower axial
compositions. Then, as z increases, one would like, in stages, to
discard the lower region trial functions and replace them with
middle and upper region trial functions. Another way to say
this is that we would like to make the trial functions H,(z, ¥) in
equation (6) be discontinuous functions of 2. Hence, if we can
use trial functions which have a discontinuous z behavior, then
we can synthesize heat conduction problems involving many axial
material discontinuities by using only a few relevant trial func-
tions at any specific axial position.

Another deficiency of the continuous heat conduction syn-
thesis (which can be remedied by the use of axially discontinuous
trial functions)? is that it cannot be applied to problems involving
nonregular geometries for which the z-y boundaries change with 2.

We have seen that the continuous synthesis procedure has
certain deficiencies which can be cirecumvented if the synthesis
expansion (6) is modified as

N

Tz, y, 2) = Z Z,()H (@, y)
n=1

(20)

3 Synthesis approximations, using a-y trial functions which are
discontinuous functions of 2z, for a nonregular reactor geometry
treated by two-group diffusion theory, have yielded very accurate
results [1].
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distributions
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Fig. 4 Heat conduction synthesis test problem 2=—axial temperature
distributions

where the trial functions H (z, y) are known z-y temperature
distributions which apply only over specified regions of the 2 axis.
That is, the H,* are to be discontinuous functions of z. As was
previously mentioned, the variational principle, equations (7)
and (8), admits only continuous approximating functions. Hence
this principle cannot be used to develop a ‘“‘discontinuous’ heat
conduction synthesis procedure using the axially discontinuous
form (20). We now proceed to develop a discontinuous synthesis
approximation for static heat conduction problems.

The Discontinuoﬂs Synthesis Method

We now concern ourselves with formulating a temperature syn-
thesis approximation of the form

N
T(e,,2) & Y Zu@H,, y) 1)

n=1

where the H,*(z,y) are known z-y trial functions which are
axially discontinuous. The discontinuous form (21) will permit
one to synthesize a much larger class of static heat conduction
problems than was possible within the continuous synthesis
framework. However, using discontinuous trial functions com-
plicates the problem of defining the mixing coefficients Z,(2).
In order to develop a discontinuous heat conduction synthesis
approximation, a variational functional must be used which
admits discontinuous approximating functions. Such a func-
tional may be obtained by transforming the functional Vi[T1],
equation (8), into canonical form [8], and interpreting contribu-
tions due to the spatial discontinuities of the approximating func-
tions. We now proceed to derive such a functional.
Let us write equation (8) as
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(22)

= fff (T, VT, rdr + # U(rds.
8
®

In analogy with classical mechanics we may look upon (22) as
the functional of Hamilton’s principle. Then we can identify £
as the Lagrangian density

&(T, VT, ) =VT-kVT — 2T8 (23)
and proceed to define generalized momenta as
oL
= 2%VT. (24)
P ovr)
Next we define a Hamiltonian density
ol pr)=p-VI — &I, VT,r) (25)

where it is assumed that V7T can be eliminated from (25) using

(24). Such a substitution yields
(T, p,r) = p-p/4k + 2T8. (26)
From equations (25) and (26) we have
=p-VT — p-p/4k — 278 (27)

which, when used in (22), results in the canonical functional

f = ff (p-VT — p-p/ak — 2T8)dr
®

+ g tir — 79 — 2,105 (28)

8
where we have set U(T") = [M(T — Tg)? — 2¢,T]. This func-
tional does not admit the use of discontinuous functions, but it is

of such a form that it can be augmented to permit p and 7' to
possess a countable number of discontinuities. Such an extension

requires an interpretation of the term f f f p-VTdr at internal

®
surfaces S , on which 7' is discontinuous. Following the reasoning
of Selengut and Wachspress [9] we interpret this term as

ﬂfpVTdr=ZﬂfpVTdr
# p(+) + p(=) sos (90
+ [/:‘ [T(+) = T(—)-Ads; (29)
; 3. 2

where the ®; are those regions within which 7' and p are con-
tinuous. # is a unit outward normal, and (+) denotes quantities
evaluated on the side of §; toward which 4 points and (~) de-
notes evaluation on the other side. Using the interpretation (29)
in the functional (28) we arrive at

Valp, T] = 3 fff (p-VT — p-p/4k — 2T 8)dr
7
®;

+ # [R(T — T2 — 2¢,T1d8
S

+ Z # L&%’M} (T(+) — T(=)]-7d§;. (30)
i,
Si

This functional now admits functions 7' and p which possess a
countable number of discontinuities on the internal surfaces 8.

Those functions 7(z, y, 2) and p(s, ¥, 2) which make (30)
stationary must satisfy

8Vy=TVs[p + 8p, T' + 611 — Valp, T] = 0, (31)

MAY 1971 / 228



neglecting second order terms in 67" and dp. Using (30) and
(31) we find that Vy[p, 7] is stationary for those functions 7" and p
which satisfy

1
— . S = 0
y VP in @, (32)
p = 2kVT
%p.ﬁ + WMT ~Tg) = q,on§, (33)
T = T(~
+) ) l on §;. (34)

p(+)7 = p(—)-af
yd
®Z; \
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l ®Z; ,

* ®Z .,
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e
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l *Z;,
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* ® Z,

AO

* @ ZO
Fig. 5

Hence we see that the Euler equations (32) ave just the heat con.
duction equation in first order form. Equation (33) is the generg]
type boundary condition (5), and equations (34) reguire cop.
tinuity of temperature and heat flux on all internal surfaces,
Hence the functional (30) does have the desired stationary con.
ditions to permit its use for developing a discontinuous synthesig
approximation for static heat conduction problems. We now
proceed to develop a synthesis approximation which permits the
switching of sets of z-y trial functions at specified z locations.

We begin by superimposing a mesh structure on the z axis ag
is shown in Fig. 5. Material properties and surface functions are
assumed constant between axial mesh points and denoted as k(z)
=k, 8@) = 8, hz) = h;and Ty(z) = Ts, for z; < 2 < zoy.
Next we introduce unit step functions

1, for =z D i< o
roz — Ais s 4,
H k2 2 2 2

sie) = (35)
(0, otherwise
where A, is the mesh spacing between 2, and 2;,,
(e = {1, for z; <z <2 36)
0, otherwise

Let H..i(z, y) denote a set of continuous functions of z, y which
we think may approximate the actual z-y temperature distribu-
tion in the vicinity of axial elevation z,. Using the step functions
s,(t) and ¢,(t), we proceed to expand the temperature and com-
ponents of heat flow as

I M
T(.’l’, Y, Z) = Z Z Si(Z)Zm(i)Hm(z‘)(nT': y)
=0 m@E)=1
I M
T, Y, 2) £ Z Z s [l (Vi
i=0 m{D) =1
I}
T L@k P i = Honen(a, y)
I M (37)
P,y 2) =2 30 30 si@)ltia(@hia
i=0 m(f) =1
0
+ ti(z)ki]P'm(i)y = Hm(i)(-'t; y)
oy
-1 M
P g 2) 2 Y, Y, LRk Paw Huw, )
{=0 m@=1

where {_1(z) = 0. Note here that we are free to choose different
sets of trial functions, H, to be used about any particular mesh
point z;. For simplicity we have restricted our approximation to
use the same number, M, of trial functions for each mesh indicator
7. In general we could specify different numbers of trial fune-
tions for different 2.  To simplify the algebra, we again introduce

matrix notation. Let
Hio®, y) AT Py |
H, = Hz(i)(tT’ ) 7. = sz,-) . Pr= Pe(f)’
Haron(z, ) 7y L Parcir®_
Py Py ]
P = PZ(,i)y Pr = Pz(.i)’
P |_P o
Then we may write (37) as
I
Tlv, y, 2) & Z s, 2 TH,
1=0
! d
Palt, 4,2) 22 3 silliaken + tfkf]Pﬁng H:  (38)
i=0
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I
o]
}Jl/(l', Y, 7) = Z siflliakia 4 [/ikl‘]Pin — H;
iZo oy
I—~1 .
ol y ) 2 Y tkP H,
=0

where superscript T’ denotes transpose of a matrix. We also in-
voke the integration notation used earlier. However, the cross-
sectional area a and the contour ¢ may now change with z if the
«-y boundaries of the system of interest are functions of z. With
this notation, we may substitute the approximation expansions
(38) into the functional (30), observing that the §, consists only
of horizontal surfaces midway between the mesh points z;, and
performing the 2~y integrations we obtain the reduced functional
V'Z, P Py, P2]l. 'The stationary conditions for the reduced
funetional are found by requiring

(39)

for all 2.

When we apply these stationary conditions, and eliminate the
heat flow mixing coefficients Pz, P;*» and P, we obtain the
{ollowing set of three point difference equations which define the
temperature mixing coeflicients 7 .

k -1
Hi® ) Zia

<\7Hiy }Eile'q‘)Zi - <H1'1
Af—l

k’i k: g
- <Hi: E Hi+1T> Zi+1 + [<Hn —A—, H57>

fos
1 H,;l"'> (Hiy ki Hi Ty W(H iy, ki—lHiT>] Z;

+ <Hz‘x A1'~1

+BZ;~ C; = (§H) for ¢=1,2,..,1 (40)

where
B, = {H, i, HT} + (Ho, hoHo )10 + (Hy, bHDYS;
Ci = {RTsH ) + {@nuH} + [(TsHo) + (gnHo)810
+ [Pl ) + {gnH )05

1, if i=0 1, if i=1
00 = s b= .
0, otherwise : 0, otherwise

and

1
ke = = (ki + kiAD

2
~ 1
S, = b (Simdi + 8iAY)
- 1
h = B (hieiDio 4 i)
. 1
hTs = 5 (hiaT iAoy + BTN,

It is interesting to note that if the same set of trial functions is
used about mesh point 2,1 as is used about mesh point z,, then
the term (Hi.y, kioiH 7)Y WH iy, ki1 HT) is just the identity
mafrix, since H; = H;,;. In addition if the same set of trial
functions is used for 0 < z; < 'z, then the equations (40) are just
a finite difference form of the continuous synthesis equations
(10)-(12). An ALGOL computer program was written to solve
the synthesis equations (40). We now proceed to describe a test
problem using axially discontinuous trial functions.

Discontinuous Synthesis Test Prohlem

The symmetric cylindrical heat conducting system considered
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for this problem is deseribed in Fig. 6. Zero temperature bound-
ary conditions were applied on all external surfaces. Four one-
dimensional trial functions were considered for this problem, al-
though only two functions were used at any z; elevation. The
computer program, WANDA [6], was used fo caleulate these
trial functions and all necessary matrix elements. The trial func-
tions; H(r), Ho(r), Hs(r), Hy(r) are one-dimensional solutions for
radial slices through axial compositions 1, 2, 3, and 4, respec-
tively, of the geometry depicted in Fig. 6. Table 1 describes the
axial mesh regions over which each of these trial funetions were
used. We see that the trial functions used were discontinuous
between axial mesh points 9-10, 24-25, and 37-38. Using these
trial functions, the difference equations (40) were solved and the
synthesized r-z temperature distvibution was constructed. This
synthesized solution is compared with an r-z finite difference
solution [5] (accurate to 0.001 deg F) of this same problem in Fig.
7. From this figure we see that the synthesis solution is quite
accurate, and most impressively, smoothly varying near the
axial points where the trial functions are discontinuous.

Table 1T Axial dependence of discontinvous trial functions
Trial function Used over 2-Mesh points
H,(r), Ha (1) i=0%t0i =09
Hs(r), Hs(r) 7= 10to ¢ = 24
H:S(T), H4(7') 7 = 25 t01 = 37
Hy(r), Hy(r) 7 = 38 to 1 = 48
Conclusion

In this paper variational techniques have been applied to de-
velop continuous and discontinuous synthesis approximations
for static composite media heat conduction problems. The basic
idea behind these methods is that of using known two-dimensional
trial functions representative of asymptotic solutions for axial
regions of constant material properties. These trial functions,
tailored to the problem of interest, are blended axially by means
of z dependent mixing coefficients to yield the synthesized three-
dimensional temperature distribution.

RADIAL j————— B IN —————sd

MESH 0o 2 S5 12 15
AXIAL
MESH r=o ry 1, sz R
0z:0 R N T
% ,
// 52\ ‘? AXIAL COMPOSITION |
7z ;//kl e //% ‘
s ol
i AXIAL COMPOSITION 2
d
ko o
S2 5 10 AXiAL COMPOSITION 3
74
< AN
' /J
| \ g F AXIAL COMPOSITION 4
41 Z4 \ ;3‘.\\ 4 %
y " 3~ .
g: s \\ } AXIAL COMPOSITION |
]
148 L B
z

8,250 %10 BTU/HR-FT>
S,= LOXI0%BTU/HR-FT2
ks=1.4 BTU/{HR-FT - °F) S4= 25¢103BTU/HR-FT°
k4=9.0BTU/(HR-FT - °F) $,200 BTU/HR-FT?3

RADIAL MESH Ar=0.03333 FT
AXIAL MESH A z=0.02083 FT

k =12 BTU/(HR-FT-°F)
kz= 1.0 BTU/(HR-FT -°F)

Fig. 6 Cylindrical conducting medium for discontinuous synthesis test
problem

MmAY 1971 / 221


http://fc.-_iA.-_

300 T T B T T T T
X, X-X’X'X"X*X\
%S Fxoy FRO
»
' ~X X
¥ F X Y
)(/ X7 / X N
' ¥ R=5 Ny N
X N, \
o 200 |- V5% % X 4
o X/ X X
- I Y N
XX N
W % AN
@ x/;'/ h X\
e - X/x/ Ny N N
i / R=10 N \
L /x x/ \x\ x\
o =Y
= s X/X,x—x’x’x KRR L . x\x X |
u’_J 100 - / / e ~%.. \ \
X X X LN NN
/7 W Ky % %
X/x /X/ \X\x X\ \X
- 4" A X  SYNTHESIS SOLUTION oy * X .

} < FINITE DIFFERENCE SOLUTION F Xy XX

/ X/X X\X\x\x )QX

X,x/ \X\X‘x\ _J

0 ¥ ! 1 ! 1 ! 1 ] I | "Xy
0 5 10 15 20 25 30 35 40 45 50

AXIAL MESH POINT
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butions

The results of several two-dimensional test problems indicate
the accuracy that can be obtained with the method. However,
the advantage of using the synthesis methods, as opposed to finite
difference methods, manifests itself when detailed three-dimen-
sional problems must be solved. For such problems (possibly
involving millions of spatial mesh points) the solution of the
three-dimensional finite difference equations would be extremely
expensive even on today’s fast digital computers, while the
synthesis method requires the solution of two-dimensional
problems (to obtain the trial functions) and one one-dimensional
solution (for the mixing coefficients). One- and two-dimensional
numerical solutions are very inexpensive.

The ability to use axially discontinuous trial functions (switch
sets of trial functions along the z axis) permits one to solve heat
conduction problems involving irregular geometries. Hence
synthesis methods can prove to be powerful tools for analyzing
realistic heat conducting designs.
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