Applied Mathematical Sciences, Vol. 7, 2013, no. 84, 4185-4194
 HIKARI Ltd, www.m-hikari.com
 http://dx.doi.org/10.12988/ams.2013.24298

A New Kind of Derivations in $B C I$-Algebras

Kyoung Ja Lee
Department of Mathematics Education
Hannam University
Daejeon 306-791, Korea
lsj1109@hotmail.com

Abstract

A new kind of derivation in $B C I$-algebras is introduced, and related properties are investigated. For a self map d_{q}^{f} of a $B C I$-algebra X, conditions for the kernel of d_{q}^{f} to be both a subalgebra and an ideal of X are provided.

Mathematics Subject Classification: 06F35, 03G25

Keywords: (p-semisimple, quasi associative) BCI-algebra, Inside (resp. outside) f_{q}-derivation, Kernel of a self map d_{q}^{f}.

1 Introduction

Several authors $[1,2,7,10]$ have studied derivations in rings and near-rings. Jun et al. [4] applied the notion of derivation in ring and near-ring theory to $B C I$-algebras, and as a result they introduced a new concept, called a (regular) derivation, in BCI-algebras. Using this concept as defined they investigated some of its properties. Using the notion of a regular derivation, they also established characterizations of a p-semisimple $B C I$-algebra. For a self-map d of a $B C I$-algebra, they defined a d-invariant ideal, and gave conditions for an ideal to be d-invariant. In [12], Zhan et al. introduced the notion of left-right (resp., right-left) f-derivation of a $B C I$-algebra, and investigated some related properties. Using the idea of regular f-derivation, they gave characterizations of a p-semisimple $B C I$-algebra.

In this paper, we introduce a new kind of derivation in $B C I$-algebras, and investigate related properties. We provide conditions for the kernel of a self d_{q}^{f} to be a subalgebra/ideal of a $B C I$-algebra X.

[^0]
2 Preliminaries

A nonempty set X with a constant 0 and a binary operation $*$ is called a $B C I$-algebra if for all $x, y, z \in X$ the following conditions hold:
(I) $((x * y) *(x * z)) *(z * y)=0$,
(II) $(x *(x * y)) * y=0$,
(III) $x * x=0, \quad$ (IV) $x * y=0$ and $y * x=0$ imply $x=y$.

A $B C I$-algebra X has the following properties: for all $x, y, z \in X$
(a1) $x * 0=x . \quad(\mathrm{a} 2)(x * y) * z=(x * z) * y$.
(a3) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$.
(a4) $(x * z) *(y * z) \leq x * y$.
(a5) $x *(x *(x * y))=x * y$.
(a6) $0 *(x * y)=(0 * x) *(0 * y) . \quad(\mathrm{a} 7) x * 0=0$ implies $x=0$.
For a BCI-algebra X, denote by X_{+}(resp. $G(X)$) the $B C K$-part (resp. the $B C I$-G part) of X, i.e., X_{+}is the set of all $x \in X$ such that $0 \leq x$ (resp. $G(X):=\{x \in X \mid 0 * x=x\}$). Note that $G(X) \cap X_{+}=\{0\}$ (see [6]). If $X_{+}=\{0\}$, then X is called a p-semisimple BCI-algebra. In a p-semisimple $B C I$-algebra X, the following hold:
(a8) $(x * z) *(y * z)=x * y . \quad($ a9) $0 *(0 * x)=x$ for all $x \in X$.
(a10) $x *(0 * y)=y *(0 * x) . \quad$ (a11) $x * y=0$ implies $x=y$.
(a12) $x * a=x * b$ implies $a=b . \quad$ (a13) $a * x=b * x$ implies $a=b$.
(a14) $a *(a * x)=x$.
Let X be a p-semisimple $B C I$-algebra. We define addition " + " as $x+y=$ $x *(0 * y)$ for all $x, y \in X$. Then $(X,+)$ is an abelian group with identity 0 and $x-y=x * y$. Conversely let $(X,+)$ be an abelian group with identity 0 and let $x * y=x-y$. Then X is a p-semisimple $B C I$-algebra and $x+y=x *(0 * y)$ for all $x, y \in X$ (see [8]).

For a $B C I$-algebra X we denote $x \wedge y=y *(y * x)$, in particular $0 *(0 * x)=$ a_{x}, and $L_{p}(X):=\{a \in X \mid x * a=0 \Rightarrow x=a, \forall x \in X\}$. We call the elements of $L_{p}(X)$ the p-atoms of X. For any $a \in X$, let $V(a):=\{x \in X \mid a * x=0\}$, which is called the branch of X with respect to a. It follows that $x * y \in V(a * b)$ whenever $x \in V(a)$ and $y \in V(b)$ for all $x, y \in X$ and all $a, b \in L_{p}(X)$. Note that $L_{p}(X)=\left\{x \in X \mid a_{x}=x\right\}$, which is the p-semisimple part of X, and X is a p-semisimple BCI-algebra if and only if $L_{p}(X)=X$ (see [5, Proposition 3.2]). Note also that $a_{x} \in L_{p}(X)$, i.e., $0 *\left(0 * a_{x}\right)=a_{x}$, which implies that $a_{x} * y \in L_{p}(X)$ for all $y \in X$. It is clear that $G(X) \subset L_{p}(X)$, and $x *(x * a)=a$ and $a * x \in L_{p}(X)$ for all $a \in L_{p}(X)$ and all $x \in X$. For more details, refer to $[1,8,10,13,14]$.

3 A new kind of derivations

In what follows, let X denote a $B C I$-algebra, f an endomorphism of X, and d_{q}^{f} a self map of X defined by $d_{q}^{f}(x)=f(x) * q$ for all $x \in X$ and $q \in X$ unless otherwise specified.

Definition 3.1. A self map d_{q}^{f} of X is called an inside f_{q}-derivation of X if it satisfies:

$$
\begin{equation*}
(\forall x, y \in X)\left(d_{q}^{f}(x * y)=\left(d_{q}^{f}(x) * f(y)\right) \wedge\left(f(x) * d_{q}^{f}(y)\right)\right) . \tag{3.1}
\end{equation*}
$$

If d_{q}^{f} satisfies the following identity:

$$
\begin{equation*}
(\forall x, y \in X)\left(d_{q}^{f}(x * y)=\left(f(x) * d_{q}^{f}(y)\right) \wedge\left(d_{q}^{f}(x) * f(y)\right)\right) \tag{3.2}
\end{equation*}
$$

then it is called an outside $f_{q^{-}}$-derivation of X. If d_{q}^{f} is both an inside $f_{q^{-}}$ derivation and an outside f_{q}-derivation of X, we say that d_{q}^{f} is a f_{q}-derivation of X.

In Definition 3.1, if we take $f=i_{X}$, the identity map, then d_{q}^{f} is denoted by d_{q} and is called an inside q-derivation (resp. outside q-derivation) of X. Note that if X is commutative, then the notion of inside f_{q}-derivation and outside f_{q}-derivation coincide.

Example 3.2. Consider a $B C I$-algebra $X=\{0, a, b\}$ with the following Cayley table:

$*$	0	a	b
0	0	0	b
a	a	0	b
b	b	b	0

Table 1: Cayley table
Define an endomorphism

$$
f: X \rightarrow X, x \mapsto \begin{cases}0 & \text { if } x \in\{0, a\} \\ b & \text { if } x=b\end{cases}
$$

Table 2 shows that d_{q}^{f} is an outside f_{q}-derivation of X with $q=a$.
Similarly, it is verified that d_{q}^{f} is an inside f_{q}-derivation of X with $q=a$.
Example 3.3. Let $X=\{0,1,2,3,4,5\}$ be a $B C I$-algebra with the multiplication table (Table 3) (see [9]).

Table 2: $d_{a}^{f}(x * y)=\left(f(x) * d_{a}^{f}(y)\right) \wedge\left(d_{a}^{f}(x) * f(y)\right)$

x	0	0	0	a	a	a	b	b	b
y	0	a	b	0	a	b	0	a	b
$x * y$	0	0	b	a	0	b	b	b	0
$f(x * y)$	0	0	b	0	0	b	b	b	0
$d_{a}^{f}(x * y)$	0	0	b	0	0	b	b	b	0
$f(x)$	0	0	0	0	0	0	b	b	b
$d_{a}^{f}(x)$	0	0	0	0	0	0	b	b	b
$f(y)$	0	0	b	0	0	b	0	0	b
$d_{a}^{f}(y)$	0	0	b	0	0	b	0	0	b
$d_{a}^{f}(x) * f(y)$	0	0	b	0	0	b	b	b	0
$f(x) * d_{a}^{f}(y)$	0	0	b	0	0	b	b	b	0
$\left(f(x) * d_{a}^{f}(y)\right) \wedge\left(d_{a}^{f}(x) * f(y)\right)$	0	0	b	0	0	b	b	b	0

$*$	0	1	2	3	4	5
0	0	0	3	2	3	2
1	1	0	5	4	3	2
2	2	2	0	3	0	3
3	3	3	2	0	2	0
4	4	2	1	5	0	3
5	5	3	4	1	2	0

Table 3: Cayley table

Define an endomorphism

$$
f: X \rightarrow X, x \mapsto \begin{cases}0 & \text { if } x \in\{0,1\} \\ 2 & \text { if } x \in\{2,4\} \\ 3 & \text { if } x \in\{3,5\}\end{cases}
$$

Table 4 shows that d_{q}^{f} is an inside f_{q}-derivation of X with $q=2$. If we take $q=2$, then d_{q}^{f} is not an outside f_{q}-derivation of X since $d_{2}^{f}(4 * 5)=2 \neq 0=$ $\left(f(4) * d_{2}^{f}(5)\right) \wedge\left(d_{2}^{f}(4) * f(5)\right)$.
Proposition 3.4. Every self map d_{q}^{f} of X preserves order, that is, if $x \leq y$ in X then $d_{q}^{f}(x) \leq d_{q}^{f}(y)$ in X.

Proof. Let $x, y \in X$ be such that $x \leq y$. Then $x * y=0$, and so

$$
d_{q}^{f}(x) * d_{q}^{f}(y)=(f(x) * q) *(f(y) * q) \leq f(x) * f(y)=f(x * y)=f(0)=0
$$

It follows from $(\mathrm{a} 7)$ that $d_{q}^{f}(x) * d_{q}^{f}(y)=0$, that is, $d_{q}^{f}(x) \leq d_{q}^{f}(y)$.

Table 4: $d_{2}^{f}(x * y)=\left(d_{2}^{f}(x) * f(y)\right) \wedge\left(f(x) * d_{2}^{f}(y)\right)$

x	y	$x * y$	$f(x * y)$	$d_{2}^{f}(x * y)$	$f(x)$	$d_{2}^{f}(x)$	$f(y)$	$d_{2}^{f}(y)$	A	B	$A \wedge B$
0	0	0	0	3	0	3	0	3	3	2	3
0	1	0	0	3	0	3	0	3	3	2	3
0	2	3	3	2	0	3	2	0	2	0	2
0	3	2	2	0	0	3	3	2	0	3	0
0	4	3	3	2	0	3	2	0	2	0	2
0	5	2	2	0	0	3	3	2	0	3	0
1	0	1	0	3	0	3	0	3	3	2	3
1	1	0	0	3	0	3	0	3	3	2	3
1	2	5	3	2	0	3	2	0	2	0	2
1	3	4	2	0	0	3	3	2	0	3	0
1	4	3	3	2	0	3	2	0	2	0	2
1	5	2	2	0	0	3	3	2	0	3	0
2	0	2	2	0	2	0	0	3	0	3	0
2	1	2	2	0	2	0	0	3	0	3	0
2	2	0	0	3	2	0	2	0	3	2	3
2	3	3	3	2	2	0	3	2	2	0	2
2	4	0	0	3	2	0	2	0	3	2	3
2	5	3	3	2	2	0	3	2	2	0	2
3	0	3	3	2	3	2	0	3	2	0	2
3	1	3	3	2	3	2	0	3	2	0	2
3	2	2	2	0	3	2	2	0	0	3	0
3	3	0	0	3	3	2	3	2	3	2	3
3	4	2	2	0	3	2	2	0	0	3	0
3	5	0	0	3	3	2	3	2	3	2	3
4	0	4	2	0	2	0	0	3	0	3	0
4	1	2	2	0	2	0	0	3	0	3	0
4	2	1	0	3	2	0	2	0	3	2	3
4	3	5	3	2	2	0	3	2	2	0	2
4	4	0	0	3	2	0	2	0	3	2	3
4	5	3	3	2	2	0	3	2	2	0	2
5	0	5	3	2	3	2	0	3	2	0	2
5	1	3	3	2	3	2	0	3	2	0	2
5	2	4	2	0	3	2	2	0	0	3	0
5	3	1	0	3	3	2	3	2	3	2	3
5	4	2	2	0	3	2	2	0	0	3	0
5	5	0	0	3	3	2	3	2	3	2	3

where $A=d_{2}^{f}(x) * f(y)$ and $B=f(x) * d_{2}^{f}(y)$.

If we take $f=i_{X}$, the identity map in Proposition 3.4, then we have the following corollary.

Corollary 3.5. Every self map d_{q} of X preserves order, that is, if $x \leq y$ in X then $d_{q}(x) \leq d_{q}(y)$ in X.

A BCI-algebra X is said to be quasi-associative ([11]) if it satisfies:

$$
\begin{equation*}
(\forall x, y \in X)((x * y) * z \leq x *(y * z)) \tag{3.3}
\end{equation*}
$$

Note that a $B C I$-algebra X is associative if and only if it is both p semisimple and quasi-associative (see [3]).

Theorem 3.6. Let X be a quasi-associative BCI-algebra. If X is p-semisimple, then d_{q}^{f} is both an inside f_{q}-derivation and an outside f_{q}-derivation of X for any $q \in X$.

Proof. Let $q, x, y \in X$. Then

$$
\begin{aligned}
& d_{q}^{f}(x * y)=f(x * y) * q=(f(x * y) * q) * 0 \\
& =(f(x * y) * q) *((f(x * y) * q) *(f(x * y) * q)) \\
& =((f(x) * f(y)) * q) *(((f(x) * f(y)) * q) *((f(x) * f(y)) * q)) \\
& =(f(x) *(f(y) * q)) *((f(x) *(f(y) * q)) *((f(x) * q) * f(y))) \\
& =\left(f(x) * d_{q}^{f}(y)\right) *\left(\left(f(x) * d_{q}^{f}(y)\right) *\left(d_{q}^{f}(x) * f(y)\right)\right) \\
& =\left(d_{q}^{f}(x) * f(y)\right) \wedge\left(f(x) * d_{q}^{f}(y)\right) .
\end{aligned}
$$

Hence d_{q}^{f} is an inside f_{q}-derivation of X for any $q \in X$. Also we have

$$
\begin{aligned}
& d_{q}^{f}(x * y)=f(x * y) * q=((f(x) * f(y)) * q) * 0=((f(x) * q) * f(y)) * 0 \\
& =((f(x) * q) * f(y)) *(((f(x) * q) * f(y)) *((f(x) * q) * f(y))) \\
& =\left(d_{q}^{f}(x) * f(y)\right) *\left(\left(d_{q}^{f}(x) * f(y)\right) *((f(x) * f(y)) * q)\right) \\
& =\left(d_{q}^{f}(x) * f(y)\right) *\left(\left(d_{q}^{f}(x) * f(y)\right) *(f(x) *(f(y) * q))\right. \\
& =\left(d_{q}^{f}(x) * f(y)\right) *\left(\left(d_{q}^{f}(x) * f(y)\right) *\left(f(x) * d_{q}^{f}(y)\right)\right) \\
& =\left(f(x) * d_{q}^{f}(y)\right) \wedge\left(d_{q}^{f}(x) * f(y)\right) .
\end{aligned}
$$

Therefore d_{q}^{f} is an outside f_{q}-derivation of X for any $q \in X$.
Corollary 3.7. If X satisfies the following conditions:
(1) $(\forall x \in X)(0 * x=0 *(0 * x))$,
(2) $(\forall x \in X)(0 * x=0 \Rightarrow x=0)$,
then d_{q}^{f} is both an inside f_{q}-derivation and an outside f_{q}-derivation of X for any $q \in X$.

Proof. If X satisfies the condition (1), then X is quasi-associative. Also, If X satisfies the condition (2), then X is p-semisimple. Hence d_{q}^{f} is both an inside f_{q}-derivation and an outside f_{q}-derivation of X for any $q \in X$ by Theorem 3.6 .

Corollary 3.8. Let X be a quasi-associative BCI-algebra. If X satisfies one of the following conditions:
(1) $(\forall x \in X)(0 *(0 * x)=x)$,
(2) $(\forall x, y \in X)(x *(0 * y)=y *(0 * x))$,
then d_{q}^{f} is both an inside f_{q}-derivation and an outside f_{q}-derivation of X for any $q \in X$.

Proof. If X satisfies one of conditions (1) and (2), then X is p-semisimple. Therefore d_{q}^{f} is both an inside f_{q}-derivation and an outside f_{q}-derivation of X for any $q \in X$ by Theorem 3.6.

Corollary 3.9. Let X be a p-semisimple BCI-algebra. If X satisfies one of the following conditions:
(1) $(\forall x \in X)(0 * x \leq x)$,
(2) $(\forall x, y \in X)(0 *(x * y)=0 *(y * x))$,
(3) $(\forall x, y \in X)((0 * x) * y=0 *(x * y))$,
(4) $(\forall x, y \in X)((x * y) *(y * x) \in\{x \in X \mid 0 \leq x\})$,
then d_{q}^{f} is both an inside f_{q}-derivation and an outside f_{q}-derivation of X for any $q \in X$.

Proof. If X satisfies one of conditions (1), (2), (3) and (4), then X is quasiassociative. Therefore d_{q}^{f} is both an inside $f_{q^{-}}$-derivation and an outside $f_{q^{-}}$ derivation of X for any $q \in X$ by Theorem 3.6.

If we take $f=i_{X}$, the identity map in Theorem 3.6 , then we have the following corollary.

Corollary 3.10. Let X be a quasi-associative BCI-algebra. If X is p-semisimple, then d_{q} is both an inside q-derivation and an outside q-derivation of X for any $q \in X$.

Proposition 3.11. If d_{q}^{f} is an inside f_{q}-derivation of a p-semisimple BCIalgebra X, then
(1) $(\forall x \in X)\left(d_{q}^{f}(0)=d_{q}^{f}(x) * f(x)\right)$.
(2) If f is injective, then d_{q}^{f} is injective.
(3) If $d_{q}^{f}(0)=0$, then $d_{q}^{f}(x)=f(x)$ for all $x \in X$.

Proof. (1) For any $x \in X$, we have

$$
\begin{aligned}
d_{q}^{f}(0) & =d_{q}^{f}(x * x)=\left(d_{q}^{f}(x) * f(x)\right) \wedge\left(f(x) * d_{q}^{f}(x)\right) \\
& =\left(f(x) * d_{q}^{f}(x)\right) *\left(\left(f(x) * d_{q}^{f}(x)\right) *\left(d_{q}^{f}(x) * f(x)\right)\right)=d_{q}^{f}(x) * f(x)
\end{aligned}
$$

by (a14).
(2) Assume that f is injective. Let $x, y \in X$ be such that $d_{q}^{f}(x)=d_{q}^{f}(y)$. Then $f(x) * q=f(y) * q$, which implies from (a13) that $f(x)=f(y)$. Since f is injective, it follows that $x=y$. Therefore d_{q}^{f} is injective.
(3) Assume that $d_{q}^{f}(0)=0$ and let $x \in X$. Then $0=d_{q}^{f}(0)=d_{q}^{f}(x) * f(x)$ by (1), and so $d_{q}^{f}(x)=f(x)$ by (a11).

If we take $f=i_{X}$, the identity map in Proposition 3.11, then we have the following corollary.
Corollary 3.12. If d_{q} is an inside q-derivation of a p-semisimple BCI-algebra X, then
(1) $(\forall x \in X)\left(d_{q}(0)=d_{q}(x) * x\right)$.
(2) d_{q} is injective.
(3) If $d_{q}(0)=0$, then $d_{q}(x)=x$ for all $x \in X$.

Proposition 3.13. If d_{q}^{f} is an outside f_{q}-derivation of X with $d_{q}^{f}(0)=0$, then
(1) $(\forall x \in X)\left(d_{q}^{f}(x) \leq f(x)\right)$.
(2) $(\forall x, y \in X)\left(d_{q}^{f}(x) * f(y) \leq f(x) * d_{q}^{f}(y)\right)$.
(3) $(\forall x, y \in X)\left(d_{q}^{f}(x * y)=d_{q}^{f}(x) * f(y) \leq d_{q}^{f}(x) * d_{q}^{f}(y)\right)$.

Proof. Let d_{q}^{f} be an outside f_{q}-derivation of X with $d_{q}^{f}(0)=0$. For any $x \in X$, we have $d_{q}^{f}(x)=d_{q}^{f}(x * 0)=\left(f(x) * d_{q}^{f}(0)\right) \wedge\left(d_{q}^{f}(x) * f(0)\right)=(f(x) * 0) \wedge$ $\left(d_{q}^{f}(x) * 0\right)=f(x) \wedge d_{q}^{f}(x)=d_{q}^{f}(x) *\left(d_{q}^{f}(x) * f(x)\right) \leq f(x)$ by (a1) and (II). This proves (1).
(2) Combining (1) and (a3) induces (2).
(3) By (2), we know that $\left(d_{q}^{f}(x) * f(y)\right) *\left(f(x) * d_{q}^{f}(y)\right)=0$ for all $x, y \in X$. Hence

$$
\begin{aligned}
d_{q}^{f}(x * y) & =\left(f(x) * d_{q}^{f}(y)\right) \wedge\left(d_{q}^{f}(x) * f(y)\right) \\
& =\left(d_{q}^{f}(x) * f(y)\right) *\left(\left(d_{q}^{f}(x) * f(y)\right) *\left(f(x) * d_{q}^{f}(y)\right)\right) \\
& =\left(d_{q}^{f}(x) * f(y)\right) * 0=d_{q}^{f}(x) * f(y) \leq d_{q}^{f}(x) * d_{q}^{f}(y)
\end{aligned}
$$

by (1) and (a3).

If we take $f=i_{X}$, the identity map in Proposition 3.13, then we have the following corollary.

Corollary 3.14. If d_{q} is an outside q-derivation of X with $d_{q}(0)=0$, then
(1) $(\forall x \in X)\left(d_{q}(x) \leq x\right)$.
(2) $(\forall x, y \in X)\left(d_{q}(x) * y \leq x * d_{q}(y)\right)$.
(3) $(\forall x, y \in X)\left(d_{q}(x * y)=d_{q}(x) * y \leq d_{q}(x) * d_{q}(y)\right)$.

For a self map d_{q}^{f} of X, consider the set $\operatorname{ker}\left(d_{q}^{f}\right):=\left\{x \in X \mid d_{q}^{f}(x)=0\right\}$, which is called the kernel of d_{q}^{f}.

Theorem 3.15. If d_{q}^{f} is an outside f_{q}-derivation of X with $d_{q}^{f}(0)=0$, then the kernel of d_{q}^{f} is a subalgebra of X.

Proof. Let $x, y \in \operatorname{ker}\left(d_{q}^{f}\right)$. Then $d_{q}^{f}(x)=0$ and $d_{q}^{f}(y)=0$. It follows from Proposition 3.13 that $d_{q}^{f}(x * y) \leq d_{q}^{f}(x) * d_{q}^{f}(y)=0$ so from (a7) that $d_{q}^{f}(x * y)=$ 0 . Hence $x * y \in \operatorname{ker}\left(d_{q}^{f}\right)$, and therefore $\operatorname{ker}\left(d_{q}^{f}\right)$ is a subalgebra of X.

Corollary 3.16. If d_{q} is an outside q-derivation of X with $d_{q}(0)=0$, then the kernel of d_{q} is a subalgebra of X.

Theorem 3.17. If X satisfies the right self-distributive law, then the kernel of d_{q}^{f} is a subalgebra of X.
Proof. Let $x, y \in \operatorname{ker}\left(d_{q}^{f}\right)$. Then $d_{q}^{f}(x)=0$ and $d_{q}^{f}(y)=0$. Since X satisfies the right self-distributive law, it follows that

$$
d_{q}^{f}(x * y)=f(x * y) * q=(f(x) * f(y)) * q=(f(x) * q) *(f(y) * q)=0
$$

and so $x * y \in \operatorname{ker}\left(d_{q}^{f}\right)$. Therefore $\operatorname{ker}\left(d_{q}^{f}\right)$ is a subalgebra of X.
Corollary 3.18. If X satisfies the right self-distributive law, then the kernel of d_{q} is a subalgebra of X.

Theorem 3.19. If X satisfies the right self-distributive law, then the kernel of d_{q}^{f} is an ideal of X.

Proof. By Theorem 3.17, we know that $0 \in \operatorname{ker}\left(d_{q}^{f}\right)$. Let $x, y \in X$ be such that $x * y \in \operatorname{ker}\left(d_{q}^{f}\right)$ and $y \in \operatorname{ker}\left(d_{q}^{f}\right)$. Then $d_{q}^{f}(x * y)=0$ and $d_{q}^{f}(y)=0$. Thus $d_{q}^{f}(x)=f(x) * q=(f(x) * q) * 0=(f(x) * q) *(f(y) * q)=(f(x) * f(y)) * q=$ $f(x * y) * q=d_{q}^{f}(x * y)=0$, and so $x \in \operatorname{ker}\left(d_{q}^{f}\right)$. Thus the kernel of d_{q}^{f} is an ideal of X.

Corollary 3.20. If X satisfies the right self-distributive law, then the kernel of d_{q} is an ideal of X.

Combining Theorems 3.17 and 3.19 , we have the following corollary.
Corollary 3.21. If X satisfies the right self-distributive law, then the kernel of d_{q}^{f} is a closed ideal of X.
Corollary 3.22. If X satisfies the right self-distributive law, then the kernel of d_{q} is a closed ideal of X.

References

[1] H. E. Bell and L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53(3-4) (1989), 339-346.
[2] H. E. Bell and G. Mason, On derivations in near-rings, Near-rings and Near-fields, North-Holland Math. Studies 137 (1987), 31-35.
[3] Y. Huang, BCI-algebra, Science Press, Beijing, 2006.
[4] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), 167-176.
[5] Y. B. Jun, X. L. Xin and E. H. Roh, The role of atoms in BCI-algebras, Soochow J. Math. 30(4) (2004), 491-506.
[6] Y. B. Jun and E. H. Roh, On the BCI-G part of BCI-algebras, Math. Japon. 38(4) (1993), 697-702.
[7] K. Kaya, Prime rings with α derivations, Hacettepe Bull. Mat. Sci. \& Engineering 16-17 (1987-1988), 63-71.
[8] D. J. Meng, BCI-algebras and abelian groups, Math. Japon. 32(5) (1987), 693-696.
[9] J. Meng, Y. B. Jun and E. H. Roh, BCI-algebras of order 6, Math. Japon. 47(1) (1998), 33-43.
[10] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
[11] C. C. Xi, On a class of BCI-algebras, Math. Japon. 35(1) (1990), 13-17.
[12] J. Zhan and Y. L. Liu, On f-derivations of BCI-algebras, Int. J. Math. Math. Sci. 2005(11) (2005), 1675-1684.

Received: April 5, 2012

[^0]: This paper has been supported by the 2013 Hannam University Research Fund.

