Applied Mathematical Sciences, Vol. 7, 2013, no. 84, 4185 - 4194 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.24298

A New Kind of Derivations in *BCI*-Algebras

Kyoung Ja Lee

Department of Mathematics Education Hannam University Daejeon 306-791, Korea lsj1109@hotmail.com

Abstract

A new kind of derivation in BCI-algebras is introduced, and related properties are investigated. For a self map d_q^f of a BCI-algebra X, conditions for the kernel of d_q^f to be both a subalgebra and an ideal of X are provided.

Mathematics Subject Classification: 06F35, 03G25

Keywords: (*p*-semisimple, quasi associative) *BCI*-algebra, Inside (resp. outside) f_q -derivation, Kernel of a self map d_q^f .

1 Introduction

Several authors [1, 2, 7, 10] have studied derivations in rings and near-rings. Jun et al. [4] applied the notion of derivation in ring and near-ring theory to BCI-algebras, and as a result they introduced a new concept, called a (regular) derivation, in BCI-algebras. Using this concept as defined they investigated some of its properties. Using the notion of a regular derivation, they also established characterizations of a *p*-semisimple BCI-algebra. For a self-map *d* of a BCI-algebra, they defined a *d*-invariant ideal, and gave conditions for an ideal to be *d*-invariant. In [12], Zhan et al. introduced the notion of left-right (resp., right-left) *f*-derivation of a BCI-algebra, and investigated some related properties. Using the idea of regular *f*-derivation, they gave characterizations of a *p*-semisimple BCI-algebra.

In this paper, we introduce a new kind of derivation in BCI-algebras, and investigate related properties. We provide conditions for the kernel of a self d_q^f to be a subalgebra/ideal of a BCI-algebra X.

This paper has been supported by the 2013 Hannam University Research Fund.

2 Preliminaries

A nonempty set X with a constant 0 and a binary operation * is called a *BCI-algebra* if for all $x, y, z \in X$ the following conditions hold:

(I)
$$((x*y)*(x*z))*(z*y) = 0,$$
 (II) $(x*(x*y))*y = 0,$

(III) x * x = 0, (IV) x * y = 0 and y * x = 0 imply x = y.

A BCI-algebra X has the following properties: for all $x, y, z \in X$

(a1)
$$x * 0 = x$$
. (a2) $(x * y) * z = (x * z) * y$.

(a3) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$.

(a4)
$$(x * z) * (y * z) \le x * y.$$
 (a5) $x * (x * (x * y)) = x * y.$

(a6)
$$0 * (x * y) = (0 * x) * (0 * y).$$
 (a7) $x * 0 = 0$ implies $x = 0.$

For a *BCI*-algebra X, denote by X_+ (resp. G(X)) the *BCK*-part (resp. the *BCI*-G part) of X, i.e., X_+ is the set of all $x \in X$ such that $0 \le x$ (resp. $G(X) := \{x \in X \mid 0 * x = x\}$). Note that $G(X) \cap X_+ = \{0\}$ (see [6]). If $X_+ = \{0\}$, then X is called a *p*-semisimple *BCI*-algebra. In a *p*-semisimple *BCI*-algebra X, the following hold:

(a8)
$$(x * z) * (y * z) = x * y.$$
 (a9) $0 * (0 * x) = x$ for all $x \in X.$

(a10)
$$x * (0 * y) = y * (0 * x).$$
 (a11) $x * y = 0$ implies $x = y.$

(a12) x * a = x * b implies a = b. (a13) a * x = b * x implies a = b.

(a14) a * (a * x) = x.

Let X be a p-semisimple BCI-algebra. We define addition "+" as x + y = x * (0 * y) for all $x, y \in X$. Then (X, +) is an abelian group with identity 0 and x - y = x * y. Conversely let (X, +) be an abelian group with identity 0 and let x * y = x - y. Then X is a p-semisimple BCI-algebra and x + y = x * (0 * y) for all $x, y \in X$ (see [8]).

For a *BCI*-algebra X we denote $x \wedge y = y * (y * x)$, in particular $0 * (0 * x) = a_x$, and $L_p(X) := \{a \in X \mid x * a = 0 \Rightarrow x = a, \forall x \in X\}$. We call the elements of $L_p(X)$ the *p*-atoms of X. For any $a \in X$, let $V(a) := \{x \in X \mid a * x = 0\}$, which is called the *branch* of X with respect to a. It follows that $x * y \in V(a * b)$ whenever $x \in V(a)$ and $y \in V(b)$ for all $x, y \in X$ and all $a, b \in L_p(X)$. Note that $L_p(X) = \{x \in X \mid a_x = x\}$, which is the *p*-semisimple part of X, and X is a *p*-semisimple *BCI*-algebra if and only if $L_p(X) = X$ (see [5, Proposition 3.2]). Note also that $a_x \in L_p(X)$, i.e., $0 * (0 * a_x) = a_x$, which implies that $a_x * y \in L_p(X)$ for all $y \in X$. It is clear that $G(X) \subset L_p(X)$, and x * (x * a) = a and $a * x \in L_p(X)$ for all $a \in L_p(X)$ and all $x \in X$. For more details, refer to [1, 8, 10, 13, 14].

3 A new kind of derivations

In what follows, let X denote a *BCI*-algebra, f an endomorphism of X, and d_q^f a self map of X defined by $d_q^f(x) = f(x) * q$ for all $x \in X$ and $q \in X$ unless otherwise specified.

Definition 3.1. A self map d_q^f of X is called an *inside* f_q -derivation of X if it satisfies:

$$(\forall x, y \in X) \left(d_q^f(x * y) = \left(d_q^f(x) * f(y) \right) \land \left(f(x) * d_q^f(y) \right) \right).$$
(3.1)

If d_q^f satisfies the following identity:

$$(\forall x, y \in X) \left(d_q^f(x * y) = \left(f(x) * d_q^f(y) \right) \land \left(d_q^f(x) * f(y) \right) \right), \tag{3.2}$$

then it is called an *outside* f_q -derivation of X. If d_q^f is both an inside f_q derivation and an outside f_q -derivation of X, we say that d_q^f is a f_q -derivation of X.

In Definition 3.1, if we take $f = i_X$, the identity map, then d_q^f is denoted by d_q and is called an *inside q-derivation* (resp. *outside q-derivation*) of X. Note that if X is commutative, then the notion of inside f_q -derivation and outside f_q -derivation coincide.

Example 3.2. Consider a *BCI*-algebra $X = \{0, a, b\}$ with the following Cayley table:

*	0	a	b
0	0	0	b
a	a	0	b
b	b	b	0

Table 1: Cayley table

Define an endomorphism

$$f: X \to X, \ x \mapsto \begin{cases} 0 & \text{if } x \in \{0, a\}, \\ b & \text{if } x = b, \end{cases}$$

Table 2 shows that d_q^f is an outside f_q -derivation of X with q = a.

Similarly, it is verified that d_q^f is an inside f_q -derivation of X with q = a.

Example 3.3. Let $X = \{0, 1, 2, 3, 4, 5\}$ be a *BCI*-algebra with the multiplication table (Table 3) (see [9]).

x	0	0	0	a	a	a	b	b	b
y	0	a	b	0	a	b	0	a	b
x * y	0	0	b	a	0	b	b	b	0
f(x * y)	0	0	b	0	0	b	b	b	0
$d_a^f(x*y)$	0	0	b	0	0	b	b	b	0
f(x)	0	0	0	0	0	0	b	b	b
$d_a^f(x)$	0	0	0	0	0	0	b	b	b
f(y)	0	0	b	0	0	b	0	0	b
$d_a^f(y)$	0	0	b	0	0	b	0	0	b
$d_a^f(x) * f(y)$	0	0	b	0	0	b	b	b	0
$f(x) * d_a^f(y)$	0	0	b	0	0	b	b	b	0
$(f(x)*d^f_a(y)) \wedge (d^f_a(x)*f(y))$	0	0	b	0	0	b	b	b	0

Table 2: $d_a^f(x * y) = (f(x) * d_a^f(y)) \land (d_a^f(x) * f(y))$

*	0	1	2	3	4	5
0	0	0	3	2	3	2
1	1	0	5	4	3	2
2	2	2	0	3	0	3
3	3	3	2	0	2	0
4	4	2	1	5	0	3
5	5	3	4	1	2	0

Table 3: Cayley table

Define an endomorphism

$$f: X \to X, \ x \mapsto \begin{cases} 0 & \text{if } x \in \{0, 1\}, \\ 2 & \text{if } x \in \{2, 4\}, \\ 3 & \text{if } x \in \{3, 5\}. \end{cases}$$

Table 4 shows that d_q^f is an inside f_q -derivation of X with q = 2. If we take q = 2, then d_q^f is not an outside f_q -derivation of X since $d_2^f(4*5) = 2 \neq 0 = (f(4)*d_2^f(5)) \wedge (d_2^f(4)*f(5))$.

Proposition 3.4. Every self map d_q^f of X preserves order, that is, if $x \leq y$ in X then $d_q^f(x) \leq d_q^f(y)$ in X.

Proof. Let $x, y \in X$ be such that $x \leq y$. Then x * y = 0, and so

$$d_q^f(x) * d_q^f(y) = (f(x) * q) * (f(y) * q) \le f(x) * f(y) = f(x * y) = f(0) = 0.$$

It follows from (a7) that $d_q^f(x) * d_q^f(y) = 0$, that is, $d_q^f(x) \le d_q^f(y)$.

				P		C		e			
x	y	x * y	f(x * y)	$d_2^f(x * y)$	f(x)	$d_2^f(x)$	f(y)	$d_2^f(y)$	A	B	$A \wedge B$
0	0	0	0	3	0	3	0	3	3	2	3
0	1	0	0	3	0	3	0	3	3	2	3
0	2	3	3	2	0	3	2	0	2	0	2
0	3	2	2	0	0	3	3	2	0	3	0
0	4	3	3	2	0	3	2	0	2	0	2
0	5	2	2	0	0	3	3	2	0	3	0
1	0	1	0	3	0	3	0	3	3	2	3
1	1	0	0	3	0	3	0	3	3	2	3
1	2	5	3	2	0	3	2	0	2	0	2
1	3	4	2	0	0	3	3	2	0	3	0
1	4	3	3	2	0	3	2	0	2	0	2
1	5	2	2	0	0	3	3	2	0	3	0
2	0	2	2	0	2	0	0	3	0	3	0
2	1	2	2	0	2	0	0	3	0	3	0
2	2	0	0	3	2	0	2	0	3	2	3
2	3	3	3	2	2	0	3	2	2	0	2
2	4	0	0	3	2	0	2	0	3	2	3
2	5	3	3	2	2	0	3	2	2	0	2
3	0	3	3	2	3	2	0	3	2	0	2
3	1	3	3	2	3	2	0	3	2	0	2
3	2	2	2	0	3	2	2	0	0	3	0
3	3	0	0	3	3	2	3	2	3	2	3
3	4	2	2	0	3	2	2	0	0	3	0
3	5	0	0	3	3	2	3	2	3	2	3
4	0	4	2	0	2	0	0	3	0	3	0
4	1	2	2	0	2	0	0	3	0	3	0
4	2	1	0	3	2	0	2	0	3	2	3
4	3	5	3	2	2	0	3	2	2	0	2
4	4	0	0	3	2	0	2	0	3	2	3
4	5	3	3	2	2	0	3	2	2	0	2
5	0	5	3	2	3	2	0	3	2	0	2
5	1	3	3	2	3	2	0	3	2	0	2
5	2	4	2	0	3	2	2	0	0	3	0
5	3	1	0	3	3	2	3	2	3	2	3
5	4	2	2	0	3	2	2	0	0	3	0
5	5	0	0	3	3	2	3	2	3	2	3

Table 4: $d_2^f(x * y) = \left(d_2^f(x) * f(y)\right) \wedge \left(f(x) * d_2^f(y)\right)$

where $A = d_{2}^{f}(x) * f(y)$ and $B = f(x) * d_{2}^{f}(y)$.

If we take $f = i_X$, the identity map in Proposition 3.4, then we have the following corollary.

Corollary 3.5. Every self map d_q of X preserves order, that is, if $x \leq y$ in X then $d_q(x) \leq d_q(y)$ in X.

A BCI-algebra X is said to be quasi-associative ([11]) if it satisfies:

$$(\forall x, y \in X) ((x * y) * z \le x * (y * z)).$$
 (3.3)

Note that a BCI-algebra X is associative if and only if it is both p-semisimple and quasi-associative (see [3]).

Theorem 3.6. Let X be a quasi-associative BCI-algebra. If X is p-semisimple, then d_q^f is both an inside f_q -derivation and an outside f_q -derivation of X for any $q \in X$.

Proof. Let $q, x, y \in X$. Then

$$\begin{split} &d_q^f(x*y) = f(x*y)*q = (f(x*y)*q)*0 \\ &= (f(x*y)*q)*((f(x*y)*q)*(f(x*y)*q)) \\ &= ((f(x)*f(y))*q)*(((f(x)*f(y))*q)*((f(x)*f(y))*q)) \\ &= (f(x)*(f(y)*q))*(((f(x)*(f(y)*q))*(((f(x)*q)*f(y)))) \\ &= (f(x)*d_q^f(y))*(((f(x)*d_q^f(y))*(d_q^f(x)*f(y))) \\ &= (d_q^f(x)*f(y)) \wedge (f(x)*d_q^f(y)). \end{split}$$

Hence d_q^f is an inside f_q -derivation of X for any $q \in X$. Also we have

$$\begin{split} &d_q^f(x*y) = f(x*y)*q = ((f(x)*f(y))*q)*0 = ((f(x)*q)*f(y))*0 \\ &= ((f(x)*q)*f(y))*(((f(x)*q)*f(y))*((f(x)*q)*f(y))) \\ &= (d_q^f(x)*f(y))*((d_q^f(x)*f(y))*((f(x)*f(y))*q)) \\ &= (d_q^f(x)*f(y))*((d_q^f(x)*f(y))*(f(x)*(f(y)*q)) \\ &= (d_q^f(x)*f(y))*((d_q^f(x)*f(y))*(f(x)*d_q^f(y))) \\ &= (f(x)*d_q^f(y))\wedge(d_q^f(x)*f(y)). \end{split}$$

Therefore d_q^f is an outside f_q -derivation of X for any $q \in X$.

Corollary 3.7. If X satisfies the following conditions:

- (1) $(\forall x \in X) (0 * x = 0 * (0 * x)),$
- (2) $(\forall x \in X) (0 * x = 0 \Rightarrow x = 0),$

then d_q^f is both an inside f_q -derivation and an outside f_q -derivation of X for any $q \in X$.

Proof. If X satisfies the condition (1), then X is quasi-associative. Also, If X satisfies the condition (2), then X is p-semisimple. Hence d_q^f is both an inside f_q -derivation and an outside f_q -derivation of X for any $q \in X$ by Theorem 3.6.

Corollary 3.8. Let X be a quasi-associative BCI-algebra. If X satisfies one of the following conditions:

- (1) $(\forall x \in X) (0 * (0 * x) = x),$
- (2) $(\forall x, y \in X) (x * (0 * y) = y * (0 * x)),$

then d_q^f is both an inside f_q -derivation and an outside f_q -derivation of X for any $q \in X$.

Proof. If X satisfies one of conditions (1) and (2), then X is p-semisimple. Therefore d_q^f is both an inside f_q -derivation and an outside f_q -derivation of X for any $q \in X$ by Theorem 3.6.

Corollary 3.9. Let X be a p-semisimple BCI-algebra. If X satisfies one of the following conditions:

- (1) $(\forall x \in X) (0 * x \leq x)$,
- (2) $(\forall x, y \in X) (0 * (x * y) = 0 * (y * x)),$
- (3) $(\forall x, y \in X) ((0 * x) * y = 0 * (x * y)),$
- (4) $(\forall x, y \in X) ((x * y) * (y * x) \in \{x \in X \mid 0 \le x\}),$

then d_q^f is both an inside f_q -derivation and an outside f_q -derivation of X for any $q \in X$.

Proof. If X satisfies one of conditions (1), (2), (3) and (4), then X is quasiassociative. Therefore d_q^f is both an inside f_q -derivation and an outside f_q derivation of X for any $q \in X$ by Theorem 3.6.

If we take $f = i_X$, the identity map in Theorem 3.6, then we have the following corollary.

Corollary 3.10. Let X be a quasi-associative BCI-algebra. If X is p-semisimple, then d_q is both an inside q-derivation and an outside q-derivation of X for any $q \in X$.

Proposition 3.11. If d_q^f is an inside f_q -derivation of a p-semisimple BCIalgebra X, then

(1) $(\forall x \in X) \left(d_a^f(0) = d_a^f(x) * f(x) \right).$

(2) If f is injective, then d_q^f is injective.

(3) If
$$d_a^f(0) = 0$$
, then $d_a^f(x) = f(x)$ for all $x \in X$.

Proof. (1) For any $x \in X$, we have

$$\begin{aligned} d_q^f(0) &= d_q^f(x * x) = \left(d_q^f(x) * f(x) \right) \wedge \left(f(x) * d_q^f(x) \right) \\ &= \left(f(x) * d_q^f(x) \right) * \left(\left(f(x) * d_q^f(x) \right) * \left(d_q^f(x) * f(x) \right) \right) = d_q^f(x) * f(x) \end{aligned}$$

by (a14).

(2) Assume that f is injective. Let $x, y \in X$ be such that $d_q^f(x) = d_q^f(y)$. Then f(x) * q = f(y) * q, which implies from (a13) that f(x) = f(y). Since f is injective, it follows that x = y. Therefore d_q^f is injective.

(3) Assume that $d_q^f(0) = 0$ and let $x \in X$. Then $0 = d_q^f(0) = d_q^f(x) * f(x)$ by (1), and so $d_q^f(x) = f(x)$ by (a11).

If we take $f = i_X$, the identity map in Proposition 3.11, then we have the following corollary.

Corollary 3.12. If d_q is an inside q-derivation of a p-semisimple BCI-algebra X, then

- (1) $(\forall x \in X) (d_q(0) = d_q(x) * x).$
- (2) d_q is injective.
- (3) If $d_q(0) = 0$, then $d_q(x) = x$ for all $x \in X$.

Proposition 3.13. If d_a^f is an outside f_q -derivation of X with $d_a^f(0) = 0$, then

- (1) $(\forall x \in X) \left(d_q^f(x) \leq f(x) \right)$.
- (2) $(\forall x, y \in X) \left(d_q^f(x) * f(y) \le f(x) * d_q^f(y) \right).$
- (3) $(\forall x, y \in X) \left(d_q^f(x * y) = d_q^f(x) * f(y) \le d_q^f(x) * d_q^f(y) \right).$

Proof. Let d_q^f be an outside f_q -derivation of X with $d_q^f(0) = 0$. For any $x \in X$, we have $d_q^f(x) = d_q^f(x * 0) = (f(x) * d_q^f(0)) \land (d_q^f(x) * f(0)) = (f(x) * 0) \land (d_q^f(x) * 0) = f(x) \land d_q^f(x) = d_q^f(x) * (d_q^f(x) * f(x)) \leq f(x)$ by (a1) and (II). This proves (1).

(2) Combining (1) and (a3) induces (2).

(3) By (2), we know that $(d_q^f(x) * f(y)) * (f(x) * d_q^f(y)) = 0$ for all $x, y \in X$. Hence

$$\begin{aligned} d_q^f(x * y) &= (f(x) * d_q^f(y)) \wedge (d_q^f(x) * f(y)) \\ &= (d_q^f(x) * f(y)) * ((d_q^f(x) * f(y)) * (f(x) * d_q^f(y))) \\ &= (d_q^f(x) * f(y)) * 0 = d_q^f(x) * f(y) \le d_q^f(x) * d_q^f(y) \end{aligned}$$

by (1) and (a3).

If we take $f = i_X$, the identity map in Proposition 3.13, then we have the following corollary.

Corollary 3.14. If d_q is an outside q-derivation of X with $d_q(0) = 0$, then

- (1) $(\forall x \in X) (d_q(x) \le x)$.
- (2) $(\forall x, y \in X) (d_q(x) * y \le x * d_q(y)).$
- (3) $(\forall x, y \in X) (d_q(x * y) = d_q(x) * y \le d_q(x) * d_q(y)).$

For a self map d_q^f of X, consider the set $\ker(d_q^f) := \left\{ x \in X \mid d_q^f(x) = 0 \right\}$, which is called the *kernel* of d_q^f .

Theorem 3.15. If d_q^f is an outside f_q -derivation of X with $d_q^f(0) = 0$, then the kernel of d_q^f is a subalgebra of X.

Proof. Let $x, y \in \text{ker}(d_q^f)$. Then $d_q^f(x) = 0$ and $d_q^f(y) = 0$. It follows from Proposition 3.13 that $d_q^f(x*y) \leq d_q^f(x)*d_q^f(y) = 0$ so from (a7) that $d_q^f(x*y) = 0$. Hence $x*y \in \text{ker}(d_q^f)$, and therefore $\text{ker}(d_q^f)$ is a subalgebra of X. \Box

Corollary 3.16. If d_q is an outside q-derivation of X with $d_q(0) = 0$, then the kernel of d_q is a subalgebra of X.

Theorem 3.17. If X satisfies the right self-distributive law, then the kernel of d_a^f is a subalgebra of X.

Proof. Let $x, y \in \text{ker}(d_q^f)$. Then $d_q^f(x) = 0$ and $d_q^f(y) = 0$. Since X satisfies the right self-distributive law, it follows that

$$d_q^f(x * y) = f(x * y) * q = (f(x) * f(y)) * q = (f(x) * q) * (f(y) * q) = 0,$$

and so $x * y \in \ker(d_a^f)$. Therefore $\ker(d_a^f)$ is a subalgebra of X.

Corollary 3.18. If X satisfies the right self-distributive law, then the kernel of d_q is a subalgebra of X.

Theorem 3.19. If X satisfies the right self-distributive law, then the kernel of d_a^f is an ideal of X.

Proof. By Theorem 3.17, we know that $0 \in \ker(d_q^f)$. Let $x, y \in X$ be such that $x * y \in \ker(d_q^f)$ and $y \in \ker(d_q^f)$. Then $d_q^f(x * y) = 0$ and $d_q^f(y) = 0$. Thus $d_q^f(x) = f(x) * q = (f(x) * q) * 0 = (f(x) * q) * (f(y) * q) = (f(x) * f(y)) * q = f(x * y) * q = d_q^f(x * y) = 0$, and so $x \in \ker(d_q^f)$. Thus the kernel of d_q^f is an ideal of X.

Corollary 3.20. If X satisfies the right self-distributive law, then the kernel of d_q is an ideal of X.

Combining Theorems 3.17 and 3.19, we have the following corollary.

Corollary 3.21. If X satisfies the right self-distributive law, then the kernel of d_a^f is a closed ideal of X.

Corollary 3.22. If X satisfies the right self-distributive law, then the kernel of d_q is a closed ideal of X.

References

- H. E. Bell and L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53(3-4) (1989), 339–346.
- [2] H. E. Bell and G. Mason, On derivations in near-rings, Near-rings and Near-fields, North-Holland Math. Studies 137 (1987), 31–35.
- [3] Y. Huang, BCI-algebra, Science Press, Beijing, 2006.
- [4] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), 167–176.
- [5] Y. B. Jun, X. L. Xin and E. H. Roh, *The role of atoms in BCI-algebras*, Soochow J. Math. **30(4)** (2004), 491–506.
- [6] Y. B. Jun and E. H. Roh, On the BCI-G part of BCI-algebras, Math. Japon. 38(4) (1993), 697–702.
- [7] K. Kaya, Prime rings with α derivations, Hacettepe Bull. Mat. Sci. & Engineering 16-17 (1987-1988), 63-71.
- [8] D. J. Meng, BCI-algebras and abelian groups, Math. Japon. 32(5) (1987), 693–696.
- [9] J. Meng, Y. B. Jun and E. H. Roh, BCI-algebras of order 6, Math. Japon. 47(1) (1998), 33–43.
- [10] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [11] C. C. Xi, On a class of BCI-algebras, Math. Japon. **35(1)** (1990), 13–17.
- [12] J. Zhan and Y. L. Liu, On *f*-derivations of BCI-algebras, Int. J. Math. Math. Sci. 2005(11) (2005), 1675–1684.

Received: April 5, 2012