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ABSTRACT 
During the past three decades, we have witnessed remarkable progress in the development of 
speech input/output technologies.  Despite these successes, we are far from reaching human 
capabilities of recognizing nearly perfectly the speech spoken by many speakers, under varying 
acoustic environments, with essentially unrestricted vocabulary.  Synthetic speech still sounds 
stilted and robot-like, lacking in real personality and emotion.  There are many challenges that 
will remain unmet unless we can advance our fundamental understanding of human 
communication – how speech is produced and perceived, utilizing our innate linguistic 
competence.  This paper outlines some of these challenges, ranging from signal presentation 
and lexical access to language understanding and multimodal integration, and speculates on 
how these challenges could be met. 

1. INTRODUCTION 
During the past three decades, we have witnessed remarkable progress in the development of 
speech input/output technologies.  The ability to speak and listen to computers, as if they were 
human, no longer exists only in Hollywood fantasies and advanced research laboratories.  
Speech recognition error rates continue to fall steadily as task complexity increases, and the 
quality and intelligibility of computer-generated speech continue to improve.  Today, our lives 
are touched almost daily by systems that can allow us to dial phone numbers, issue verbal 
commands, perform transactions, or even dictate a letter, all using the devices we are born with.  
Despite these successes, we are far from reaching human capabilities of recognizing nearly 
perfectly the speech spoken by many speakers, under varying acoustic environments, with 
essentially unrestricted vocabulary.  Synthetic speech still sounds stilted and robot-like, lacking 
in real personality and emotion.  How are we going to reach nirvana – enjoying truly 
anthropomorphic interfaces that can deal with us on our terms, using human language 
technologies?  While mathematical formalisms, data collection from humans, and rigorous 
performance evaluations are key ingredients, there are many challenges that will remain unmet 
unless we can advance our fundamental understanding of human communication – how speech 
is produced and perceived, utilizing our innate linguistic competence.  In this paper, I will outline 
some of these challenges, ranging from signal presentation and lexical access to language 
understanding and multimodal integration, and speculate on how these challenges could be 
met. 

2. FUNDAMENTAL CHALLENGES 
Many challenges confront us in our quest to achieve natural and effective speech-based human 
computer interfaces.  These challenges easily can reach eighty in number.  In the interest of 
brevity, however, I will outline only eight, one representing each decade in the life of the person 

From Sound to Sense: June 11 – June 13, 2004 at MIT                     B - 179 

mailto:zue@csail.mit.edu


   Zue.  Speech Input/Output Technologies 

we have gathered at this conference to honor.  The choice is entirely a personal one, influenced 
by my own experiences and biases. 

2.1 Signal Representation 
State-of-the-art speech recognition systems can often give good performance when the acoustic 
conditions are satisfactory, for example, when one uses a noise-canceling, head-mounted 
microphone in a quiet room.  Remarkable recognition accuracy has also been achieved over the 
telephone for systems with a working vocabulary of several thousand words (Glass et al., 1999). 
However, these systems can break down dramatically in the presence of ambient noise, or 
when the user changes orientation to or distance from the microphone, as is often the case 
when a speakerphone is used. 

To alleviate the problem of user movement in an un-tethered environment, one can resort to 
wireless microphones.  But the solution is unwieldy, especially when multiple users are involved, 
as is the case for meeting transcription.  A possible solution may lie in the use of microphone 
arrays using beam-forming techniques to capture the desired signal (e.g., Flanagan & Jan, 
1996).  As an example, Figure 1 shows the performance improvement as the number of 
microphones in the array increases from 1 to 1,000 (Weinstein et al., 2004).  

                        

Figure 1. Recognition accuracy as a function of the number of microphones in a 
microphone array (Weinstein et al., 2004).  There is a slight degradation when 
multiple competing speakers are present. 
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While the use of microphone arrays is a promising direction for achieving robust data capture, 
one can not help noticing that, in this instance at least, the number of transducers is a couple of 
orders of magnitude greater than what we are born with.  Humans have a remarkable ability to 
recognize speech under extremely noisy conditions, a performance unmatched by current-day 
speech recognition systems (Lippmann, 1997).  This observation has prompted some 
researchers to explore the use of auditory models as a recognition front-end (Seneff, 1988; 
Ghitza, 1995; Allen, 1995).  These auditory front-ends typically yield similar performance to 
Fourier-based representations for clean speech (e.g., Meng, 1991).  However, the auditory-
based representations do achieve better performance when the speech signal has been 
corrupted by additive noise.  Partly due to the computational costs, today’s speech recognition 
systems have for the most part abandoned the auditory models in favor of a Mel-frequency 
cepstral representation that attempts to mimic some of the known properties of the human 
auditory system (Rabiner & Juang, 1993). 

Continued research into the use of auditory models is essential if systems are to achieve 
human-level performance under varying acoustic conditions.  However, these models must be 
extended to include binaural hearing, so that the system can better handle sound localization 
and cocktail party effects.  As we acquire more knowledge about the decoding of linguistic 
information beyond the auditory periphery, we should be in a better position to increase the level 
of sophistication of the auditory models, leading to a better understanding of what attributes to 
extract, and how to utilize them for recognition.  

2.2 Acoustic Modeling 
By far the most popular approach for speech recognition is hidden Markov modeling, or HMM 
(Rabiner & Juang, 1993). From its humble beginning of modeling context-independent 
phonemes using discrete observations (Baker, 1975; Jelinek, 1976), HMM has grown in 
sophistication over the years.  Today, context-dependent phones are routinely used to capture 
local contextual dependencies, and continuous density models are invariably the mechanism of 
choice to characterize the observations.   

HMM-based speech recognition systems are frame-based, i.e., the acoustic observations are 
computed at a fixed rate, typically 10 to 20 times a second.  It is well known that phonetic 
information is not encoded in the speech signal uniformly, and that acoustic landmarks contain 
most of the information for phonetic distinction (Stevens, 1998).  Thus an alternative approach 
to speech recognition may be to first identify these landmarks (Glass & Zue, 1988), and then 
make measurements based on these landmarks.  This approach, while different from the 
prevailing HMM-based approach, has been shown to be mathematically tractable, and to 
achieve competitive results (Glass, 2003). 

Despite all these efforts, there is increasing evidence within the research community that the 
dominating factor for good performance is not acoustic modeling, but statistical language 
modeling.  This has led to an explosion of research on how to derive good language models, at 
the sacrifice of research on how to better model the acoustics of the sub-word units.  But 
reliance on the language models to “bail out” the recognition system has its perils. Since 
language models are highly dependent on the corpus from which they are trained, good 
recognition performance can only be achieved with a sufficient amount of text data to train the 
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models, and as such they are very task dependent.  This has led to a costly development cycle, 
in which the need for a large corpus must first be satisfied. 

It is quite possible that one can derive long term payoffs by increasing the level of sophistication 
in acoustic modeling from phonemes to larger units such as syllables.  As I will argue, syllables 
can better capture the phonological constraints of a language than phonemes.  As a side 
benefit, since the syllable inventory is quite limited in size, the amount of data one needs to 
develop acoustic and language models would be significantly less than that for word-based 
models.  As a consequence, there will be less dependency on the specific corpus used for 
training, resulting in models that can yield robust performance across many recognition tasks. 

Proper acoustic modeling means that one must implicitly or explicitly capture the contextual 
dependency of phonemes in words and sentences.  We have known for quite some time that 
this context dependency can exist at various levels of the phonological hierarchy.  Much of the 
contextual variation that one readily observes in American English is highly dependent on the 
syllable structure.  For example, plosives have significantly reduced aspiration in a syllable-
initial cluster with /s/, as in “speech,” but not in syllable-final position, as in “cusp.”  Similarly, the 
phoneme /t/ is heavily aspirated and retroflexed in a syllable onset position followed by an /r/ (as 
in “nitrate,” but not in syllable-final position followed by an /r/, as in “night rate.”  To properly 
capture acoustic manifestation of such context dependencies, the models must accommodate 
such a hierarchical structure.  Pushed one step further, it is conceivable that one can develop a 
domain-independent recognition kernel, whose job it is to transcribe the speech signal into a set 
of syllables.  Since the number of syllables in a given language is relatively small compared to 
the number of words, such a recognition kernel would not require a great deal of data to train.  
The resulting kernel could serve as a generic first-stage of a two stage recognizer, in which 
word-dependent (and thus task dependent) knowledge could be used to derive the final word 
sequences. 

Recent research by Seneff and her colleagues (Chung & Seneff, 1998) has pursued this line of 
inquiry and achieved some promising results.  In their system, syllable-level dependencies are 
captured in probabilistic context-free rules, and decoding is achieved through efficient parsing 
algorithms.  Their two-stage recognition system achieved slightly better recognition results than 
a one-stage recognition system without explicit syllable-level constraints (Chung et al., 1999). 
However, a lot more work remains. 

2.3 Lexical Access 
Lexical access is the process of matching the continuous acoustic signal to the discrete lexical 
entries.  Two important issues concerning lexical access are lexical representation and search 
strategy, the former being closely related to acoustic modeling.  Traditionally, words in the 
lexicon are represented as phoneme sequences.  Tri-phones, quardri-phones, or even quint-
phones are employed for phonemes to capture context dependencies.  However, this approach 
is inefficient for many of the kinds of coarticulation which can regularly appear in spoken 
language.  For example, the potential rounding in /s/ due to the vowel in the word “strawberry'' 
would require a heptaphone unit in current frameworks! 

An alternative framework that may be more appropriate for describing such coarticulatory 
effects is one based on characterizing phonemes in terms of features (manner, place, voicing, 
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etc.) and feature bundles (Stevens, 1995).  Such a framework might allow us to express 
context-dependencies in a succinct way.  For example, if the manner and place contextual 
effects of a phone are treated separately, then far fewer models would be required, since there 
would be sharing of models among common classes.  This framework could be especially 
powerful for expressing phonological transformations.  In the previous example, the /s/ would 
acquire the “retroflexed” and “round'” features from the following syllable-internal sonorants due 
to anticipatory coarticulation.  Such a feature-based framework is especially suitable to our 
landmark-based formulation, since we do not process the speech signal on a uniform frame-by-
frame basis.   

Words in the lexicon can be pronounced differently by different people.  A word like “California” 
can be pronounced in five, four, or even three syllables (e.g., “Cal-for-nia.”)  At a word 
boundary, significant modifications could occur depending on the adjacent words.  For example, 
the word-final /s/ in “gas” can be geminated (as in “gas station”) or palatalized (as in “gas 
shortage,”) depending on the context.  Most speech recognition systems today do not explicitly 
model such phonological variations, but instead rely on context-dependent phone models to 
capture them.  In a few systems (Zue et al., 1990; Hazen et al., 2002), phonological rules are 
used to expand the phonemic baseforms into pronunciation graphs, which are then searched 
during recognition.  However, the resulting graph might be very bushy, thus increasing the 
number of hypotheses that must be examined, and consequently the likelihood of recognition 
errors.  An appropriate probabilistic formulation of the phonological variations can improve this 
situation (Seneff & Wang, 2004).  By utilizing partial feature representations, i.e., leaving some 
of the less reliable features unspecified, a simpler, albeit under-specified representation can be 
derived, which could be sufficient for lexical decoding.  Alternatively, one can use such a broad 
class representation, together with phonotactic constraints, to initially whittle down the list of 
word candidates.  These more similar words can then be distinguished using a more detailed 
analysis (Zue, 1983).  Recently, this line of investigation has been revived and extended to 
continuous speech with promising results (Tang et al., 2003). 

When examining the pronunciation graphs of words in a typical lexicon, as illustrated in Figure 
2, one is often struck by the fact that the bushiest parts of the graphs typically involve reduced 
syllables. A possible interpretation of this observation is that the unstressed and reduced 
syllables are not produced with as much precision as stressed ones.  As a consequence, there 
exists a lot of variability surrounding these syllables, as manifested by the many ways these 
syllables can be pronounced.  If this were the case, then it makes little sense for a system to 
explicitly account for the variabilities by enumerating all the alternate pronunciations.  It is 
possible that, to access a word like “California,” the system should focus on the acoustic-
phonetic properties of the first and third syllables, where the information is most reliable and 
thus least variable.  The second and fourth syllable, on the other hand, may serve only as place 
holders, whose phonetic forms only need to be specified partially.  This notion of islands of 
reliability suggests an island-driven lexical access strategy, in which the search is accomplished 
by anchoring on the stressed syllables.  In this strategy, lexical decoding is not accomplished in 
a strict, left-to-right manner, as is the case with Viterbi or A* algorithms (Rabiner & Juang, 
1993).  How such a search strategy can be formulated formally and implemented efficiently 
should be a topic of further research. 
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Figure 2.  A pronunciation graph for the .word “temperature,” after phonological 
expansion has been performed on the lexical baseform. 

 

2.4 Speech Understanding  
Up until now, I have largely been focused on the problem of speech recognition, i.e., the 
conversion of the acoustic signal to a set of words.   It is highly debatable whether we humans 
actually perform speech recognition per se, or we simply move directly from sound to meaning.  
After all, speech is mostly used to facilitate communication, and as such, understanding the 
meaning of an utterance should always be the final goal.  If this is the case, then speech 
understanding, as opposed to speech recognition, should be the real task of interest.  One 
might even argue that speech recognition only exists in the minds of the researchers, and is at 
best an interim problem to solve! 

To achieve understanding, speech recognition must be coupled with language understanding.  
When the notion of developing speech understanding systems was first introduced, researchers 
did the obvious thing by cascading a speech recognition module and a natural language 
understanding module.  However, they soon discovered that such an approach did not work 
well.  Most of the natural language systems had been developed with text input in mind; it was 
usually assumed that the entire word string was known with certainty.  This assumption is 
clearly false for speech input, where many words are competing for the same time span (e.g., 
"euthanasia" and "youth in Asia,") and some words are more reliable than others because of 
varying signal robustness (e.g., conjunctions and articles are often significantly reduced 
acoustically in conversational speech). Furthermore, spoken language contains no explicit 
punctuation and is often agrammatical, containing fragments, partial words, and disfluencies. 

Thus, language understanding systems designed for text input needed to be modified in 
fundamental ways to accommodate spoken input.  Natural language analysis has traditionally 
been predominantly syntax-driven -- a complete syntactic analysis is performed, in an attempt to 
account for all words in an utterance.  However, when working with spoken material, 
researchers quickly came to realize that such an approach (Bobrow et al., 1990; Seneff, 1992a; 
Dowding et al, 1993) can break down dramatically in the presence of unknown words, novel 
linguistic constructs, recognition errors, and spontaneous speech events such as false starts. 
Furthermore, spoken language interaction is typically restricted to specific domains that make 
the notion of encoding semantics explicitly in the parse tree not only feasible but attractive, due 
to the additional knowledge that can be derived directly from the parse tree constituents. 
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Due to these considerations, many researchers have adopted semantic-driven approaches, at 
least for spoken language tasks in constrained domains.  In such approaches, a meaning 
representation is derived by focusing on key words and phrases in the utterance, allowing words 
unimportant to meaning to be either skipped or handled through a traditional statistical language 
model.  While this approach loses the constraint provided by syntax, and may not be able to 
adequately interpret complex linguistic constructs, the need to accommodate spontaneous 
speech input has outweighed these potential shortcomings.  Examples of early systems that 
incorporate such stochastic modeling techniques can be found in (Jackson et al., 1991; Seneff, 
1992b; Stallard & Bobrow, 1992; Gorin et al., 1997; Miller et al., 1994). 

How should the speech recognition component interact with the natural language component in 
order to obtain the correct meaning representation?  One of the most popular strategies is the 
so-called N-best interface (Chow & Schwartz, 1989), in which the recognizer proposes its best 
N complete sentence hypotheses one by one, stopping with the first sentence that is 
successfully analyzed by the natural language component.  In this case, the natural language 
component acts as a filter on whole sentence hypotheses.  Alternatively, competing recognition 
hypotheses can be represented in the form of a word graph (Hetherington, et al., 1993), which is 
more compact than an N-best list, thus permitting a deeper search if desired. 

A competing, and seemingly more attractive, strategy is for the speech recognition and natural 
language components to be tightly coupled, so that only the acoustically promising hypotheses 
that are linguistically meaningful are advanced.  For example, partial theories can be arranged 
on a stack, prioritized by score.  The most promising partial theories are extended using the 
natural language component as a predictor of all possible next-word candidates; none of the 
other word hypotheses are allowed to proceed.  Therefore, any theory that completes is 
guaranteed to parse.  Researchers have found that such a tightly coupled integration strategy 
can achieve higher performance than an N-best interface, often with a considerably smaller 
stack size  (Goodine et al., 1992; Goddeau, 1992; Ward, 1994; Moore et al., 1995).  An 
attractive solution is to introduce tight-coupling with natural language understanding in the 
second stage, after the broad-class first stage system has significantly reduced the acoustic 
search space. 

Compared to speech recognition, natural language understanding is still quite a knowledge 
intensive process.  Most language understanding components require a great deal of human 
effort devoted to writing grammar rules.  However, stochastic approaches that can learn the 
linguistic regularities automatically currently depend on a large domain-dependent corpus, often 
properly annotated with syntactic and semantic tags (Gorin et al., 1997; Miller et al., 1994; 
Papineni, 1998; He & Young, 2003).  The necessity of a corpus for training leads to the chicken-
and-egg problem of acquiring a domain-dependent corpus before the system is functional. 
Wizard-of-oz experiments are extremely costly in terms of human resources and are not really a 
practical option.  Finally, one of the major challenges facing us is to formalize processes that 
can automate the discovery of linguistic facts. 

Grammar induction, a machine-learning technique, has tremendous potential as a means for 
furthering the development and use of conversational systems.  Most work in grammar induction 
has occurred outside of the spoken language research community. In (Starkie et al., 2002) and 
Wang & Acero, 2001), the focus is on applying grammar induction to create dialogue systems.  
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Assisted grammar induction is used to build the bridge between sample sentences and an 
application's ontology.  In (Gavalda, 2000), users are allowed to interactively extend a basic 
hand-developed kernel grammar as extra-grammatical sentences are detected during use. 
(Meng & Siu, 2002) have investigated the use of grammar induction in unsupervised training of 
natural language parsers.  Both of these investigations used typed text as input, although 
speech applications were envisioned.  (Galescu et al., 1998) induce training material for a new 
domain by transducing from word-class mappings in an old domain to those appropriate for the 
new domain. 

There is a symmetry between spoken language understanding and spoken language generation 
which leads to the parallel assumption that language generation and speech synthesis, on the 
output side of conversational systems, can benefit from a more closely coupled solution as well.  
For example, a research strategy that requires the language generation component to produce 
a surface form string representation of a sentence, and then subjects this text to redundant 
linguistic analysis in the speech synthesizer appears to be less than ideal. To extend these 
ideas even further, language generation should be intimately coupled with dialogue modeling as 
well, especially for applications over the phone. For example, if the amount of information is too 
much to be delivered verbally to the user, clarification sub-dialogue may be necessary to help 
the system narrow down the choices before uttering them.  Finally, planning what to say is 
highly dependent on factors such as whether the user has access to a graphical interface where 
information can be presented as text or displayed on a map or in a table. 

2.5 Dealing with New Words 
The traditional approach to spoken language recognition and understanding research and 
development is to define the working vocabulary based on domain-specific corpora.  However, 
experience has shown that, no matter how large the size of the training corpora, the system will 
invariably encounter previously unseen words (Hetherington & Zue, 1991).   This is illustrated in 
Figure 3.  For the Air Travel Information System, or ATIS, task, for example, a 100,000-word 
training corpus will yield a vocabulary of about 1,000 words.  However, the probability of the 
system encountering an unknown word, is about 0.002.  Assuming that an average sentence 
contains 10 words, this would mean that approximately one in 50 sentences will contain an 
unknown word.  

In a real applications such as Electronic Yellow Pages, a much larger fraction of the words 
uttered by users will not be in the system's working vocabulary.  This is unavoidable partly 
because it is not possible to anticipate all the words that all users are likely to use, and partly 
because the database is usually changing with time (e.g., new restaurants opening up).  In the 
past, researchers have not paid much attention to the unknown word problem because the 
tasks we have chosen assume a closed vocabulary.  In the limited cases where the vocabulary 
has been open, unknown words have accounted for a small fraction of the word tokens in the 
test corpus.  Thus researchers could either construct generic “trash word'' models and hope for 
the best, or ignore the unknown word problem altogether and accept a small penalty on word 
error rate.  In real applications, however, the system must be able to cope with unknown words 
simply because they will always be present, and ignoring them will not satisfy the user's needs – 
if a person wants to know how to go from the train station to a restaurant whose name is 
unknown to the system, they will not settle for a response such as, “I am sorry I don't 
understand you. Please rephrase the question.''   
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For a system to be truly helpful, it system must be able not only to detect new words, taking into 
account acoustic, phonological, and linguistic evidence, but also to adaptively acquire them, 
both in terms of their orthography and linguistic properties.  In some cases, fundamental 
changes in the problem formulation and search strategy may be necessary.   
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Figure 3.  The percentage of unknown words in previously unseen data as a 
function of the size of the training corpora  used to determine the vocabulary 
empirically.  The sources of the data are: F-ATIS = French ATIS; I-VOYAGER = 
Italian VOYAGER; BREF = French La Monde; NYT = New York Times; WSJ = 
Wall Street Journal; and CITRON=Directory Assistance. 

 

What is needed, then, is a generic capability to handle unknown or poorly recognized known 
words, beginning with detection, continuing on to disambiguation sub-dialogue, and terminating 
with an automatic update of the system such that it now knows the new word explicitly and 
understands its usage. (Chung et al., 2003) have recently demonstrated the ability to 
automatically enroll a new user's name through a speak-and-spell mode, where the orally 
spoken and spelled information are efficiently combined via a letter-to-sound model.  The 
resulting spelling and pronunciation are then automatically incorporated in real time into the 
system's working vocabulary. 

Further research is required in the integration of new word acquisition into the situational context 
of uncertainty in understanding.  It is a research problem to be able to judge when it is 
appropriate to distrust proposed words, and therefore launch a sub-dialogue to disambiguate 
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and finally resolve confusion.  (Filisko & Seneff, 2004) presents an initial framework to support 
such a sub-dialogue interaction to detect unknown words and solicit spellings from the user. 

2.6 Dialogue Interactions 
The dialogue modeling1 component of a conversational system manages the interaction 
between the user and the computer. The technology for building this component is one of the 
least developed and most under-appreciated aspect of human language technology research, 
especially for mixed-initiative dialogue systems considered in this paper.  Although there has 
been some theoretical work on the structure of human-human dialogue (Grosz & Sidner, 1986), 
this has not led to effective insights for building human-machine interactive systems.  There is 
also considerable debate in the research communities about whether modeling human-machine 
interactions after human-human dialogues is necessary or appropriate (e.g., Thomson & 
Wisowaty, 1999; Sadek, 1999; Boves & den Os, 1999) 

In the early stages of the conversation, the role of the dialogue manager might be to gather 
information from the user, possibly clarifying ambiguous input along the way, so that, for 
example, a complete query can be produced for the application database.  The dialogue 
manager must be able to resolve ambiguities that arise due to recognition error (e.g., “Did you 
say Boston or Austin?") or incomplete specification (e.g., “On what day would you like to 
travel?").  In later stages of the conversation, after information has been accessed from the 
database, the dialogue manager might be involved in some negotiation with the user to help 
narrow down the number of choices to digestible chunks (e.g., “I found ten flights, do you have a 
preferred airline or connecting city?").  In addition, the dialogue manager must also inform and 
guide the user by suggesting subsequent sub-goals (e.g., “Would you like me to price your 
itinerary?"), offer assistance upon request, help relax constraints or provide plausible 
alternatives when the requested information is not available (e.g., “I don't have sunrise 
information for Oakland, but in San Francisco ..."), and initiate clarification sub-dialogues for 
confirmation.   

Many current systems use a type of scripting language as a general mechanism to describe 
dialogue flow (e.g., Carlson & Hunnicutt, 1999; Lau et al., 1997; Souvignier, 2000).  Other 
systems represent dialogue flow by a graph of dialogue objects or modules (e.g., Bernard et al., 
1999; Sutton et al, 1999).  In nearly all cases, the design of the dialogue strategy is typically 
hand-crafted by the system developers, and as such is largely based on their intuition about the 
proper dialogue flow.  This can be a time-consuming process, especially for mixed-initiative 
dialogues, whose result may not generalize to different domains.  A major challenge is how to 
develop generic dialogue modeling techniques so that the human effort invested into the 
development of one application domain can easily be reused in other domains (Glass & Seneff, 
2003). There has also been some research recently exploring the use of machine learning 
techniques to automatically determine dialogue strategy (Levin et al., 1998).  Regardless of the 
approach, however, there is the need to develop the necessary infrastructure for dialogue 
research.  This includes the collection of dialogue data, both human-human and human-
                                                 
1 In the context of this paper, we define dialogue modeling as the preparation, for each turn, of the 
system's side of the conversation, including verbal, tabular, and graphical response, as well as any 
clarification requests. 
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machine.  These data will need to be annotated, after developing annotation tools and 
establishing proper annotation conventions.  In the last decade, speech recognition and 
language understanding communities have benefited from the availability of large, annotated 
corpora.  Similar efforts are clearly needed for dialogue modeling. 

Many research issues concerning dialogue modeling remain active areas of future research.  
These include 1) the ability for systems to offer context-dependent help mechanism in order to 
assist users to stay within the capabilities of the system 2) the recovery from the inevitable 
misunderstandings that a system will make, 3) in the introduction of back channel 
communication in spoken dialogue responses, in order to make the interaction more natural, 
and 4) the handling of interruptions by allowing the user to “barge in'' over the system response 
(Zue & Glass, 2000). 

A critical roadblock to widespread use of spoken dialogue systems today is the fact that 
systems are usually configured with a static lexicon and fixed language model.  We must 
develop a capability for an existing system to dynamically reconfigure itself over the course of a 
single dialogue interaction, by constantly readjusting its vocabulary and language model to 
reflect the situational context, based on (1) the topic of conversation, (2) specific entities 
retrieved from the database, and (3) direct interaction with the user to acquire new knowledge.   

In spite of the progress made thus far, much challenging work still remains in building a system 
that can demonstrate the ability to dynamically learn and adopt any new words that appear at 
any time at the spoken input.  Some of the research issues that need addressing include: (1) 
high quality letter-to-sound modeling, both for lexicon development and new word acquisition, 
(2) development of a dialogue interaction module to guide the user and the system through the 
new word acquisition process, and (3) development of a recognizer framework to support 
flexible vocabulary and dynamically introduce dialogue context dependent vocabularies and 
language models.   

Spoken dialogue systems can behave quite differently depending on what input and output 
modalities are available to the user.  In a telephone conversation where display is not available, 
it might be necessary to tailor the dialogue so as not to overwhelm the user with information.  
When displays are available however, it may be more desirable to simply summarize the 
information to the user, and to show them a table or image etc.  Similarly, the nature of the 
interaction will change if alternative input modalities, such as pen or gesture, are available to the 
user.  Which modality is most effective will depend, among other things, on the environment, 
user preference, and perhaps dialogue state (Oviatt, 1996). 

2.7 Multimodal Integration 
While speech is the most natural, effortless, and efficient way for humans to communicate, it is 
not the only way.  In daily interactions, we often rely on pointing, gesture, and writing to 
augment speech.  There are certainly occasions when speech would not be appropriate, as 
when we attempt to take notes during a meeting.  To provide a full range of interactions, 
modalities such as pen and gesture should be included to augment and complement speech.  

Interpreting multimodal inputs poses several challenges.  First, the multiple inputs need to be 
understood in the proper context.  When someone says, “What about that one?” while pointing 
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at an item on the shelf, the system must interpret the indirect referencing in the speech signal 
using information in the visual channel.  In some cases, timing information may be crucial.  As 
illustrated in Figure 4, proper interpretation of the object and the target location may depend on 
the system’s ability to correlate the information in the acoustic and the visual channels.  In 
addition, the system must be able to handle uncertainties, since object recognition can be error 
prone. 

Past research on multi-modal understanding has focused primarily on the integration of speech 
and pen-based gesture, and as such is event driven, i.e., the pen activity is registered by 
clicking.  By continuously tracking speech, gesture, and gaze activities, maintaining relative 
timing information on each channel, and using context to resolve conflicts, one can hopefully 
achieve robust multi-modal understanding.  Proper modality selection can significantly improve 
information presentation.  For example, a presentation might choose a graphical modality for 
numeric data, a speech synthesizer to deliver breaking news; and textual summaries for more 
detailed descriptions.   

 
Speech: “Move this one over here”

Pointing: (object)        (location)       

time

Speech: “Move this one over here”

Pointing: (object)        (location)       

time

 

 

 

 

Figure 4.  A schematic plot, as a function of time, of the sequence of words 
determined by a speech recognizer, and the interpretation of the object and its 
target location determined from the visual signal. 

 

On the output side, a multimodal interface must be able to generate natural speech and 
integrate it in real-time with facial animation, in the context of a larger conversation.  For intuitive 
dialogs, the system should support user interruption, back-channel, and other cues that are 
common in human dialogs. 

For the multi-modal interaction to be effective, we must develop a unifying linguistic formalism 
that can describe multi-modal interactions (e.g., “Move it from here to here”), along with 
integration and delivery strategies.  For output generation, the system must decide when to use 
which modality, a decision that could be based on the user’s cognitive load.  The system will 
also need to handle trans-modal interactions, in which one mode is transformed into another 
(verbally summarizing a weather map, for example). 

2.8 Paralinguistics 
The speech signal is primarily used for communicating linguistic information.  However, it also 
conveys extra-linguistic information such as the identity of the speaker, and the physiological 
and psychological states of the user – whether (s)he is stressed, tired, sick, or agitated).  Such 
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paralinguistic information is often useful for verbal communication.   For example, knowing the 
identity, or even just the gender, of the speaker can lead to better recognition performance, 
since the system can then adopt gender-specific or speaker-specific acoustic models.  Knowing 
that the user is agitated, perhaps due to repeated system errors, can potentially allow the 
system to be a little more accommodating in its management of the spoken dialogue.  For 
spoken language generation, it is important for the system to use extra-linguistic information to 
convey the emotion that is appropriate for the condition at hand. 

Technology for speaker identification and verification has been pursued by many researchers in 
the past, and impressive results have been achieved (Reynolds, 1995; Reynold et al., 2000; 
Doddington et al., 2000).  Recent research suggests that, when speaker identification is 
conducted within the context of speech recognition, one can exploit knowledge about the 
identity and location of the phonemes to further improve speaker identification results (Park & 
Hazen, 2002).  Finally, speaker recognition error rate can be reduced nearly ten-fold when the 
system is augmented with a face recognition module (Hazen et al., 2003).  It is likely that our 
ability to identify a person from the speech signal can be further improved if other sources of 
information, such as gait, are also included. 

In recent years, there has been increasing interest in the manifestation of emotion in the speech 
signal, ranging from corpus creation (Campbell, 2000) and theoretical foundations (Cornelius, 
2000) to acoustic analysis (Cowie, 2000, Jackson et al., 2003) and actual recognition (Moriyama 
& Ozawa, 1999).  While some encouraging results have been obtained, we are far from 
understanding the acoustic encoding of a full range of emotions, and do not yet have the ability 
to reliably detect and utilize them. Continuing research in this fertile area is necessary 

3. CONCLUDING REMARKS 
This paper has outlined some of the major challenges facing the development of speech input 
and output technologies that can one day lead to the realization of a natural and effective 
interface between humans and machines.  While it is always important to have the right 
mathematical formalism for algorithm development, the available data for analysis, system 
development, and training, and the mechanism for rigorous evaluation, I believe it is also 
important for system developers to have a deep understanding of the ways humans 
communicate: how speech is produced, perceived, and eventually understood.  Only through 
such understanding can we expect to realize systems with capabilities approaching those of 
humans. 
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