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Abstract: Insulin resistance in muscles is a major problem associated with Type 2 diabetes. Bioactive 
compounds of plant origin have long been known for possessing anti-diabetic properties. We have studied the 
effect of the bioactive compounds naringenin (dihydroflavonol) and falcarinol (polyacetylene) on glucose 
uptake (GU) in normal and insulin resistant primary porcine myotubes, in the presence and absence of insulin to 
identify signaling pathways mediating their effects on GU. The dependence on glucose transporter type 4 
(Glut4) activity, insulin signaling and AMP- activated protein kinase (AMPK)-signaling was studied by using 
the Glut4 inhibitor indinavir, the phosphatidyl inositol-3 kinase (PI3K) and p38 mitogen activated protein 
kinase (MAPK) inhibitor wortmannin, and the AMPK inhibitor dorsomorphin (DM), respectively. Naringenin 
and falcarinol stimulated GU was attenuated in the presence of indinavir and wortmannin, indicating a 
dependence on Glut4 activity as well as PI3K and/or p38MAPK activity. By contrast, DM diminished GU 
induced by naringenin only, indicating that falcarinol-stimulated GU was independent of AMPK activity. 
Finally, we show that naringenin and falcarinol enhance phosphorylation of TBC1D1 suggesting that these 
compounds enhance translocation of Glut4 containing vesicles and thereby GU via a TBC1D1-dependent 
mechanism.  

                
Keywords: naringenin; falcarinol; glucose uptake; type 2 diabetes; TBC1D1; TBC1D4  
 

 
 
Introduction 
 
        The initiation of insulin resistance in muscles, normally 
occurs asymptomatically, and is compensated with increased 
insulin secretion by the pancreatic beta-cells. If left 
uncontrolled, this can lead to beta-cell exhaustion and 
failure; leading to an increase in blood glucose level and the 
manifestation of Type 2 diabetes [1].   
        Skeletal muscle is the primary site for glucose 
utilisation, where about 75 % of the insulin stimulated 

glucose uptake (GU) takes place [2]. Insulin causes GU via 
the translocation of glucose transporter type 4 (Glut4) 
vesicles to the plasma membrane [3] via activation of the 
phosphatidyl inositol-3 kinase (PI3K)-Akt/protein kinase B 
pathway, which mediates most of the metabolic actions of 
insulin [4]. 
        Another major signaling pathway responsible for GU 
and fatty acid oxidation in muscles is the AMP- activated 
protein kinase (AMPK) signaling cascade. In mammals, 
AMPK  acts  as  a  metabolic  energy sensor, maintaining the  
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Fig.  1. Chemical structures of naringenin and falcarinol. 

 
 
 
cellular energy balance [5]. It has been shown that activation 
of AMPK by agonists such as AICAR (5-Aminoimidazole-
4-carboxamide ribonucleotide) causes Glut4 translocation 
[6, 7].  Moreover, thiazolidinediones and metformin have 
been found to enhance GU in skeletal muscle through 
AMPK phosphorylation [8]. 
        The Rab-GTPase activating protein, TBC1D4 (also 
known as As160) and its homolog TBC1D1 are downstream 
targets of Akt and play a major role in insulin and AICAR 
stimulated Glut4 translocation [9, 10]. It has been suggested 
that phosphorylation of TBC1D4 and TBC1D1(TBC1D4/1)  
lead to the activation of small Rab-GTPases, causing 
cytoskeletal re-organization, which in turn triggers the 
translocation and docking of Glut4 vesicles to the plasma 
membrane [11].  
        Secondary metabolites from different botanicals have 
the potential to influence different cellular mechanisms, 
including key signaling pathways balancing energy 
utilization and storage. More than a thousand plant species 
have been tested for their efficacy against diabetes [12]. 
Naringenin, a flavonol, found in citrus fruits (e.g. grapefruits 
and oranges) has been found to enhance insulin sensitivity 
and reduce plasma glucose levels in diabetic animal models 
[13], and cause AMPK activation in L6 myotubes [14]. 
However, the different steps involved in its mode of action 
are yet to be elucidated. Falcarinol, a polyacetylene present 
(among other plants) in carrots, and mostly known for its 
anti-cancer and anti-inflammatory properties [15, 16], also 
exhibit cyto protective [17] and growth-stimulatory effects 
[18] in a biphasic manner. Falcarinol has not been studied 
yet for its efficacy against diabetes.    
        In the present study, primary porcine myotube cultures 
were used as a model for skeletal muscles to test the GU 
enhancing potential of naringenin and falcarinol in normal 

and insulin resistant myotubes. GU was measured in the 
presence of indinavir (a Glut4 inhibitor), wortmannin (a 
PI3K-inhibitor), and dorsomorphin (DM; an AMPK 
inhibitor) separately. Simultaneously, the effect of these 
inhibitors on naringenin and falcarinol induced 
phosphorylation of TBC1D4/1 was studied.  
Mercury (Hg) is a heavy metal that is widespread and 
persistent in the environment, and infants in the US are 
exposed to significant levels of environmental Hg through 
air, water, and breast milk [1]. In addition to environmental 
Hg exposure and maternal exposures from the mother's Hg 
body burden, dietary intakes, and Hg-containing 
pharmaceuticals administered to the mother while the child 
is developing in utero, and injected organic-Hg from 
Thimerosal-preserved childhood vaccines have been and, in 
many countries, remain a significant source of Hg exposure 
for many infants during the first year of life [1, 2]. 
         
Materials and methods 
 
Materials 
 
        Falcarinol (> purity 98%) was isolated from carrots as 
described elsewhere [19] and identified by UV, gas 
chromatography-mass spectrometry (EI, 70 eV)], NMR (1H 
and 13C NMR, and 1H-1H and 1H-13C correlation 
spectroscopy recorded in CDCl3 with tetramethylsilane as 
internal standard), and optical rotation. The spectral data set 
corresponded fully with literature values for falcarinol [20-
22]. Chemical structures of falcarinol and naringenin [23, 
24] are shown in Fig. 1. Dulbecco’s modified eagles medium 
(DMEM), fetal calf serum (FCS), horse serum (HS) and 
Trypsin-EDTA were from GIBCO Life technologies. The 
antibiotics (amphotericin, penicillin/streptomycin and 
gentamycin), naringenin, DM and phosphatase inhibitor 
cocktail (PIC) 2 and 3 were from Sigma-Aldrich. [3H] 2-
deoxy-D-glucose (2-DOG) was purchased from Perkin 
Elmer Inc. Indinavir, wortmannin, and AICAR were from 
Santa Cruz Biotechnology (Texas, USA), and the primary 
antibodies against phosphorylated TBC1D4/1 were 
purchased from Cell Signaling Technology (Danvers, MA, 
US) and that against α-Tubulin, from Merck Millipore 
(Darmstadt, Germany). Goat anti-rabbit and anti-mouse 
HRP-conjugated secondary antibodies were from Dako 
Denmark A/S (Glostrup, Denmark). Enhanced 
chemiluminescence reagent (ECL) and chemiluminescence 
films were from GE healthcare (Buckinghamshire, UK). The 
polyvinylidene difluoride (PVDF) membranes were from 
BioRad (CA, USA), protein molecular weight markers from 
Thermo scientific Inc. (MA, USA) and 4-12 % Bis-Tris gels 
from Life technologies (Paisley, UK).  
 
Preparation of myotube cultures 
 
        Satellite cells were isolated from fast-twitch 
semimembranosus muscles of female pigs (approximately12 
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Fig.  2. Effect of naringenin and falcarinol on glucose uptake. The differentiated myotubes were incubated with 3, 10 and 30 µM (A) 
naringenin and (B) falcarinol, in presence and absence of 10 nM insulin (closed and open bars respectively) for 1 h; or incubated for 
24 h with either 7 mM or 12 mM glucose (open and closed bars respectively) and then treated with 10 and 30 µM of (C) naringenin 
and (D) falcarinol for 1 h, following which glucose uptake was measured. Myotubes were incubated with indinavir (100 µM) for 5 
minutes prior to 2DOG addition (E & F); 1µM wortmannin for 1 h (G & H) or 10 µM DM for 5 minutes (I & J), prior to treatment 
addition. For A – H, insulin (10 nM) and for I & J, AICAR (1 mM) was used as the positive control. N10, N30 = 10 and 30 µM 
naringenin and F10, F30 = 10 and 30 µM falcarinol respectively. Vehicle = cells treated with DMSO only. In the plot DM = 
dorsomorphin. Values are LS means ± SEM of experiments conducted with satellite cells from 3 pigs, expressed as percent of control. 
Number of replicates per pig (n) = 6. Different letters indicate significant differences between and within groups. 

kg) and stored in liquid nitrogen until used. For preparation 
of myotube cultures, the cells were thawed and evenly 
seeded on Matrigel matrix (BD Biosciences, cat no. 354230) 
coated (1:50 v/v) as described elsewhere [25] in 6 or 48 well 
plates for protein analysis and GU assay, respectively.  
 
Glucose uptake assay 
 
        The differentiated myotubes were treated with serum 

free media (SFM; DMEM with 7 mM, glucose, antibiotics, 
and 1 µM cytosine arabinoside, 1 % FCS) for 2-5 h, 
incubated with various treatments for 1 h, washed with (4-
(2-hydroxyethyl)-1-piperazineethanesulfonic acid) HEPES 
buffered saline (20 mM Hepes, 140 mM NaCl, 5 mM KCl, 
2.5 mM MgSO4, 1 mM CaCl2, adjusted to pH 7.4), and 
incubated with 250 µL/well 2-DOG for 30 min; washed with 
phosphate buffered saline (PBS, 500 µL/well), lysed by 
adding 0.05 M NaOH (37°C, 250 µL/well) and placed on a 
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shaking board for 30 min. The cell lysate was mixed with 
scintillation mix (1:10) and counted in a Win spectral 1414 
liquid scintillation counter. Following serum deprivation, the 
differentiated cells were pre-incubated with 1µM 
wortmannin for 1 h or 10 µM DM for 5 min, prior to 
treatment addition. Indinavir (100 µM) was added 5 min 
prior to 2DOG addition. AICAR (1 mM) and insulin (10 
nM) were used as positive controls (1 h incubation). To 
make insulin resistant myotubes (IRM), myotubes were 
incubated with differentiation media for 24 h and then with 
differentiation media containing 12 mM as compared to 7 
mM glucose for 24 h. These myotubes were not treated with 
SFM, before treatment addition. Controls received DMSO. 
 
Western blotting 
 
        Differentiated cells were treated with various 
treatments for 2.5 h, washed with PBS, harvested using 0.25 
% Trypsin-EDTA, and frozen at -80°C. Lysis buffer (4 % 
SDS, 10 mM Tris-HCl, and 1 mM EDTA) containing PIC 2 
and 3 was used to lyse the cells. Cell lysates containing 
equal amounts of protein were separated by SDS-PAGE 
using 4-12 % Bis-Tris gels. Proteins were transferred to a 
PVDF membrane, stained with Ponceau S and visually 
inspected for equal loading and blotting efficiency [26]. The 
membranes were blocked using 2 % (w/v) BSA in 0.1 % 
TBS-T buffer (0.05 M Tris-base, 0.5 M NaCl, 0.1 % (v/v) 
Tween-20, pH adjusted to 7.4) for 1 h, at room temperature, 
and washed in 0.1 % TBS-T. Thereafter, the membrane was 
incubated with primary antibody (1:1000) at 4 °C overnight 
or 1 h at room temperature (RT), washed, incubated with 
HRP-conjugated anti-mouse or anti-rabbit secondary 
antibody for 1 h at RT, and washed again. All washing steps 
were done 6 times, 10 min each. ECL reagent was used to 
detect the primary antibody and was visualized by exposure 
to chemiluminescence films. Bands were analysed using the 
ImageJ software. The relative protein expression was 
normalized against the α-Tubulin as a housekeeping protein.  
Statistical analysis 
 
        Statistical analysis of data was conducted, using the 
‘Mixed’ procedure of SAS statistical programming software 
(Ver. 9.2; SAS Institute Inc., Cary, NC, USA). The models 
used included fixed effects of treatments and their 
interactions. Data representing Fig. 2A-J were tested 
separately, where the model included fixed effects of insulin, 
glucose concentration, indinavir, wortmannin, DM, AICAR, 
naringenin, falcarinol and insulin as well as their 
interactions.  Myotube cultures (triplicates) and replicates 
(n=4) nested within were used as random effects. When 
overall effects were significant, Least Square Means 
(LSMeans) was separated by pairwise comparison (pdiff 
option in SAS). For the western blot, differences between 
treatments were determined by Student’s unpaired t-test. P 
value < 0.05 was considered statistically significant. 
 

Results 
 
        GU was determined in differentiated myotubes 
incubated with 3, 10 or 30 µM of naringenin and falcarinol 
separately, in presence or absence of 10 nM insulin (Fig. 2A 
and 2B) for 1 h. Naringenin significantly increased GU in 
the absence of insulin at 3, 10 and 30 µM concentrations by 
15.6 (p = 0.001), 19.5 (p < 0.001) and 16.4 % (p < 0.001), 
respectively compared to control. An increase of 23.0 (p < 
0.001), 11.5 (p < 0.01), and 9.2 % (p = 0.02) in GU at 3, 10, 
and 30 µM naringenin concentrations was observed 
compared to 10 nM insulin only. Falcarinol significantly 
increased GU at 3, 10 and 30 µM concentrations in the 
absence of insulin by 26.5 (p = 0.001), 26.0 (p < 0.001), and 
7.6 (p < 0.01) %, respectively, compared to control; whereas 
in presence of 10 nM insulin,  an increase of 15.8 (p < 0.01), 
4.0 (p = 0.1) and a decrease of 15.1 (p < 0.001) %  in GU, 
was observed at 3, 10 and 30 µM falcarinol, respectively, 
compared to 10 nM insulin only. Here, the GU stimulating 
effect in the presence of insulin was only observed at 3 µM, 
while GU was inhibited at concentration of 30 µM 
falcarinol. Based on these results, the concentrations 10 and 
30 µM for both naringenin and falcarinol were chosen for 
further experiments.  
        The effects of naringenin and falcarinol on IRM are 
illustrated in Fig. 2C and 2D. Insulin sensitivity of the 
myotubes was reduced by pre-incubation with 12 mM 
glucose for 24 h, as has been demonstrated elsewhere [27]. 
Basal GU was significantly reduced in IRM (18.1 %, p = 
0.02) compared to control. A significant increase in GU was 
observed in presence of 10 nM insulin (21.8 %, p =0.005), as 
well as 10 and 30 µM naringenin (37.7, and 29.0 %; p < 
0.001) in IRM. The increase in GU in presence of 10 but not 
30 µM naringenin was significantly higher (p = 0.03) than 
that caused by 10 nM Insulin. Falcarinol, at the 
concentration s of 10 (21.0 %, p = 0.007) and 30 µM (13.0 
%, p = 0.09), significantly increased GU in IRM. At 10 µM 
concentration, the increase in GU caused by falcarinol was 
not significantly different from that caused by 10 nM 
Insulin. 
        Indinavir, a specific inhibitor of Glut4 mediated 
glucose transport, directly binds and blocks the Glut4 
transporter [28].  The IC50 of indinavir in cells expressing 
Glut4 is 50 to 100 µM [29]. To examine whether the 
increased GU elicited by naringenin and falcarinol was 
dependent on Glut4 transporters, myotubes were incubated 
in presence or absence of 100 µM indinavir for 35 min (Fig. 
2E and 2F). Incubation with indinavir significantly reduced 
basal GU by 44.7 % (p < 0.001). There was no significant 
increase in GU in presence of 10 nM insulin or 30 µM 
naringenin in the indinavir treated cells; whereas 10 µM 
naringenin caused a minute, but significant increase in GU 
(6 %, p = 0.03). GU was unaffected at 10 µM and further 
reduced at 30 µM falcarinol concentrations in indinavir 
treated cells. 
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Fig.  3. TBC1D4 and TBC1D1 phosphorylation by naringenin and falcarinol. Differentiated myotubes were incubated for 2.5 h with 
100 nM insulin (Ins), 10 µM naringenin (N10), and 10 µM falcarinol (F10); in presence or absence of 1 µM wortmannin (W) and 10 
µM dorsomorphin (DM). Cells were harvested, lysed, and equal amounts of protein were used for SDS-PAGE, followed by 
immunoblotting (representative blots shown in A) with specific antibodies of recognizing phosphorylated (Thr642) TBC1D4 and 
(Thr590) TBC1D1 (plots B and C, respectively). α-Tubulin was used as housekeeping protein. Bands were analysed using the ImageJ 
software.  Values are given as Mean ± SEM of experiments conducted with satellite cells from 3 pigs. Levels of significance, *p < 
0.05, **p < 0.01, ***p < 0.001. 

        Activation of PI3K is necessary for both basal and 
insulin stimulated Glut4 translocation to the plasma 
membrane, and is inhibited by wortmannin [30]. In order to 
test whether the GU induced by naringenin and falcarinol is 
affected by the inhibition of PI3K, myotubes were incubated 
with 1 µM wortmannin for 1 h (Fig. 2G and 2H), which 
significantly decreased the basal and insulin stimulated GU 
by 24.2 and 31.8 % (p < 0.001) respectively. Naringenin 
induced GU at 10 and 30 µM concentrations was reduced by 
39.9 and 33.9 % (p < 0.001) respectively. A similar 
reduction in GU for 10 and 30 µM falcarinol in wortmannin 
treated myotubes (40.0 and 31.2 %, p < 0.001) was 

observed.  
        In order to test the AMPK dependence, myotubes were 
incubated with DM (10 µM), for 65 min (Fig. 2I, J), and 
AICAR (1 mM) was used as a positive control. There was 
no reduction in basal GU, in DM treated myotubes, but 
AICAR stimulated GU was significantly reduced (12.1 %, p 
< 0.001) in presence of DM. A significant reduction of 23.7 
and 13.4 % (p < 0.001) for 10 and 30 µM naringenin, and an 
increase of 5.0 and 24.3 (p < 0.001) % at 10 and 30 µM 
falcarinol was observed in DM treated myotubes compared 
to vehicle.  
        Activation of TBC1D4/1 by naringenin and falcarinol 
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was examined, with 100 nM insulin as the positive control. 
Naringenin and falcarinol solely increased TBC1D1 
phosphorylation (Fig. 3), which had a tendency to decrease 
in presence of wortmannin. Insulin significantly increased 
the phosphorylation of TBC1D4/1, where the former was 
induced to a higher degree. Insulin stimulated TBC1D4 (not 
TBC1D1) phosphorylation was significantly reduced by 
wortmannin. In DM treated myotubes, naringenin stimulated 
TBC1D1 phosphorylation was significantly reduced, and a 
similar tendency was observed for TBC1D4 
phosphorylation; whereas falcarinol showed a significant 
increase in TBC1D4 phosphorylation in the presence of DM. 
TBC1D4/1 were found to have an approximate molecular 
weight (m. wt.) of 65-70 kDa. Human and murine 
TBC1D4/1 has a m. wt. of 160 kDa [31, 32]. The m. wts of 
these proteins in pigs have not yet been established. 
However, according to Ensembl sources, based on their 
mRNA transcripts, porcine TBC1D4/1 are predicted to have 
an approximate m. wt. of 56-70 kDa (Ensembl: 
ENSSSCT00000010375 and ENSSSCT00000009599). Two 
other studies [33, 34] have attempted to detect TBC1D4 in 
porcine muscles, but used a different approach where 
phosphorylated Akt substrate antibody was used to detect 
the protein.  

Discussion 
 
        In the current study, naringenin and falcarinol were 
found to enhance GU in primary porcine myotube cultures 
autonomously. In presence of insulin, both naringenin and 
falcarinol showed a higher increase in GU at the lowest 
concentration tested (3 µM); which was reduced at 10 and 
30 µM concentrations. A possible explanation could be a 
shift in the sensitivity range of the compounds in the 
presence or absence of insulin, due to competition for 
common pathway proteins at higher concentrations. 
        In IRM, basal GU was significantly reduced, while the 
naringenin induced effect was maintained. This indicates an 
insulin-independent mechanism of GU which correlates with 
the fact that naringenin activates AMPK in L6 muscle cells 
[14]. However, a reduced GU was observed in naringenin 
exposed MCF-7 breast cancer cells and myelocytic U937 
cells [35, 36], indicating a cell-type specific effect of this 
flavonol. Falcarinol induced GU was not maintained, in IRM 
after 10 µM exposure. This could be due to down-regulation 
of signaling proteins required for falcarinol stimulated GU at 
this concentration. 
        A significantly reduced GU was observed in indinavir 
treated cells, where naringenin (10 µM) caused a minute but 
significant increase in GU, although insulin treatment did 
not. A similar observation was obtained for naringenin 
treated IRM, suggesting that although naringenin mostly 
depends on Glut4 for GU, it might be capable of partially 
inducing other glucose transporters (like Glut1) and/or the 
activity of the small number of Glut4 still available for 
transport. However, falcarinol did not increase GU in the 

indinavir treated cells; which might be indicative of its 
complete dependence on Glut4, as is also the case for 
insulin.  
        Neither naringenin nor falcarinol increased GU in 
wortmannin treated cells, suggesting PI3K dependence. 
However, it is important to note that in earlier studies, 
wortmannin has also been found to inhibit MAPK [37] with 
an IC50 of 300 nM. This could link GU by naringenin and 
falcarinol to MAPK-inhibition as well; since, other than 
being a downstream target of AMPK [38], p38-MAPK is 
involved in full activation of Glut4 [39]. 
        Treatment with DM did not cause any significant 
change in basal GU; but AICAR and naringenin mediated 
GU was diminished in its presence. This also corroborates 
well with naringenin induced AMPK activation [14] and 
unchanged naringenin induced GU in IRM compared to 
normal myotubes. The inability of DM to reduce falcarinol 
induced GU and TBC1D1 phosphorylation indicates AMPK 
independence. The significant DM induced increase in GU 
observed at 30 µM falcarinol is surprising. However a cross 
talk between different signaling pathways could provide a 
rationale. Moreover, DM has been shown to participate in 
other signaling cascades, independent of the AMPK pathway 
[40]. Furthermore, intracellular reactive oxygen species 
(ROS) has been implicated in GU during exercise/muscle 
contraction [41] and the activation of p38 MAPK [42], 
stimulating GU [39]. The fact that falcarinol induces ROS 
formation at low concentrations (1.6 to 25 µM) [17] could 
explain the falcarinol stimulated AMPK-independent 
increase in GU.  
        The activation of TBC1D1 by naringenin and falcarinol 
was reported for the first time in this study. TBC1D1 is 
relatively more abundant in fast-twitch and TBC1D4 in 
slow-twitch muscles [10]. However, TBC1D4 was more 
responsive to insulin induced phosphorylation than 
TBC1D1. Mass spectrometry analysis on TBC1D1 from 
mouse skeletal muscle has revealed phosphorylation sites, 
that are consensus or near consensus sites for AMPK; and 
AICAR was found to be a stronger regulator of TBC1D1 
phosphorylation than insulin [10]. This explains the 
inhibition of naringenin induced TBC1D1phosphorylation 
by DM. 
        Overall, it can be concluded that both naringenin and 
falcarinol depend predominantly on Glut4 and PI3K and/or 
p38MAPK activity for the induction of GU. Naringenin (not 
falcarinol) induced GU, is dependent on AMPK activation. 
Treatment with wortmannin and DM indicate that naringenin 
and falcarinol differ in their mechanism of action, but both 
increase GU via TBC1D1 phosphorylation.  
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