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Abstract. For mobile multiprocessor applications, achieving high performance with low energy consumption is a challenging
task. In order to help programmers to meet these design requirements, system development tools play an important role. In
this paper, we describe one such development tool, ePRO-MP, which profiles and optimizes both performance and energy con-
sumption of multi-threaded applications running on top of Linux for ARM11 MPCore-based embedded systems. One of the key
features of ePRO-MP is that it can accurately estimate the energy consumption of multi-threaded applications without requir-
ing a power measurement equipment, using a regression-based energy model. We also describe another key benefit of ePRO-
MP, an automatic optimization function, using two example problems. Using the automatic optimization function, ePRO-MP
can achieve high performance and low power consumption without programmer intervention. Our experimental results show
that ePRO-MP can improve the performance and energy consumption by 6.1% and 4.1%, respectively, over a baseline version
for the co-running applications optimization example. For the producer-consumer application optimization example, ePRO-MP
improves the performance and energy consumption by 60.5% and 43.3%, respectively over a baseline version.
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1. Introduction

Achieving both high-performance and low-energy
consumption is an important design goal for modern
mobile embedded applications. Since most mobile em-
bedded applications run on battery-operated mobile
devices, the low-energy consumption has been one of
the most important design constraints for many mobile
devices. At the same time, as mobile embedded appli-
cations become more complex, a high level of com-
puting power is necessary for adequate application op-
erations. In order to meet these design requirements,
programmers should understand the performance and
the energy consumption of their applications. Further-
more, when the applications do not satisfy the design
requirements, it should be easy to predict and iden-
tify performance and energy bottlenecks of the appli-
cations at the application level.

*Corresponding author: Jihong Kim, Room 315-2, Building 302,
Seoul National University, Shillim-dong, Kwanak-gu, Seoul 151-
742, Korea. Tel.: +82 2 880 1861; Fax: +82 2 871 4912; E-mail:
jihong@davinci.snu.ac.kr.

To help embedded developers to analyze their ap-
plications, many profiling tools have been developed
for embedded systems. For example, many existing
profiling tools estimate the performance characteris-
tics of applications using hardware performance coun-
ters available in most microprocessors [3,10,13]. For
energy profiling, most existing tools depend on extra
power measurement equipments [3,9,12] to measure
the power consumption of applications. Although us-
ing power measurement equipments can provide accu-
rate power consumption data, average embedded soft-
ware developers are reluctant to use power measure-
ment equipments. For many embedded programmers,
these equipments are not comfortable to use and they
are often too expensive to be widely used by an in-
dividual programmer. For energy profiling tools to be
widely employed by embedded programmers, the tools
should present a familiar user interface without using
any special equipment, thus relieving the programmers
from learning many different interfaces and equip-
ments.

With multicore/multiprocessor architectures emerg-
ing as a practical alternative to a traditional single-CPU
architecture, tools support for performance/energy pro-
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filing and optimization is getting more important in
building efficient mobile embedded applications. In or-
der to efficiently utilize multiple cores on mobile em-
bedded systems, programmers need to understand the
power and performance characteristics of their pro-
grams in multiple levels (such as the per thread, per
core, and per function levels). Since multiprocessor-
based systems typically operate on top of an operat-
ing system, performance/power analysis of embedded
applications is almost impossible without an adequate
tools support.

Furthermore, as pointed out in [2], in multiproces-
sor-based embedded systems, automatic optimization
support is becoming more important because an ef-
ficient implementation often requires to explore a
large design space. For example, when several multi-
threaded applications are executed simultaneously, de-
termining the optimal number of threads for each co-
running application is a challenging task. Therefore, an
automatic optimization function should be an integral
part of a performance/power profiling tool for mobile
multiprocessor applications.

In this paper, we present ePRO-MP, which pro-
files and optimizes both performance and energy con-
sumption of multi-threaded applications for ARM11
MPCore-based embedded systems, satisfying the tools
requirements discussed above. The main contributions
of our work can be summarized as follows. First,
ePRO-MP provides both performance profiling and en-
ergy profiling for multi-threaded applications running
on embedded multiprocessors. Using ePRO-MP, pro-
grammers can achieve not only high-performance but
also low-energy consumption when developing paral-
lel programs. In addition, developers can find bottle-
necks easily because ePRO-MP presents the analysis
results in the program, thread, and function levels. Sec-
ond, ePRO-MP is based on a model-based energy pro-
filing approach which does not require an extra power
measurement equipment, thus making ePRO-MP more
accessible for average embedded programmers to an-
alyze power/energy consumption of their programs.
Finally, ePRO-MP supports a limited automatic opti-
mization function. In this paper, we demonstrate that
ePRO-MP can be effective in determining the number
of co-running threads for two multi-threaded applica-
tions. In this case study, the energy consumption and
execution time are improved by 4.1% and 6.1%, over
a baseline version respectively. We also use ePRO-
MP’s automatic optimization function to optimize a
producer-consumer application using a matrix multi-
plication program (as a producer) and a matrix trans-

pose program (as a consumer). In this example, ePRO-
MP explores two kinds of problem space: one for de-
termining the number of threads for the producer and
consumer and the other one for determining the tile
size for the matrix multiplication job (when a simple
tiling technique is applied). The experimental results of
this case study show that the energy consumption and
the execution time are improved by 43.3% and 60.5%,
over a baseline version respectively.

The rest of this paper is organized as follows. In
Section 2, we survey previous profiling tools and en-
ergy profiling techniques. Section 3 describes the over-
all architecture of the ePRO-MP tool. The performance
profiling module and energy profiling module are de-
scribed in detail in Sections 4 and 5, respectively. Sec-
tion 6 reports our experiences of using the automatic
optimization function with two examples. Finally, Sec-
tion 7 concludes with a summary and directions for fu-
ture works.

2. Related work

There have been several investigations on perfor-
mance or energy profiling for multi-threaded applica-
tions. SCALEA [13] presented a performance analysis
tool for distributed and parallel applications. SCALEA
instruments user programs running on SMP clusters
and finds the performance bottlenecks. PAPI [7] pro-
vides the tool designer and application programmer
with a consistent interface and methodology for using
the hardware performance counter supported in most
major microprocessors. PerfSuite [10] provides tools,
utilities, and libraries for software performance analy-
sis without extensive source code changes. In this pa-
per, ePRO-MP uses PAPI and PerfSuite by modifying
it for ARM11 MPCore. On the other hand, Hsu [9] an-
alyzed the power consumption of parallel programs on
the Beowulf cluster. This measurement-based profiling
can reduce the CPU power consumption. These exist-
ing tools for distributed and parallel applications, how-
ever, focus on either performance profiling or energy
profiling. In mobile embedded application, however,
the performance and the energy consumption should
be considered together.

Existing energy profiling techniques can be di-
vided into three groups: simulation-based techniques,
measurement-based techniques, and regression-based
modeling techniques. SimplePower [15] and Wattch [4]
are examples of the simulation-based approach. En-
ergy profiling using simulators is time consuming as
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well as inaccurate. The measurement-based approach
(e.g., ePRO [3] and SES [12]) profiles the energy con-
sumption of a target application using a power mea-
surement equipment. Although the accuracy of en-
ergy profiling can be significantly improved under the
measurement-based approach, this approach is usu-
ally not widely adopted among software developers
because it requires an expensive power measurement
equipment.

In order to produce accurate profiling results with-
out using a power measurement equipment, regression-
based modeling techniques were proposed for en-
ergy profiling. Contreras [6] proposed a power predic-
tion model for Intel PXA255 processors using hard-
ware performance counters. Through a linear regres-
sion analysis, the power model is estimated using five
performance events captured from hardware perfor-
mance counters. While this approach produces an ac-
curate result, it was limited to a single processor sys-
tem.

ePRO-MP is distinct from existing tools in several
aspects (as will be discussed later). ePRO-MP provides
both performance profiling and energy profiling, which
help developers build multi-threaded high-performance
applications with low-energy consumption. Especially,
to avoid the limitations of measurement-based tech-
niques, our tool extends a regression-based modeling
technique for energy profiling to multiprocessor-based
embedded systems.

3. Overview of ePRO-MP

An overall architecture of ePRO-MP is shown in
Fig. 1. ePRO-MP components are divided into 2 parts:
softwares which are executed in a target system and
an analysis part which can be deployed in any other
machine (host system). In the current implementation,
our target system is ARM11 MPCore [1] where four
ARMI1 cores are integrated on a single chip. For per-
formance monitoring, ARM11 MPCore supports vari-
ous types of hardware performance counters for each
core. By using the hardware performance counters of
each core, ePRO-MP estimates various performance
metrics such as the cache miss rate and IPC. In the tar-
get system, three logical modules are running: a target
application, an operating system, and a performance
profiling module. The target application is the program
to be profiled and in the current version, multi-threaded
parallel programs using the POSIX thread library are
assumed to be main target programs. For an OS, we
use Linux 2.6 for ARM11 MPCore which on the target
application is running. The Linux kernel was slightly
modified for performance profiling. However, it works
well when the kernel version is updated because only
a small part of the scheduler in the linux kernel should
be patched. The performance profiling module, which
collects performance data during runtime, is executed
with the target application. (We will describe this mod-
ule in detail in the next section.)

Once the target application completes its execution,
the collected performance data are transferred to a host
system for an analysis. The host side components of
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Fig. 1. An architectural overview of ePRO-MP.
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ePRO-MP includes six main modules: performance
and energy analyzer modules, graphical user interface
module, synchronization analyzer module, and auto-
matic optimization module. The collected performance
data is analyzed by two analyzers, performance ana-
lyzer and energy analyzer. The performance analyzer
classifies and arranges the performance profiling re-
sults. On the other hand, the energy analyzer applies
the energy model, which is developed offline (by fol-
lowing the procedure described in Section 5), to the
performance profiling data to estimate the energy con-
sumption. Both performance and energy consumption
analysis results are presented in multiple levels (e.g.,
the thread level and function level) so that developers
can identify bottlenecks in target applications. The cur-
rent version of ePRO-MP adopts the GUI of the Eclipse
platform. Users can profile the performance and energy
consumption of a target application easily by selecting
a profiling menu of GUI. As a hint for optimization of
multi-threaded applications, the synchronization ana-
lyzer module profiles the waiting times among coor-
dinating threads. Finally, the automatic optimization
module uses the feedback from the profiling results for
various optimizations.

4. Performance profiling module

Performance profiling depends on hardware per-
formance counters available in microprocessors. The
counter values are collected by a performance moni-
toring program which runs with a target application.
In order to make a performance monitoring process
portable across different target systems, we used a lay-
ered organization for the performance profiling mod-
ule. Specifically, two layers were added: one is the
hardware control driver layer and the other one is the
interface layer between the monitoring program and
the hardware control driver.

The hardware control driver is the lowest layer of
the performance profiling module. To allow user level
programs to access the hardware counters, the oper-
ating system should provide a device driver to initial-
ize, start, stop, and read the hardware counters. For
the hardware control driver, we adopted Performance
Monitoring Counters Driver [11], perfctr. Since perfctr
was not supported in ARM11 MPCore, we ported the
existing perfctr to ARM11 MPCore.

The interface layer provides an interface between
hardware control driver and the performance monitor-
ing program. For this layer, we ported PAPI to our mul-

tiprocessor target system. The performance monitor-
ing program, which runs with the target application, is
based on Perfsuite. When using this performance mon-
itoring program, users do not have to instrument their
code. After running the target application with the per-
formance monitoring program, the profiling result files
are created in the XML format. There is an overhead
due to the performance monitoring program because it
should run with a target application. However, it is less
than 1%, which is negligible.

5. Energy profiling module

ePRO-MP employs the regression-based modeling
approach for energy profiling. Although regression-
based energy models for single processors have been
proposed before, there have not been investigations
on regression-based energy models for multiprocessor
embedded systems. We extend the regression-based
energy model for single processor systems by adding
the characteristics which multiprocessor systems have,
such as the number of cache coherence transactions
and the number of shared L2 cache accesses. In this
section, we describe an energy model development
procedure based on the linear regression analysis,
which uses the performance hardware counter. Follow-
ing the proposed methodology, we derive an energy
model for ARM11 MPCore. As shown in Fig. 2, our
methodology consists of four main steps. After the en-
ergy model is developed offline, it can be used in the
energy analysis with performance profiling data.

Random program generation: In order to build
an energy model that can accurately predict the en-

Random Program Generation

y

Automatic Run of Random Programs

\'4
Model Generation
Using Regression Analysis

\4
Model Verification

Fig. 2. A procedure for deriving an energy model.
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ergy consumption of an arbitrary program based on
hardware performance counters, we generate various
random test programs with different execution char-
acteristics (e.g., memory-intensive programs, CPU-
intensive programs). A random test program is gen-
erated by combining several basis program segments.
The basis program segments represent different pro-
gram execution behaviors. In the current version, there
are 30 basis program segments. In the current version
of ePRO-MP, about 200 random test programs were
generated to build an energy model.

Automatic run of random programs: In this step,
training data for regression analysis are produced by
executing the random programs generated by the ran-
dom program generator. Because we do not know an
exact regression model yet, all the hardware perfor-
mance counters are collected at this step. At the same
time, the energy consumption value is gathered from
a power measurement equipment. (Note that a power
measurement equipment is necessary only for this step.
Once the energy model is constructed, when ePRO-
MP is used by developers, there is no need for a power
measurement equipment.) Figure 3 shows the setup for
this step using NI DAQ-6016. We have used a script to
automate the measurement and collection tasks.

Model generation using regression analysis: Regres-
sion analysis is applied to the training data gathered
in the previous step. While multiprocessors can sup-
port various hardware performance counters, not all
the performance events are related with the energy
consumption of the processors. In order to construct
a linear regression model, we start with a very gen-
eral linear model that includes all the hardware perfor-
mance counters. Using the model adequacy test of re-
gression analysis, we eliminate those hardware perfor-
mance counters that are not significantly related to en-
ergy consumption. For the current implementation, five
performance events, the number of instructions (Instr),
the number of L1 data cache accesses (DLIAccess), the
number of L2 cache accesses (L2Access), the number
of stall cycles due to data dependency (DataDep), and
the number of coherence transactions (cohTrans), are
selected for our power model. That is, the power model
for ARM11 MPCore is given as follows:

Power = A x (Instr/time)
+ B x (DL1Access/time)
+ C x (L2Access/time)
+ D x (DataDep/time)
+ E x (CohTrans/time) + Feops. (1)

Fig. 3. A setup for power measurement and performance data collec-
tion.

Table 1
Coefficients values of our power model
Performance Coefficient Performance Coefficient
event event
Instr 2.56E—07 DataDep —3.97E-07
DLIAccess 9.32E—07 CohTrans —1.99E—07
L2Access 2.76E—05 Const 7.89E+4-02

We have used SAS9 Enterprise Miner to derive the
energy model. Table 1 lists five coefficients values of
the power model 1. In order to compute the energy
consumption of a thread running on a single core, we
use % X Feonst @s a constant term in Eq. (1), assuming
that all four ARM11 cores contribute equally to Fiq;s;.
Other performance counter values are all collected per
core basis. Note that we cannot measure the power con-
sumption of each core because our current target sys-
tem, ARM11 MPCore, provides only a power probe to
measure the entire chip power consumption.

Model verification: The derived model should pre-
dict the energy consumption of arbitrary programs with
different characteristics. To evaluate our energy model,
we verified our power model using several benchmark
programs as well as the random test programs used in
the model generation step. Figure 4 shows the com-
parison results of the average measured power (by NI
power measurement equipment) and predicted power
(by our power model) for six SPLASH-2 benchmark
programs [14] and two sorting algorithms. As shown
in Fig. 4, our model is very accurate. The average pre-
diction error was less than 2% while the maximum pre-
diction error was 4.9% for the Quick sorting algorithm.
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Fig. 4. Comparison results of measured power and predicted power.

6. Profile-based automatic optimizer

As the number of cores and the number of threads
increase, supporting automatic optimization becomes
more important because an optimization problem
space becomes often too complex for average pro-
grammers to deal with efficiently. ePRO-MP sup-
ports a couple of automatic optimizations to relieve
the programmers’ burden of time-consuming opti-
mization problems. Targeting multi-threaded applica-
tions, we focus on two particular situations for auto-
matic optimizations. First, we consider when several
multi-threaded applications run simultaneously. (For
example, reading/editing multimedia messages while
browsing/processing digital pictures could be such a
case.) Since co-running applications and their threads
share system resources such as shared L2 cache and
memory, often competing with each other, determining
the number of threads optimally for each co-running
multi-threaded program has a large implication on the
overall system performance. One important require-
ment is to minimize the interference among competing
applications for the shared resources. Second, we con-
sider when a single multi-threaded application is ex-
pected to run alone. In this case, interactions/load bal-
ancing among co-running threads affect the overall ap-
plication performance significantly, especially at syn-
chronization points among the co-running threads. In
this paper, we focus on the producer-consumer rela-
tionship among the threads, which is one of the most
commonly used parallel implementation models used
in implementing multi-threaded applications.

In this section, we describe ePRO-MP’s restricted
automatic optimization function using two examples:
co-running applications optimization and producer-
consumer application optimization.

6.1. Co-running applications optimization

In this section, we discuss the optimal thread al-
location problem for two multi-threaded applications,
matrix multiplication (MM) and insertion sort (IS) as
one example of co-running applications. We assume
that the baseline thread allocation policy to assign
is four threads per each program, because program-
mers usually parallelize their programs into the max-
imum number of physical cores (in our target sys-
tem, which is four) to fully exploit the available cores.
When 4-threaded MM and 4-threaded IS are executed
simultaneously, the profiled performance and the en-
ergy consumption results are shown in Fig. 5 using the
ePRO-MP’s thread level GUI. The block A indicates
the four threads of MM while the block B indicates
the four threads of IS. The total energy consumption is
1,155,528 mJ which is computed by summing up the
values in the Energy column.

Our automatic optimizer tries to find a near-optimal
number of threads using a simple heuristic. Starting
from using one thread for each program, the optimizer
increments the number of threads by one at a time and
executes the applications. After each execution, using
the profiled data, the automatic optimizer compares the
performance or the energy consumption of the current
application with the previous execution. When there is
no more improvement in both the performance and the
energy consumption, the optimizer stops searching and
finally compares the current optimal profiling informa-
tion with that of the baseline (4,4). Figure 6 illustrates
the problem space and its exploration orders of the op-
timizer. The pairs and the arrows indicate the number
of threads of each co-running program and exploration
orders, respectively. In this example, the search stops
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Fig. 5. Profiling result of (4, 4) thread allocation.
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Fig. 6. Problem space of our case study.

after eight different configurations were executed. The
asterisked pair, three threads for MM and one thread
for IS, is the near-optimal number of threads deter-
mined by the optimizer.

Figure 7 shows the result of the automatic optimiza-
tion when three threads are used for MM and one
thread for IS. Over the baseline (4,4) configuration,
the (3, 1) thread configuration for MM and IS improves
the total execution time by 6.1% and reduces the to-
tal energy consumption by 4.1%. Although the energy
improvement is less than the maximum prediction er-
ror 4.9%, the prediction error for Matrix Multiplica-
tion and Insert Sorting is much less around 1%, which
makes the energy improvement meaningful.

Furthermore, in order to better understand why (3, 1)
configuration worked better than (4,4) configuration,
we profiled the performance and the energy consump-
tion of each application alone by changing the num-
ber of threads from one to four. From the analysis re-
sults, we found two interesting trends. Multi-threaded
MMs show better performance and energy consump-
tion than a single-threaded MM. Because a matrix

array is shared among multiple threads in MM, the
higher the number of threads in MM is, the higher the
L2 cache hit ratio is in general. On the other hand, IS
is not sensitive to the number of threads because each
thread sorts its local array with little sharing of the
data among different threads. Therefore, increasing the
number of threads for MM and decreasing the number
of threads for IS generally improves the energy con-
sumption. The other finding is that the speedup of pro-
grams is bounded by the number of cores not threads.
For four cores of ARM11 MPCore, the four threads,
three for MM and one for IS, are sufficient.

6.2. Producer-consumer application optimization

In this section, we describe the automatic optimiza-
tion support for producer-consumer applications. As
pointed out in [8], for high-performance producer-
consumer applications, an efficient implementation of
synchronization between the producer and consumer
is critical. (For example, if a consumer is much faster
than the corresponding producer, the consumer spends
a large number of cycles waiting for the results of the
producer, thus wasting a significant amount of energy
as well as the CPU cycles.) In multiprocessor embed-
ded systems, the waiting times and the total execution
time can be reduced by allocating different number of
threads for the producer and consumer and balancing
the speed of the producer and consumer. As the num-
ber of cores as well as the number of producers and
consumers increase, determining the optimal number
of threads for the producer and consumer becomes a
challenging task.

Furthermore, achieving the high speed of each
thread itself can lead to the high-performance applica-
tion. For example, if there is a matrix multiplication
job as either the producer or consumer, finding the op-
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Fig. 7. Profiling result of (3, 1) thread allocation.

timal size of the matrix tile can improve the cache ef-
ficiency, thus achieving high performance and low en-
ergy consumption. (Tiling [5] is a cache-aware opti-
mization technique which divides the entire matrix into
small matrices that fit better with the cache size, thus
reducing the number of cache misses significantly.)
Finding the optimal tile size (that maximizes the num-
ber of cache hits) also requires to explore another large
problem space. The ePRO-MP’s automatic optimizer
can help programmers find the near-optimal number of
threads for the producer and consumer and the tile size
for the matrix multiplication job.

As a case study, we executed a producer-consumer
application using a matrix multiplication task (MM)
as a producer and a matrix transpose task (MT) as a
consumer. To apply two optimization strategies dis-
cussed above, the application was implemented to sup-
port multiple threads (for the thread allocation prob-
lem) and different tile sizes (for the tile size selection
problem). We assume that the baseline configuration
is (2,2) thread allocation without the tiling technique
used. When programmers do not know the speed bal-
ance in advance between the producer and consumer,
they might start the optimization from allocating the
same number of threads to each side.

Our automatic optimizer tries to find the near-
optimal number of threads for MM and MT and the
near-optimal tile size for MM using a simple heuristic
shown in Fig. 8. At first, the automatic optimizer starts
to find the near-optimal number of threads for the pro-
ducer and the consumer. After the application with the
(1, 1) thread allocation is executed, the waiting times
of both the producer and consumer are calculated us-
ing the synchronization analyzer. If the waiting time of
the consumer is longer than that of the producer, the
speed of the producer should be increased (by allocat-
ing more threads) to reduce the waiting time of the con-
sumer, and vice versa. We call a task 7,,, when the
task (7g,,) makes other tasks wait. Starting from one

thread, the optimizer increments the number of threads
for 7,,, by one at a time and executes the applications.
After each execution, the performance or the energy
consumption is profiled and compared with the previ-
ous execution. When there is no more improvement in
the performance and the energy consumption, for the
second problem space exploration, the optimizer tries
to find the near-optimal tile size for the matrix multi-
plication job. Starting from the original matrix size as
the tile size, the optimizer decrements the tile size by
% of the original matrix size at a time and executes it
(with the thread allocation determined in the first prob-
lem space exploration). The variable n, initially set to
two, is incremented by one at a step. After each ex-
ecution, the performance or the energy consumption
is profiled and compared with the previous execution.
When there is no more improvement, the optimizer ex-
plores repeatedly the thread allocation problem space
for the producer and consumer because the exploration
result from the tile size selection problem can make
other thread configurations better. If there is no change
in the thread allocation, the optimizer stops searching
and finally outputs the number of threads and the tile
size for the target application. In case of the MM-MT
application, because MM was much slower than MT,
MM was decided to be 7,,. The more threads were
allocated to MM, the better performance and energy
consumption was measured until the (4, 1) thread con-
figuration. From 500 x 500 to 100 x 100 for the tile
size (the baseline tile size is same as the original matrix
size, 500 x 500), the performance and the energy con-
sumption were getting better. When the tile size was
less 100 x 100, the performance and the energy con-
sumption started to be degraded and the exploration
was finished.

The performance and the energy consumption re-
sults of our case study are shown in Fig. 9. The re-
sults are normalized to the baseline (2, 2) thread allo-
cation without the tiling technique because program-
mers might start the optimization from allocating same
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INPUT: Target Application (TA) (e.g., multi-threaded MM-MT), Original Matrix Size

OUTPUT: Best Alloc. & Best Tile Size

1: Best Alloc. = (1,1)

2: Measure Perf./Energy of TA with (1,1) thread allocation (baseline execution)
3

4: If (WaitTimeProducer < WaitTimeConsumer) Tsiow = Producer

5: else Tgow = Consumer

6: While (true)

7 Current Alloc. = Allocate one more thread to Tgjoy,

8: Measure Perf ./Energy with Current Alloc.

9: if (Current Alloc. is better Perf ./Energy than Best Alloc.) Best Alloc. = Current Alloc.
10: else if (PrevDecidedAlloc == Best Alloc.) Goto 25.

11: else break

12:

13: PrevDecidedAlloc = Best Alloc.

14: Best Tile Size = Original Matrix Size

15: SizeAdjuster = 1

16: Measure Perf ./Energy with Best Alloc. & Best Tile Size

17: While (true)

18: While (true)

19: SizeAdjuster ++

20: Current Tile Size = Original Matrix Size / SizeAdjuster

21: if (Original Matrix Size % SizeAdjuster == 0) break

22: Measure Perf ./Energy with Best Alloc. & Current Tile Size

23: if (Current Tile Size is better than Best Tile Size) Best Tile Size = Current Tile Size
24: else Goto 3.

25: Return OUTPUT

Fig. 8. ePRO-MP’s Heuristic for optimizing MM-MT application.

M Execution Time

W Energy Consumption

200
180

160
140

120
100

80
60
40
20

MT(1)

MM(4) 100x100
Tiling

Fig. 9. Optimization result of MM-MT application.

number of threads to each when the programmers do
not know the producer and the consumer’s loads. Ex-
ploring only thread allocation problem space, the (4, 1)
thread configuration for MM and MT improves the
total execution time by 43.5% and reduces the en-
ergy consumption by 26.8%. After the near-optimal
tile size is determined, the performance and the en-
ergy consumption are further improved by 17% and
16.5%, respectively. By allocating three more threads
to MM from the (1, 1) thread allocation, MM’s produc-
ing speed and MT’s consuming speed were balanced.
Howeyver, because one more thread allocation for MM
(the (5, 1) thread allocation) makes MM’s speed faster
than MT’s speed and the entire six threads are not ef-

ficiently scheduled to get the four physical cores, the
execution time and the energy consumption start to in-
crease. For the tile size, when the tile size close to the
L1 cache size was used, its performance was the best.

7. Conclusions

We described ePRO-MP, an energy and performance
profiler and optimizer for embedded multiprocessors.
ePRO-MP provides both energy profiling information
and performance profiling information that can be
important in developing high-performance and low-
energy embedded multi-threaded applications. One of



294 W. Choi et al. / ePRO-MP

main strengths of ePRO-MP is that ePRO-MP can ac-
curately estimate the energy consumption of multi-
threaded applications without using extra power mea-
surement equipments. Furthermore, we demonstrated
the usefulness of ePRO-MP’s automatic optimization
capability using the thread allocation problem of two
co-running multi-threaded applications. Experimental
results show that we can improve the performance and
the energy consumption over the baseline thread allo-
cation by 6.1% and 4.1%, respectively. We also use the
optimizer for optimizing a producer-consumer appli-
cation where there is a matrix multiplication job as ei-
ther the producer or consumer. After the optimizer de-
termined the number of threads for both the producer
and consumer and the tile size for the matrix multipli-
cation job, the execution time and the energy consump-
tion were reduced by 60.5% and 43.3%, respectively.
Although the current version of ePRO-MP can be
useful in building efficient multi-threaded embedded
applications, it can be extended in several directions.
First, we plan to implement different kinds of multi-
processor task schedulers in the Linux running on the
target system. The default task scheduler used by the
current version of ePRO-MP limits the improvement of
the performance and the energy consumption because
the critical performance factors such as the cache effi-
ciency and waiting times among threads are affected by
the scheduling policy as well as the program efficiency
itself. Based on the profiled characteristics of the target
application, if ePRO-MP can select the best task sched-
uler for it, the performance or the energy consumption
can be more improved. We also plan to develop a more
fine-grained automatic optimizer that can work on the
compiler option level. For example, we are interested
in finding compiler options for given multi-threaded
applications that can generate binary executable with
the lowest power/energy consumption, possibly em-
ploying different compiler options for each thread.
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