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BLOW UP FOR THE WAVE EQUATION WITH
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Abstract. We consider the wave equation with a fractional damping
of order between 0 and 1 and a polynomial source. Introducing a new
functional and using an argument due to Georgiev and Todorova [1] to-
gether with some appropriate estimates, it is proved that some solutions
blow up in finite time.

1. Introduction

We are concerned by the following integro-differential problem
utt + ∂1+α

t u = ∆u+ a |u|p−1 u, x ∈ Ω, t > 0
u(x, t) = 0, x ∈ ∂Ω, t > 0
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω

(1)
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where Ω is a bounded domain of RN with smooth boundary ∂Ω. The
functions u0(x) and u1(x) are given. The constants a, p and α are such that
a > 0, p > 1 and −1 < α < 1. The notation ∂1+α

t stands for the Caputo’s
fractional derivative of order 1 + α with respect to the time variable (see
[6]). It is defined as follows

∂1+α
t w(t) := I−α

d

dt
w(t) for − 1 < α < 0

and

∂1+α
t w(t) := I1−α d

2

dt2
w(t) for 0 < α < 1,

where Iβ, β > 0 is the fractional integral

Iβw(t) :=
1

Γ(β)

t∫
0

(t− s)β−1w(s)ds.

See also [5] and [7] for more on fractional integrals and derivatives.
Fractional integrals and derivatives are used to describe memory and

hereditary properties of various materials and processes. They have wide
applications in physics, chemistry, biology, ecology, . . . etc., see [5]–[7] and
references therein.

The present problem (with a = 0) has been studied by Matignon et al.
in [3]. The authors proved some results on well posedness and asymptotic
stability. It should be noted here that the direct application of the existing
methods for this case poses some difficulties due to the dependence of the
solution on the whole past history and the nature of the kernel in the time
convolution term. This kernel is not only singular but also non-integrable on
(0,+∞). To get rid of this nonlocal term, the authors managed to transform
the problem from a hereditary problem to a non-hereditary one and then
used the standard methods available in the literature.

This paper is a continuation of earlier works by the second author (see
[2], [8], [9]). In [2], we proved (with M. Kirane) an exponential growth
result (for any power of the polynomial source) provided that the initial
data are sufficiently large, in fact, for very large initial data. Then this
result has been improved, using a new argument, to a wide set of initial
data in [8]. In [9], using an argument involving Fourier transforms and the
Hardy-Littlewood-Sobolev inequality, we proved a finite time blow up of
solutions. Namely, the result was that, for any fixed time T > 0, there exist
0 < T ∗ ≤ T and sufficiently large initial data (depending on T ) for which u
blows up at T ∗. One of the main difficulties encountered is that the “energy”
functional is not necessarily decreasing (in time). Indeed, the derivative of
the “energy” associated to the problem is of an undefined sign. Here we
shall prove finite time blow up without the dependence of the initial data
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on the time variable T . For this goal, we introduce a new functional which
“controls” some “undesirable” terms that appear while using the Georgiev
and Todorova [1] argument (see also Messaoudi [4]). We mention here that,
combining ideas of Matignon et al. [3] and Georgiev and Todorova [1], we
obtain the following local existence result

Theorem. Suppose that p > 1 if N = 1 or 2 and p ≤ N/(N − 2) if N ≥ 3.
For every initial data (u0, u1) ∈ H1

0 (Ω) × L2(Ω), there is T > 0 and a
unique weak solution (u(t), v(t)) of (1) such that u ∈ C

(
[0, T );H1

0 (Ω)
)
∩

C1
(
[0, T );L2(Ω)

)
and v ≡ ut ∈ L2 ((0, T )× Ω).

The paper is organized as follows:
In the next section, we prepare some material that we shall need to prove

our result. Section 3 contains the statement and proof of our result.

2. Preliminaries

In this section we present some definitions and introduce some functionals
needed to prove our theorem. In addition, we prove a crucial proposition
for our result. Without loss of generality, we will take a = 1 in the whole
paper. Furthermore we will consider only the case −1 < α < 0. The
classical energy functional associated to problem (1) is

E(t) :=
∫
Ω

{
1
2
u2
t +

1
2
|∇u|2 − 1

p+ 1
|u|p+1

}
dx. (2)

Clearly,

dE(t)
dt

= − 1
Γ(−α)

∫
Ω

ut

t∫
0

(t− s)−(α+1)ut(s)dsdx.

Note that this derivative is of an undetermined sign. Let us define the
“modified” energy functional by

Eε(t) := E(t)− ε
∫
Ω

utudx (3)

for some 0 < ε < 1 to be determined later. Then a differentiation of (3)
gives

E
′
ε(t) = − 1

Γ(−α)

∫
Ω

ut

t∫
0

(t−s)−(α+1)us(s)dsdx−ε
∫
Ω

u2
tdx+ε

∫
Ω

|∇u|2 dx
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+
ε

Γ(−α)

∫
Ω

u

t∫
0

(t− s)−(α+1)us(s)dsdx− ε
∫
Ω

|u|p+1 dx. (4)

Note here (see the theorem in the introduction) that the solutions are weak,
that is

d

dt
(v(t), w)2 +

(
∂α+1
t u(t), w

)
2 + (∇u(t),∇w)2 =

(
|u|p−1 u(t), w

)
2

a.e. in (0, T ) and every w ∈ H1
0 (Ω). Therefore, since we are dealing with

the energy of the system and the multiplier technique, formula (4) and all
the computation below are justified. In particular, as ut ∈ L2 ((0, T )× Ω),
the scalar product of ∂α+1

t u(t) with any w ∈ L2(Ω) is well defined. Next,
we introduce the functional

H(t) := −
(
e−σεtEε(t) + µF (t) + d

)
(5)

where

F (t) :=

t∫
0

∫
Ω

G(t− s)e−σεsu2
sdxds (6)

with

G(t) := eβt
+∞∫
t

e−βss−(α+1)ds. (7)

Here, σ = (p+ 1)/2 and d, µ, β are positive constants that will be precised
below.

Proposition 1. If Eε(0) < 0 and p is sufficiently large, then H(t) > 0 and
H
′
(t) > 0.

Proof. A differentiation of (4) with respect to t yields

H
′
(t) = σεe−σεtEε(t)− e−σεtE

′
ε(t)− µF

′
(t).

Taking into account the definitions (2) and (3), the relation

F
′
(t) =βαΓ(−α)e−σεt

∫
Ω

u2
tdx+ βF (t)

−
t∫

0

∫
Ω

(t− s)−(α+1)e−σεsu2
sdxds
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and (4), we get

H
′
(t) =

[σε
2

+ ε− µβαΓ(−α)
]
e−σεt

∫
Ω

u2
tdx− σε2e−σεt

∫
Ω

utudx

+
(σε

2
− ε
)
e−σεt

∫
Ω

|∇u|2 dx+
(
ε− σε

p+ 1

)
e−σεt

∫
Ω

|u|p+1 dx

+
e−σεt

Γ(−α)

∫
Ω

ut

t∫
0

(t− s)−(α+1)us(s)dsdx

− εe−σεt

Γ(−α)

∫
Ω

u

t∫
0

(t− s)−(α+1)us(s)dsdx

+ µ

t∫
0

∫
Ω

(t− s)−(α+1)e−σεsu2
sdxds− µβF (t). (8)

By the Young inequality, we see that

∫
Ω

ut

t∫
0

(t− s)−(α+1)us(s)dsdx

≤ δ1

∫
Ω

u2
tdx+

1
4δ1

∫
Ω

 t∫
0

(t− s)−(α+1)us(s)ds

2

dx, δ1 > 0.

Writing −(α+ 1) = −(α+ 1)/2− (α+ 1)/2 and using the Cauchy-Schwarz
inequality, we find

e−σεt
∫
Ω

ut

t∫
0

(t− s)−(α+1)us(s)dsdx (9)

≤ δ1e
−σεt

∫
Ω

u2
tdx+

(σε)αΓ(−α)
4δ1

∫
Ω

t∫
0

(t− s)−(α+1)e−σεsu2
sdsdx.

Similarly, with the help of the Poincaré inequality, we obtain

e−σεt
∫
Ω

u

t∫
0

(t− s)−(α+1)us(s)dsdx ≤ δ2Cpe
−σεt

∫
Ω

|∇u|2 dx
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+
(σε)αΓ(−α)

4δ2

∫
Ω

t∫
0

(t− s)−(α+1)e−σεsu2
sdsdx, δ2 > 0 (10)

where Cp is the Poincaré constant. Now from (9), (10) and∫
Ω

utudx ≤ δ3Cp

∫
Ω

|∇u|2 dx+
1

4δ3

∫
Ω

u2
tdx δ3 > 0 (11)

we infer from (8) that

H
′
(t) ≥

[
σε

2
+ ε− µβαΓ(−α)− σε2

4δ3
− δ1

Γ(−α)

]
e−σεt

∫
Ω

u2
tdx

+
[
σε

2
− ε− σε2δ3Cp −

εδ2Cp
Γ(−α)

]
e−σεt

∫
Ω

|∇u|2 dx

+ ε

(
1− σ

p+ 1

)
e−σεt

∫
Ω

|u|p+1 dx− µβF (t) (12)

+
[
µ− (σε)α

4δ1
− ε(σε)α

4δ2

] t∫
0

∫
Ω

(t− s)−(α+1)e−σεsu2
sdxds.

Adding and substracting C1H(t) to the right hand side of (12) we obtain

H
′
(t)≥C1H(t)+

[
C1

2
+
σε

2
+ ε− µβαΓ(−α)− σε2

4δ3
− δ1

Γ(−α)

]
(13)

× e−σεt
∫
Ω

u2
tdx+

[
C1

2
+
σε

2
− ε− σε2δ3Cp −

εδ2Cp
Γ(−α)

]
e−σεt

∫
Ω

|∇u|2 dx

− C1εe
−σεt

∫
Ω

utudx+
[
ε

(
1− σ

p+ 1

)
− C1

p+ 1

]
e−σεt

∫
Ω

|u|p+1 dx+ C1d

+(C1 − β)µF (t)+
[
µ− (σε)α

4

(
1
δ1

+
ε

δ2

)] t∫
0

∫
Ω

(t− s)−(α+1)e−σεsu2
sdxds.

We apply inequality (11) to the fourth term in the right hand side of (13)
and choose C1 = (p+ 1)/2ε, δ1 = δ2 = Γ(−α)ε/2 and δ3 = 1/2 to get

H
′
(t) ≥p+ 1

2
εH(t) +

[ε
2
− µβαΓ(−α)

]
e−σεt

∫
Ω

u2
tdx

+
ε

2
[p− 1− (p+ 2)Cpε] e−σεt

∫
Ω

|∇u|2 dx+
(
p+ 1

2
ε− β

)
µF (t)
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+
[
µ− (p+ 1)αεα

21+α

(
1
ε

+ 1
)] t∫

0

∫
Ω

(t− s)−(α+1)e−σεsu2
sdxds.

Selecting

ε < ε1 := min
(

1,
p− 1

2(p+ 2)Cp

)
we see that the coefficient of the third term in the right hand side of the
previous relation is greater than (p − 1)ε/4. Observe that if Cp < 1/2
and p ≥ 1+4Cp

1−2Cp , then (p− 1)/[2(p+ 2)Cp] ≥ 1 and this condition reduces
to ε < 1 which is already in the definition (3). Next, putting β = 1 and
assuming that p + 1 ≥ (2/ε)1−2/α, it appears that the fourth coefficient is
nonnegative. If Cp ≥ 1/2, then (p− 1)[2(p+ 2)Cp] < 1 and we may easily
check that both assumptions are satisfied for sufficiently larges values of p.
Moreover, we can choose µ so that the second coefficient is nonnegative and
the last coefficient is greater than (p+1)α/

[
21+αΓ(−α)ε1−α]. Consequently,

we find

H
′
(t) ≥p+ 1

2
εH(t) +

p− 1
4

εe−σεt
∫
Ω

|∇u|2 dx (14)

+
(p+ 1)α

21+αΓ(−α)ε1−α

t∫
0

∫
Ω

(t− s)−(α+1)e−σεsu2
sdxds.

This relation will be of great help in the proof of the result in the next
section. If we select d < −Eε(0), then H(0) > 0. Observe then, as a
consequence of (14), that H(t) > 0 and H

′
(t) > 0.

3. The theorem

In this section, we prove our theorem which ensures blow up of solutions
provided that the initial energy is negative.

Theorem 1. Assume that −1 < α < 0, E(0) < 0 and
∫

Ω u1u0dx ≥ 0.
Then the solutions of (1) blow up in finite time for sufficiently large values
of p.

Proof. Let us define

Q(t) := H1−γ(t) + be−σεt
∫
Ω

utudx
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where γ = p− 1/[2(p+ 1)] and b is a positive constant to be determined. A
differentiation of Q(t) with respect to t yields

Q
′
(t) = (1− γ)H−γ(t)H ′(t)− bσεe−σεt

∫
Ω

utudx+ be−σεt
∫
Ω

u2
tdx

+be−σεt

−
∫
Ω

|∇u|2 dx− 1
Γ(−α)

∫
Ω

u

t∫
0

(t−s)−(α+1)us(s)dsdx+
∫
Ω

|u|p+1 dx

.
Using (11) and (10) (without the Poincaré inequality for the first term) with
the constants δ4 > 0 and δ5 > 0 respectively, we find

Q
′
(t) ≥ (1− γ)H−γ(t)H ′(t)− b (1 + δ4Cpσε) e−σεt

∫
Ω

|∇u|2 dx

+ b

(
1− σε

4δ4

)
e−σεt

∫
Ω

u2
tdx+ be−σεt

∫
Ω

|u|p+1 dx− bδ5

Γ(−α)
e−σεt

∫
Ω

u2dx

− b2α−1σαΓ(−α)ε
δ5(p+ 1)α

H ′(t) +
bσα2α−2Γ(−α)ε2

δ5(p+ 1)α−1 H(t)

+
b2α−3σαΓ(−α)(p− 1)ε2

δ5(p+ 1)α
e−σεt

∫
Ω

|∇u|2 dx. (15)

In the last relation (15) we also made use of the inequality (14). Then

Q
′
(t) ≥

[
(1− γ)H−γ(t)− b2α−1σαΓ(−α)ε

δ5(p+ 1)α

]
H ′(t) +

bσα2α−2Γ(−α)ε2

δ5(p+ 1)α−1 H(t)

− b
[
1 + δ4Cpσε−

2α−3σαΓ(−α)(p− 1)ε2

δ5(p+ 1)α

]
e−σεt

∫
Ω

|∇u|2 dx

+ b

(
1− σε

4δ4

)
e−σεt

∫
Ω

u2
tdx

+ be−σεt
∫
Ω

|u|p+1 dx− bδ5

Γ(−α)
e−σεt

∫
Ω

u2dx. (16)

Next we pick δ5 = MHγ(t) and add and substract the same term H(t) to
both sides of (16) to obtain

Q
′
(t) ≥

[
(1− γ)− b2α−1σαΓ(−α)ε

M(p+ 1)α

]
H−γ(t)H ′(t)

+
[
1 +

bσα2α−2Γ(−α)ε2

δ5(p+ 1)α−1

]
H(t)
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+
[

1
2

+
b2α−3σαΓ(−α)(p− 1)ε2

M(p+ 1)α
H−γ(t)− b(1 + δ4Cpσε)

]
e−σεt

∫
Ω

|∇u|2 dx

+ µF (t) +
[

1
2

+ b

(
1− σε

4δ4

)]
e−σεt

∫
Ω

u2
tdx− εe−σεt

∫
Ω

utudx+ d

+
(
b− 1

p+ 1

)
e−σεt

∫
Ω

|u|p+1 dx− bM

Γ(−α)
e−σεtHγ(t)

∫
Ω

u2dx. (17)

The term
∫

Ω utudx is estimated by the Young inequality as in (11). As
for the term Hγ(t)

∫
Ω |u|

2 dx we adopt the estimation,

Hγ(t)
∫
Ω

|u|2 dxds ≤ C2

(p+ 1)γ

1 +
∫
Ω

|u|p+1 dx

 .

This follows from the definition (5) of H(t) and the fact that

ε < ε1 := min
(

1,
p− 1

2(p+ 2)Cp

)
.

Indeed, from (5) we have

H(t) ≤ 1
p+ 1

∫
Ω

|u|p+1 dx+

ε∫
Ω

utudx−
1
2

∫
Ω

|ut|2 dx−
1
2

∫
Ω

|∇u|2 dx

 .

As ε < min (1, (p− 1)/[2(p+ 2)Cp]) (in fact, here we need ε <
min (1, 1/Cp)) and using inequality (11) with δ3 = 1/2 we find H(t) ≤
1/(p+ 1)

∫
Ω |u|

p+1 dx. By Hölder’s inequality we see that

Hγ(t)
∫
Ω

|u|2 dxds ≤ C2

(p+ 1)γ

∫
Ω

|u|p+1 dx

γ∫
Ω

|u|p+1 dx

2/(p+1)

or

Hγ(t)
∫
Ω

|u|2 dxds ≤ C2

(p+ 1)γ

∫
Ω

|u|p+1 dx

γ+2/(p+1)

,

for some positive constant C2. As γ + 2/(p+ 1) = (p+ 3)/[2(p+ 1)] < 1, it
is clear that

Hγ(t)
∫
Ω

|u|2 dxds ≤ C2

(p+ 1)γ

1 +
∫
Ω

|u|p+1 dx

 . (18)
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Taking into account (11) (with δ6 > 0) and (18) in (17) we may write

Q
′
(t) ≥

[
(1− γ)− b2α−1σαΓ(−α)ε

M(p+ 1)α

]
H−γ(t)H ′(t)

+
[
1 +

bσα2α−2Γ(−α)ε2

δ5(p+ 1)α−1

]
H(t)

+
[

1
2

+
b2α−3σαΓ(−α)(p− 1)ε2

M(p+ 1)α
H−γ(t)− b(1 + δ4Cpσε)− δ6Cpε

]
× e−σεt

∫
Ω

|∇u|2 dx+
[

1
2

+ b

(
1− σε

4δ4

)
− ε

4δ6

]
e−σεt

∫
Ω

u2
tdx

+ d− bMC2

Γ(−α)(p+ 1)γ
+ µF (t)

+
[
b− 1

p+ 1
− bMC2

Γ(−α)(p+ 1)γ

]
e−σεt

∫
Ω

|u|p+1 dx.

The first coefficient is nonnegative as soon as ε is chosen small enough,
namely

ε ≤ ε2 :=
M(1− γ)(p+ 1)γ

b2α−1σαΓ(−α)
.

We pick b = (p+ 3)/[4(p+ 1)], δ4 = δ6 = 1/2 and ε ≤ ε3 :=
4(p− 1)/[(p+ 11)2Cp]. It follows that the coefficient of

∫
Ω |∇u|

2 dx is also
nonnegative. If we further impose ε < ε4 := 4(p+ 3)/[(p+ 11)2], then the
coefficient of

∫
Ω u

2
tdx is positive. In fact, it is greater than 1/2. Next,

assuming that

M <
Γ(−α)(p+ 1)γ

(p+ 3)C2]
min{4d(p+ 1),

p− 1
2
},

we infer that the coefficient of
∫

Ω |u|
p+1 dx is bigger than p− 1/[8(p+ 1)]

and the term d − bMC2[Γ(−α)(p+ 1)γ ] is nonnegative. Consequently, for
ε < min {εi : i = 1, 2, 3, 4} we get

Q
′
(t) ≥ H(t) +

1
2

∫
Ω

u2
tdx+

p− 1
8(p+ 1)

∫
Ω

|u|p+1 dx. (19)

On the other hand, from the definition of Q(t), we have

Q(t)
1

1−γ ≤ 2
1

1−γ

H(t) + b
1

1−γ

∫
Ω

|uut| dx

1/(1−γ)
 . (20)
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Furthermore, by the Cauchy-Schwarz inequality and Hölder’s inequality∫
Ω

|uut| dx

1/(1−γ)

≤


∫

Ω

u2dx

1/2

.

∫
Ω

u2
tdx

1/2


1/(1−γ)

≤ C(|Ω| , p)

∫
Ω

|u|p+1 dx

1/[(p+1)(1−γ)]

.

∫
Ω

u2
tdx

1/[2(1−γ)]

.

By our choice of γ, we have 2(1− γ) > 1. Therefore, we can apply Young’s
inequality and once again Hölder’s inequality to get∫

Ω

|uut| dx

1/(1−γ)

≤ B


∫
Ω

u2
tdx+

∫
Ω

|u|p+1 dx

2/[(p+1)(1−2γ)]


for some B = B(|Ω| , p, γ) > 0. But from the value of γ, we see that the
exponent 2/[(p+ 1)(1− 2γ)] = 1. Hence, taking into account this estimate
in (20), we entail

Q(t)1/(1−γ) ≤ 21/(1−γ)

H(t) + b1/(1−γ)B

∫
Ω

u2
tdx+

∫
Ω

|u|p+1 dx

 .

We will arrive at

Q(t)1/(1−γ) ≤ K

H(t) +
1
2

∫
Ω

u2
tdx+

p− 1
8(p+ 1)

∫
Ω

|u|p+1 dx


for some K > 0, which implies by (19) that

Q(t)1/(1−γ) ≤ KQ′(t) (21)

if K is chosen large enough so that
21/(1−γ) ≤ K,

21/(1−γ)b1/(1−γ)B ≤ K

2
,

21/(1−γ)b1/(1−γ)B ≤ p− 1
8(p+ 1)

K.

That is K has to be selected so that

K ≥ 21/(1−γ) max
{

1,
8(p+ 1)
p− 1

b1/(1−γ)B

}
.

From (19) it is clear that Q
′
(t) ≥ 0. Hence, by the definition of Q(t) and

the hypotheses on the initial data, we have Q(t) ≥ Q(0) > b
∫

Ω u1u0dx ≥ 0.
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Thus Q(t) > 0. Integrating (21) over (0, t), we find

Q(t)γ/(1−γ) ≥ 1

Q(0)−γ(1−γ) − γ

K(1− γ)
t
.

Consequently, Q(t) blows up at some time

T ∗ ≤ K(1− γ)Q(0)−γ/(1−γ)

γ
.
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