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ABSTRACT

In this paper we introduce a 3D wavelet frame that has the key prop-
erty of steerability. The proposed wavelet frame relies on the com-
bination of a 3D isotropic wavelet transform with the 3D Riesz op-
erator which brings steerability to the pyramid. The novel transform
enjoys self reversibility and exact steering of the basis functions in
any 3D direction by linear combination of the primary coefficients.
We exploit the link between the Riesz transform and the directional
Hilbert transform to define a multiresolution monogenic signal anal-
ysis in 3D which achieves multiscale AM/FM signal decomposition.
We give an example of application of the 3D monogenic wavelet
frame in biological imaging with the enhancement of anisotropic
structures in 3D fluorescence microscopy.

Index Terms— 3D wavelet transform, Riesz transform, steer-
ability, feature enhancement, monogenic signal

1. INTRODUCTION

Steerability is the ability to compute the response to a multi-
dimensional directional filter as an angle-dependent linear com-
bination of filterbank outputs. Freeman and Adelson pionneered the
study of steerable filters with a filterbank consisting of a derivative
of Gaussian filter which is rotated to a finite number of equi-spaced
angles [1]. Simoncelli and colleagues soon after extended the steer-
ability principles to 2D wavelet filterbanks [2]. The key idea of the
so-called steerable pyramid is to apply a steerable and reversible
filterbank to coefficients provided by an isotropic wavelet pyramid.
The main benefits of the approach are three-fold: the pyramid is self-
reversible, multiresolution is achieved, and the rotation-covariant
property is inherited from the steerable filterbank, hence yielding
straightforward rotation of the wavelet functions.

The steerability principles, as defined by Freeman and Adelson,
is extendable to three dimensions when using 3D polar separable fil-
ters such as the derivatives of Gaussian. By contrast, it seems much
harder to transpose the Simoncelli’s design to 3D since the invert-
ibility of the pyramid imposes some strict constraints on the filter de-
sign (i.e., equiangular tiling of the frequency sphere). Designing 3D
steerable wavelets with perfect reconstruction properties would how-
ever make possible numerous novel image-processing techniques re-
lying on directional analysis.

In this paper, we present a 3D steerable wavelet frame. Our
approach relies on the Riesz transform which can be used to map
any wavelet frame of L2(R

3) into a directional wavelet frame of the
same space [3]. This powerful property has been already exploited to
design 2D steerable filterbanks [3]. Moreover, the theoretical basis
for steerable wavelets in high-dimensional space has been recently
investigated [4, 5]. We focus in this paper on the 3D case which is
particularly important for bioimaging. We apply the 3D Riesz opera-
tor to the output of an isotropic wavelet pyramid such that the whole

directionality information is conveyed by the Riesz transform. By
doing so, the resulting Riesz-wavelet frame inherits the steerability
property of the Riesz transform. We discuss its self-reversible filter-
bank implementation and the coefficient-steering process.

It has been previously highlighted that the Riesz transform can
be viewed as the natural multidimensional extension of the Hilbert
transform [6]. This link has been exploited in 2D to define a multi-
scale analytical signal called the monogenic wavelet [3]. The mono-
genic wavelet is an extension of the 1D analytical signal [7], and
thus gives access to key AM/FM parameters of the image. More
recently, a monogenic signal in high-dimensional space has been de-
fined thanks to a Clifford algebra formalism [4]. In this paper we
propose a 3D counterpart to the monogenic wavelet proposed in [3].
We are able to suggest a more intuitive interpretation than the Clif-
ford algebra formalism when considering the link between the 3D
Riesz-wavelet transform and the Hilbert transform along a 3D di-
rection. For each wavelet location, we derive a regularized local
orientation, the coherency (i.e., the degree of directionality) of the
neighborhood, and some AM/FM parameters.

In biomaging, we argue that the multiscale monogenic parame-
ters are good descriptors of the underlying biological structure. In-
deed, biological environments often contain highly directional fea-
tures in 3D, such as filaments, dendrites, or membranes. As a conse-
quence, the 3D monogenic wavelet analysis can be exploited to drive
the processing of 3D microscopy images. In the last part, we give an
example the enhancement of anisotropic structures in fluorescence
microscopy which takes advantage of the proposed method.

2. 3D RIESZ-WAVELET TRANSFORM

2.1. 3D Riesz Transform

In the sequel, we discuss the transformation of finite-energy func-
tions f(x) ∈ L2(R

3) with x = (x1, x2, x3) ∈ R
3. The Fourier

transform of the input signal f(x) is f̂(ω) =
∫
R3 f(x)e

−j〈ω,x〉dx,

with j =
√−1 and ω = (ω1, ω2, ω3) the 3D pulsation vector.

The Riesz transform of a function f(x) of L2(R
3) is the scalar-

to-vector transformation

Rf(x) =

⎛⎝ R1f(x)
R2f(x)
R3f(x)

⎞⎠
The Riesz operator component Ri is linear, space-invariant, and
characterized by the frequency response

R̂if(ω) = −j
ωi

||ω|| f̂(ω). (1)

The Fourier-domain definition of the Riesz transform highlights
that Rf can be viewed as the 3D gradient vector of the Laplacian
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of order −1/2 (an isotropic smoothing operator) of f : Rf =

−∇Δ−1/2f . Let’s indeed recall the Fourier-domain definition of

these operators: ∇ F←→ jω and Δ−1/2 F←→ ||ω||−1. Unlike the
usual gradient ∇, the Riesz transform is self-reversible

R̂�Rf(ω) =
(jω)∗(jω)

||ω||2 f̂(ω) = f̂(ω).

This allows us to define a self-invertible wavelet frame of L2(R
3)

(tight frame). We however see that there exists a singularity for the
frequency (0, 0, 0). This issue will be fixed later, thanks to the van-
ishing moments of the primary wavelet transform.

2.2. Steerability

The interpretation of the Riesz transform as being a directional
derivative filterbank makes its steerability easy to understand: it
behaves similarly to a steerable gradient filterbank, with the added
crucial property of perfect reconstruction. We parameterize any ro-
tation in 3D with a real and unique 3 by 3 matrix U which is unitary
(UTU = I). Let us consider the Fourier transform of the impulse
response of the Riesz transform after a rotation by U as

̂R{δ}(Ux)(ω) = −j
Uω

||Uω|| = U

(
−j

ω

||ω||
)

= UR̂{δ}(x)(ω),

with δ the Dirac distribution. The rotated Riesz transform of f there-
fore corresponds to the multiplication by U of the non-rotated Riesz
coefficients

RUf(x) = URf(x), (2)

which demonstrates the 3D steerability of the Riesz transform.

2.3. Riesz-Wavelet Pyramid

One crucial property of the Riesz transform is its ability to map any
frame of L2(R

3) (in particular wavelet frames) into L2(R
3) since it

preserves the inner product of L2(R
3) [3, 4]. Following the previous

Riesz-wavelet constructions [3, 4], we propose to apply the 3D Riesz
transform to the coefficients of a wavelet pyramid to build a steerable
wavelet transform in 3D.

2.3.1. Primary Wavelet pyramid

A primary isotropic wavelet pyramid is required in order to pre-
serve the relevance of the directional analysis performed by the Riesz
transform. Moreover, the bandlimitedness of the wavelet bands must
be enforced to ensure the isotropy of the primary wavelet together
with the possibility of down-sampling [1, 8]. A conventional or-
thogonal and separable wavelet transform fulfills none of these con-
ditions. In [3], a 2D spline-based wavelet transform was used as
the primary transform. However, while low-order spline wavelets
are fast to compute, they are not truly isotropic. We thus propose
instead a 3D non-separable wavelet with an isotropic wavelet func-
tion, as done in 2D in [2]. To achieve bandlimitedness of the wavelet
bands it is more convenient to design the wavelet transform directly
in the 3D Fourier domain. Moreover, the isotropy constraint im-
poses a purely radial wavelet function (i.e., it depends on ||ω|| and
not on the individual frequency components ωi in the Fourier do-
main). Among all possible wavelet functions, two are of particular
interest: the Shannon’s wavelet

ψ̂sha(ω) =

{
1, π

2
≤ ||ω|| ≤ π

0, otherwise

Fig. 1. Frequency tiling with the Shannon’s wavelet. Each wavelet
scale is obtained by a bandpass filter of support [π/2k+1, π/2k]. The
space-domain subsampling operations, which restrict the frequency
plane to the support of each wavelet function, are shown with boxes.

(a) Filterbank implementation of the isotropic wavelet transform. A cas-
cade of low-pass filters (Li(ω)) and high-pass filters (H0(ω) and B(ω))
is applied. The filterbank is self-reversible.

(b) Self-reversible Riesz-wavelet filterbank.

Fig. 2. The Riesz-wavelet transform filterbank implementation.

and the Simoncelli’s wavelet used for the 2D steerable pyramid

ψ̂sim(ω) =

{
cos

(
π
2
log2

(
2||ω||

π

))
, π

4
< ||ω|| ≤ π

0, otherwise.

The Shannon’s wavelet function is a radial step function which corre-
sponds to the frequency-domain tiling shown in Fig. 1. This wavelet
transform decomposes the signal spectrum with isotropic and non-
overlapping tiles. Using the Simoncelli’s wavelet function would re-
sult in a smooth frequency partitioning with overlapping tiles, which
is less prone to reconstruction artifacts after coefficient processing.
The decomposition shown in Figure 1 can be efficiently achieved
by a succession of filtering and downsampling operations, the high-
pass coefficient remaining non-subsampled to alleviate aliasing, as
opposed to the orthogonal wavelet transform. The wavelet decom-
position cascade is illustrated in Figure 2(a).

2.3.2. Riesz-Wavelet Pyramid

We build a Riesz-wavelet frame by applying the Riesz transform to
each scale of the isotropic pyramid defined by the wavelet function
and its dual {ψ, ψ̃}. The continuous version of the Riesz-wavelet
transform prior subsampling is

qk(x) = R{ψk ∗ f}(x)
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for k going from 1 to K, where K is the finest wavelet scale. The
function f(x) can be exactly reconstructed by inverting the Riesz
transform and the subsampled wavelet pyramid

K∑
k=1

R∗{qk} ∗ ψ̃k(x) =
K∑

k=1

R∗R{ψk ∗ f} ∗ ψ̃k(x)

=
K∑

k=1

ψk ∗ f ∗ ψ̃k(x) = f(x).

since the ψk(x) are bandlimited. It is worth noting here that the
wavelet functions we use have at least one null moment (i.e.,
ψ̂k((0, 0, 0)) = 0). The singularity of the Riesz transform at
the origin is therefore tempered by the wavelet transform and is
now harmless. Moreover, the Riesz and wavelet transforms can be
commuted. We give in Fig. 2(b) a filterbank implementation of
the Riesz-wavelet transform in which the wavelet decomposition is
applied to the Riesz coefficients.

The primary wavelet function being isotropic, the directional-
ity information is conveyed at each scale by the Riesz transform
only. The Riesz-wavelet coefficients can thus be steered in the same
way as the 3D Riesz coefficients (2). Specifically, the coefficients
qk,U(x) that correspond to a rotation of the Riesz-wavelet atoms by
the unitary matrix U are computed as

qk,U(x) = RU{ψk ∗ f}(x) = Uqk(x).

3. MONOGENIC WAVELET ANALYSIS

The analytic signal was introduced by Gabor [7] as a complex exten-
sion of a 1-D signal

fanal(x) = f(x) + jHf(x) = A(x)ejξ(x)

based upon the Hilbert transform H which is the linear and shift-
invariant operator that maps all 1D cosine functions into their corre-
sponding sine functions. An AM/FM signal analysis is achieved with
this representation by taking the time-varying amplitude as A(x) =
|fanal(x)| and the instantaneous frequency as ν(x) = dξ(x)/dx.
One extension of the analytical signal to 2D is via the Riesz trans-
form [6] which can be viewed as a natural extension of the Hilbert
transform to multiple dimensions. The so-called monogenic signal
was recently extended to the analysis of 2D Riesz-wavelet coeffi-
cients [3, 4]. We present here a 3D monogenic wavelet analysis.

3.1. 3D Monogenic Signal

We propose to perform a 1D AM/FM signal analysis, like for the an-
alytical signal, but along a 3D direction. In particular, we choose the
vector u with ||u|| = 1 as the local orientation that maximizes the
directional Hilbert-transform response. (We present in the next sec-
tion a fast and robust way to compute u.) When comparing the fre-

quency response of the Hilbert transform (Ĥf(ω) = −jω/|ω|f̂(ω))
with the Fourier-domain definition of the Riesz components (1), it is
apparent that Hu, which is the Hilbert transform along the direc-
tion u, corresponds to the projection of the Riesz transform onto u:
Hu = uTR. We thus build a 3D extension of the monogenic signal
which is based on the 3D Riesz transform

fmono(x) = (f(x),R1f(x),R2f(x),R3f(x))

= (f(x), f1(x), f2(x), f3(x)).

We compute the local signal amplitude (AM component) as A(x) =
||fm(x)||. The local phase ξ in the direction u is computed as
ξ(x) = arctan (Hu(x)/f(x)) = arctan

(
uTRf(x)/f(x)

)
.

3.2. Tensor-Based Estimation of the Local Orientation

We extend to 3D the local orientation estimation procedure proposed
in [3] that relies on the structure tensor [9]. We select the orientation
u which maximizes Hu(x), but, instead of doing it pointwise, we
optimize the response over a 3D local neighborhood that is specified
by the isotropic and positive weighting function v(x). The function
v(x) is typically a 3D Gaussian window which acts as a regular-
ization function of the orientation map. The pointwise optimization
problem is

uv(x0) = arg max
||u||=1

∫
R3

v(x− x0)|Huf(x)|2dx.

Exploiting the link between the directional Hilbert transform and the
Riesz transform, and exploiting the steerability of the latter, we write

|Huf(x)|2 =
(
uTRf(x)

)(
uTRf(x)

)∗

= uT (Rf(x))(Rf(x))∗u.

which shows that estimating the local orientation is a quadratic form
maximization problem which turns out to be a standard eigenvalue
problem. The vector u is computed pointwise as the eigenvector
corresponding to the largest eigenvalue of the tensor matrix J(x0),
with

[J(x0)]mn =

∫
v(x− x0)fm(x)fn(x)dx

and m,n ∈ {1, 2, 3}. The sorted collection of eigenvectors of
J(x0) defines a rotation matrix Uv such that the energy of the first
band of the rotated Riesz transform UvRf is maximized since
[Uv]1 = uT

v . The second band of UvRf contains the maximal
amount of the residual energy of the transformed signal.

The eigenvalue decomposition of J(x0) also allows us to quan-
tify the degree of directionality of the neighborhood through the rel-
ative weights of the eigenvalues. We define the coherency of the 3D
local neighborhood as

χ(x0) =
λ1 − (λ2 + λ3)/2

λ1 + (λ2 + λ3)/2
,

which takes the value 1 when all the eigenvalues except the first one
do vanish (the energy is concentrated along the u direction), and 0
when the three eigenvalues are equal (isotropic gradient values).

3.3. 3D Monogenic Wavelet

We apply the 3D monogenic analysis to each scale of the 3D
isotropic wavelet pyramid described above, resulting in the mul-
tiscale monogenic signal

fmono,k(x) = (ψk ∗ f(x),R1{ψk ∗ f}(x),
R2{ψk ∗ f}(x),R3{ψk ∗ f}(x))

with k = 1 . . .K. The isotropy of the primary wavelet pyramid
is crucial here because the directional analysis relies on the Riesz
channels.

4. MICROSCOPY IMAGE ANALYSIS AND PROCESSING

We show in Fig. 3 the principal directions obtained by the mono-
genic Riesz-wavelet transform for fluorescence images of collagen
filaments. The figure is an illustration of the ability of our method to
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Fig. 3. Top-Left: a 3D image stack of collagen filaments. From top-
right to bottom-right: color encoded (hue) monogenic direction for
the plans A, B and C, after an orthogonal projection onto the xy, xz
and yz plans, respectively. The saturation indicates the value of the
local coherency.

estimate in a robust and consistent manner the local 3D orientation
in microscopy images.

The monogenic parameters can be further exploited to drive pro-
cessing techniques which self adapt to the local features. For in-
stance, a multiscale monogenic signal has been exploited to identify
feature points in various 2D medical images [10]. We propose here
an adaptive anisotropic smoothing technique which consists in steer-
ing the Riesz-wavelet coefficients according to the monogenic direc-
tions Uv , thresholding them, and reconstructing a smoothed image
by inverting the Riesz-wavelet pyramid. Steering the coefficients ac-
cording to Uv yields an increased response in the first Riesz channel
since it corresponds to the main local orientation. We have applied
a soft-threshold independently to each channel, resulting in a strong
smoothing of the features which are orthogonal to the main local
orientation. As shown in Fig. 4, the proposed technique is able to
smooth the image while preserving the diectional features, which is
beneficial to the iso-surface visualization in 3D of the filaments.

5. CONCLUSION

We have introduced a 3D steerable wavelet transform. The proposed
wavelet frame relies on the combination of an isotropic nonseparable
wavelet pyramid and the 3D Riesz transform. We have described a
Fourier-domain implementation of the transform which is achieved
thanks to a fast and self-reversible filterbank. Among the interesting
properties of the Riesz-wavelet transform, two are of main interest:
its steerability, and its link with the directional Hilbert transform.
The latter is the basis for the design of a 3D monogenic wavelet
transform that allows the directional AM/FM analysis of 3D images.
We have given an example of 3D biological image processing for
which the proposed techniques are beneficial.

Fig. 4. Top-row: 3D original fluoescence image of collagen fila-
ments and its iso-surface representation; Bottom-row: Anisotropic
feature enhancement image and its iso-surface representation.
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