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Nonlinear Pulse Wave Reflection at 
an Arterial Stenosis 
A simple model is presented to analyze the effect of stenoses of different severities 
in a long elastic tube or artery on the pressure and flow-rate wave forms incident 
upon them. Wave propagation in the undisturbed tube is taken to be linear; 
nonlinearity arises from the quadratic dependence of stenosis pressure drop onflow 
rate. Before the model can be applied in practice, important physiological questions 
must be answered; e.g.: (a) Can the incident wave form and mean proximal 
pressure be regarded as given input? (b) Is the mean flow rate given, or does the 
peripheral resistance remain constant? Results are given on the assumption that the 
answer to (a) is yes. The principal conclusion is that the input impedance spectrum 
of a stenosed artery depends strongly on the incident wave form, as well as on the 
severity of the stenosis and on the distance from it at which measurements are 
made. There is good qualitative agreement with the results of experiments and of 
other models. 

Introduction 

There have been many investigations into the steady and 
unsteady fluid dynamics of arterial stenoses or laboratory 
models of them. Most have concentrated on either (a) the 
production and characteristics of turbulence in the separated 
flow downstream of a constriction (e.g., [1-4]), which is 
important both as a diagnostic sign [5, 6] and because of the 
deleterious effect that separation and turbulence may have on 
the structure of the artery wall [7, 8]; or (b) the overall 
pressure drops or head losses across constrictions of different 
severities [9-12], in assessing the extent to which peripheral 
perfusion is impaired or has to rely on collateral channels [13, 
14]. 

In recent years there have also been a small number of 
experiments on the harmonic content of the pressure and 
flow-rate wave forms, not only distal to the stenosis (where 
both pressure and flow-rate oscillation amplitudes are 
reduced), but also proximal to it, where the incident wave 
form is modified by reflection from the stenosis and the 
pressure amplitude is increased [15-18]. Newman, et al. [15, 
16] applied artificial stenoses to the aortae of dogs, while 
Farrar, et al. [17] used femoral arteries, and Rooz, et al. [18] 
used latex tubes. All these authors are agreed that significant 
changes in the wave-form shapes occur when the area ratio a{ 

of the stenosis (a, = AS/AN, where As = cross-sectional 
area at the narrowest point, AN = normal cross-sectional 
area without stenosis) is less than about 0.4 (in particular the 
ratio of stenosed to normal modulus of input impedance, 
measured just proximally, increases as a, decreases at all 
measured frequencies), although there is no significant change 
in mean pressure and flow rate unless c^ 5 0.1. Thus, ob
servation of wave-form distortion may be a better tool for the 
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early diagnosis of stenoses than measurements of mean 
pressure and flow rate. 

More quantitative aspects of these authors' data do not 
show the same measure of agreement, however, as the 
following example shows. For a stenosis in the thoracic aorta 
(of a dog) Newman, et al. [15] found that, with a, = 0 . 1 , the 
stenosed-to-normal pressure (p) and flow rate (Q) amplitude 
ratios, p's/p'N and QS/QN say, were virtually independent of 
frequency for the first six Fourier components of the wave 
form, both just proximal and just distal to the stenosis. The 
same is therefore true of the effective (input) impedance 
modulus ratio, \ZS/ZN\. In the abdominal aorta, at a 
distance of 20 mm proximal to the stenosis (c^ = 0.05), 
Newman, et al. [16] found a small rise with frequency of 
QS/QN, and hence a fall of \ZS/ZN\. However, in the 
femoral artery, at a distance of 6 mm proximal to the stenosis, 
Farrar, et al. [17] found a significant and nonmonotonic 
variation of these ratios with frequency for a] 5 0.3: there 
was a marked peak of \ZS/ZN I at the fourth harmonic. At a 
much greater proximal distance of 140 mm, Newman, et al. 
[16] found a marked minimum in this ratio at the third 
harmonic, but they showed how this was entirely consistent 
with the retrograde propagation of a damped reflected wave. 
Rooz, et al. [18] also emphasized the importance of knowing 
the distance from the stenosis at which measurements are 
made. However, as Farrar, et al. made clear, there must have 
been a significant difference in conditions in their canine 
femoral arteries and Newman, et al.'s canine aortas; the 
results of this paper indicate that one important difference 
may be the difference in harmonic content of the incident 
wave form, i.e., in its shape. 

Such differences cannot be investigated without a 
theoretical model of how a stenosis affects a pressure wave 
incident upon it, and the simpler the model is (without 
becoming unrealistic), the easier it is to assess the influence of 
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Fig. 1 Sketch of stenosis, showing direction of propagation of in
cident (/), reflected (R) and transmitted (T) waves. AN, As are normal 
and stenosed cross-sectional areas. 

various parameters on the results. The simplest possible 
model would be an entirely linear one, based on the theory of 
Womersley [19], but that would be inadequate because the 
pressure drop across a stenosis is known to depend 
nonlinearly on the flow rate. (The model of Newman, et al. 
[20] was effectively linear, because they took the stenosis to 
have a constant resistance as the flow rate varied during a 
cycle.) The model to be presented in this paper takes that 
nonlinearity into account, but still treats the wave 
propagation in the vessel distal and proximal to the stenosis as 
linear, as is approximately justified in the normal arterial 
system [21, 22]. The model is extremely simple, since, given 
the incident pressure wave form and the value of various 
parameters, the reflected and transmitted wave forms of 
pressure and flow rate can be obtained merely from the 
solution of a quadratic equation. On the way to the quadratic 
equation, however, the answers to a number of important 
physiological questions are required; it may be the extreme 
simplicity of the model which helps to throw these questions 
into relief. 

The physical basis of the model is essentially the same as for 
those of Kim and Corcoran [23] and of Rooz, et al. [18], both 
of which agreed well with laboratory experiments on latex 
tubes. However, the former incorporated nonlinear wave 
propagation into the model, and a lengthy numerical solution 
was required. The latter, too, although linearizing the wave 
propagation, chose to solve the equations by a purely 
numerical, finite element method, and perhaps for that reason 
did not pinpoint so sharply the physiological questions that 
are raised. Nor did they make explicit what is perhaps the 
most important qualitative conclusion that can be drawn as a 
consequence of the system nonlinearity: that the effect of a 
stenosis on the pressure pulse depends not only on the degree 
of stenosis but also on the shape of the incident wave form 
itself. A given stenosis in a given tube does not lead to a 
unique relation between impedance and frequency, at 
physiological values of the parameters of the model. 

The Model 

We suppose that the stenosis (of narrowest area As = 
&\AN) is located in the neighborhood of x = 0 in a long, 
otherwise uniform elastic tube of undisturbed cross-sectional 
area AN (Fig. 1). All waves reflected towards the stenosis 
from the periphery are neglected, which is equivalent to the 
assumption that the impedance at all distal arterial junctions 
is well matched. Let the speed of the wave propagation in the 
unstenosed tube be c and let its characteristic admittance (the 
inverse of characteristic impedance: see [24]) be 7 ( = AN/pc, 
where p = fluid density). We take these quantities to be real 
valued, although if viscous or visco-elastic wave attenuation is 
important, they will be complex and may be frequency 
dependent. However, we shall consider waves whose 
wavelength is much larger than the diameter of the tube and 
the length of the stenosis, and significantly larger than the 
distance from the stenosis at which pressures and flow rates 
are supposed to be measured (a low wave speed of 5 m s ~' 
and a high frequency of 15 Hz still leads to a wavelength of 33 
cm). Since the attenuation per wavelength of physiological 
pressure waves is not large (about 50 percent: see [21]), it can 

therefore be neglected in the present model. The only energy 
dissipation will occur at the stenosis itself. 

The nonlinear analysis of the reflection of a pressure wave 
at the stenosis will follow the same approach as Lighthill's 
version of the linear theory [24]. We suppose that the pressure 
(p) and flow rate (Q) wave forms associated with the incident 
wave, arriving at the stenosis from x = — 00, are given by 

I:p=Poh+PiU-x/c)], Q = Q0 + Yp0p,(t-x/c) (1) 

Here pj (a function of t — x/c for a wave propagating to the 
right) is the nondimensional representation of the fluctuating 
part of the pressure wave form, with zero mean, and the scale 
factor p0 is chosen for convenience so that the peak-to-trough 
ampltideof/?/ is 2 (like the pure cosine wave cosarf);j0o'y is the 
mean pressure proximal to the stenosis, and Q0 is the mean 
flow rate. In man or dog, for example, p0 would be about 
2.67 kPa (20mm Hg) and 7 would be about 5.0 (mean 
pressure = 100mm Hg). We similarly represent the reflected 
and transmitted waves: 

R:p=p0pRU+x/c), Q=-Yp0pR(t+x/c) (2) 

T:p=p0[y'+pT{t-x/c)], Q = Q + Yp0pT(t-x/c) (3) 

where the mean distal pressure, p0y', will not be the same as 
the proximal because of energy loss at the stenosis, but the 
mean flow rate must by conservation of mass still be QB. The 
fact that pj, pR and pT are the fluctuating parts of the 
pressures, with zero mean, may be represented by the 
equations 

PI=PR=PT = 0 (4) 

If we suppose/?/(/) to be given, thenpR (t) andpT( t) are 
to be determined by application of two equations, 
representing conservation of mass and the pressure-flow 
relation across the stenosis, respectively. We recall that the 
stenosis length is to be much less than a wavelength, so that 
(a) volume changes in the stenosed region are negligible, (b) 
the inertia of the fluid in the stenosis is negligible (see the 
forthcoming), and (c) the stenosis can be taken to be at the 
point x = 0 as far as the waves are concerned (see [24] for 
further justification of these approximations). 

Conservation of mass states that the total flow rate on the 
two sides of the stenosis is the same at all times, and hence 

PIU)-PRU)=PT(0 (5) 

The pressure drop Ap across a stenosis when the flow rate 
through it is Q(t) has been given by Young and Tsai [11] to be 

where p = fluid density, u = Q/AN, Re = Reynolds number 
based on the undistorted vessel diameter d and the velocity u, 
L is the effective stenosis length, and K,, Kv, Ku are con
stants, representing head loss due to the separated turbulent 
jet at the constriction, direct viscous wall stresses, and un
steady inertia, respectively. If the stenosis consisted of a 
plug with a straight circular tube drilled through it, containing 
quasi-steady Poiseuille flow, and if the ideal Borda-Carnot 
conditions were applicable to the separated jet, these three 
constants would take the values K, = 1, Ku = 1, K„ = 
32L/ajd. In fact they depend on stenosis geometry, and 
Rooz, et al. [18] quote values of K, = 1.52 and Ku = 1.2, 
with am empirical modification to the length L in K„. 
Equation (6) has been approximately verified for values of at 

down to about 0.1 [11, 12]. In our case of a short stenosis (L 
< 5 mm in Newman, et al.'s experiments [16]) the unsteady 
term is negligibly small, as can be seen by taking realistic 
values of L = 5mm, u = 0.1ms ' (a low value), a, = 0 . 1 , 
du/dt = 2wfu (the scale for a cosine wave of frequency/) and 
/ = 10 Hz (the 5th harmonic of a dog): then the ratio of the 
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third term in equation (6) to the first is approximately 0.08. 
The viscous term will also be small if the Reynolds number is 
large and if a, is not too small. Now Re in canine aorta and 
femoral artery is large throughout most of systole (in the 
aorta, peak Re ~ 4500, mean Re « 800 [22]); but since we 
wish to consider severe stenoses with a, = 0.1 and 0.05, we 
should retain that term in principle, although the nonlinear 
term will dominate. With (1), (2), (3) substituted into (6), the 
pressure drop equation now becomes 

P0[y+P,V)+PRV)—Y'-pT(t)]=k2Q\Q\ + k,Q (7) 

where 

Q(t)=Q0 + YPoPT(t), 

and 

* *JL(_L- ! ) ' , * , - . !£ : (8) 
2 Afj \ a, / As 

with fluid viscosity = JX. Note that Q2 has been replaced by 
Q \Q\ in the jet term, to allow for the possibility of reversed 
flow. 

In the case Q > 0, a combination of (5) and (7) leads to the 
following quadratic equation: 

k2p
2
T + 2pT(k2Qo+kl/2 + UY)/Ypo + [k2Q

2
0+klQo 

-po(2p, + y-y')]/Y2p2
o=0, (9) 

with the sign of the k2 terms changed whenever Q < 0. Thus, 
given the physical constants of the system (Y, p0, ku k2), 
given the proximal mean pressure p0 y and incident wave form 
p,(t), and given the other two constants y' and Q0, the 
transmitted wave form pT(t) (and, from (5), the reflected 
wave formpR (t)) can be calculated as a function of time and 
the problem is solved. But, apart from the physical constants, 
it is not clear that all these quantities are given in practice. 

(/) Are the incident pressure wave formp, (t) and proximal 
mean pressure p0y given? If the stenosis is in a peripheral 
branch artery, so that the overall input impedance of the 
parent artery is virtually unchanged, then the pressure at the 
entrance to the branch will also be unchanged by the presence 
of the stenosis, so the answer is yes for the mean pressure. The 
incident wave form may however be modified if the wave 
reflected at the stenosis is significantly re-reflected at the 
entrance to the branch. This could be important in the 
femoral artery [17]. The answer is also difficult in the case of 
a stenosis in the aorta [15, 16] because most of the blood flow 
passes through it. Newman, et al. [15, 16] argued that there 
were no significant reflections arriving at the stenosis from 
either the periphery (because their animals were vasodilated) 
or the heart, so that the incident wave arriving from the heart 
was presumably unchanged; they did not discuss the mean 
pressure. On the other hand, Elzinga and Westerhof [25] 
demonstrated that the source impedance of the heart is not 
independent of load; and indeed the heart behaves more like a 
flow source than a pressure source for the lower frequency 
harmonics of the wave form. In modeling Newman, et al.'s 
experiments, then, one should presumably match the 
proximal end of the tube under study to a model pump, such 
as that of Westerhof, et al. [26], whose source impedance is 
the same as that of the heart. In laboratory experiments one 
can choose arbitrary pump characteristics: Newman, et al. 
[20] took the flow rate amplitude to be given, while Rooz, et 
al. [18] took the incident pressure wave form to be given. For 
the results presented here, we have followed the latter authors 
and taken the heart to be a pressure source, so that bothPj (t) 
andp 0 7 are given. 

(//') How do we determine the mean flow-rate, Q0, and 
mean distal pressure, p0y"t Whether or not the heart is a flow 
source, autoregulation will tend eventually to adjust the 
peripheral resistance so that Q0 is the same with stenosis as 

without, so its value would be equal to QN, its normal value. 
On the other hand, the peripheral resistance would tend to be 
unchanged either immediately after the application of an 
artificial stenosis, or on a longer time scale if the subject was 
already completely vasodilated. In that case the ratio of 
pressure to flow rate would be unchanged, and we would have 

Go=7'G/v/7- (10) 
We follow Rooz, et al. [18] and consider both these choices 

in the forthcoming. A more complicated possibility is to 
suppose that the system is terminated not by a pure resistance, 
but by some compliance and inertance too, in order to model 
the distal bed more accurately [20]. However this makes the 
input admittance of the distal region (the Y in the second of 
equations (3)) frequency dependent, and equation (9) cannot 
be applied so simply (waves reflected from the periphery can 
no longer be neglected). 

Equation (10) (or Q0 = QN) is one relation for the two 
unknowns Q0 and y'. The other comes simply from the 
requirement (4) thatpy- = 0. The model is now complete. The 
results will be discussed mainly in terms of the modulus and 
phase of the complex effective input impedance Zs at a 
distance / upstream of the stenosis (x = —I). If we Fourier 
analyzepj(t) as follows: 

N 

PiU)=J^Pi„cos(nut-<l)p,„), (11) 
(1 = 1 

where o is the fundamental angular frequency (2-K X heart 
rate), with similar forms for pR and pT, then Zs for the «th 
mode is given by 

Zs„ _ Pi„e-''*Ptn +pRne-V"x+t'PR^ 

ZNn
 S" p,„e-'*pm -pRne-«™++PRn> ( ' 

where 

\=wl/c (13) 

In order to assess the effect of the nonlinearity, the results 
will be compared with those of the corresponding linear 
theory in which k2 = 0; in that case, (9) and (5) give 

2p, kiYp, 
PT=2TkVY'PR = JTk^ ( H ) 

with the consequence that 

l + k^Y+k^e-'-2^ 
YZs" ~ 2 + klY-klYe-i-2'^ ( 1 5 ) 

These linear formulas can also be derived from Womersley's 
theory [19] for a short, straight stenosis in which viscosity is 
much more important than inertia (i.e., his well-known 
parameter a is small). 

Results and Discussion 

We take the physical constants of the system to have the 
following values, representative of the canine aorta [22], for 
comparison with the results of Newman, et al. [15, 16]: 

P = 1 . 0 x l 0 3 k g m - 3 , c = 5 . 0 m s - | , ^ w = 1.78xl0- 4m 2 

(hence Y= \/ZN = 3.54 X 10~8 m4 s kg- ' ) , ,p0 = 2.67 kPa, 
QN = 3.53 x 10~5 m3 s"1 , co = 4TT s"1 (heart rate = 2 Hz), 
7 = 5, Ku = 0. For nonlinear calculations we shall take K, = 
1.52 in k2, and kx = 0 (equation (8)), while for the 
corresponding linear calculations we take k2 = 0 and choose 
kx so that the steady pressure drop across the stenosis is the 
same as in the nonlinear case at a flow rate of QN, i.e., kx = 
QN times the nonlinear value of k2. The quantities to be 
varied are the area ratio a, , from 0.5 down to 0.02, and the 
proximal distance from the stenosis, /, at which pressures and 
flow rates are recorded: 0, 20, 70, 140 mm, as in Newman, et 

Journal of Biomechanical Engineering NOVEMBER 1983, Vol. 105/355 
Downloaded From: https://biomechanical.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



^ p 

Fig. 2 Wave forms of dimensionless incident pressure (Ph bold 
curve), total pressure at / = 20 mm (P20 , dash-dot curve), flow rate at / 
= 20 mm (Q20, fine curve), flow rate at / = 70 mm (Q70, broken curve), 
for a i =0.05 and Q0 = QN . (a) Waveform case 2, (b) waveform case 3. 

al.'s experiments [16]. (The stenoses in Newman, et al.'s 
experiments were 3-4 mm long, and the distances upstream 
were given as approximate measurements, but any slight 
inaccuracy is unimportant for the qualitative comparisons 
presented here.) The input pressure wave form, p,(t), also 
has to be specified. Here we consider three cases: Case 1, a 
pure cosine wave; Cases 2 and 3 are pressure wave forms 
taken from McDonald's book [21, p. 163 and p. 154, 
respectively] and scaled so that the peak-to-trough amplitude 
is equal to 2; the latter are shown in Figs. 2(«, b), respectively. 
(Note that these waveforms include some contribution from 
peripheral reflections, so that their use as incident waveforms 
is quantitatively slightly unrealistic, although they are no less 
useful as examples.) For the purposes of calculation, it is 
convenient to specify these wave forms by the moduli and 
phases of their Fourier coefficients, P,„ and <fiPI„ in equation 
(11); in case 2 these were determined numerically from 
measured points on the wave forms, while in case 3 they were 
calculated from the quoted values for pressure gradient; in 
each case the values for the first five harmonics are given in 
Table 1, and the moduli are plotted in Fig. 3. (It is interesting 

Table 1 Moduli and phases (in radians) of Fourier com
ponents of dimensionless incident pressure wave form 

Case 2 Case 3 

p,„ 
0.878 
0.353 
0.020 
0.134 
0.077 

4>PIn 

2.31 
-2 .30 
-1.85 
-1 .76 

0.55 

Pm 
0.636 
0.409 
0.191 
0.046 
0.046 

<t>Pln 

-2.91 
-1 .48 
-0 .53 
-0.01 

0.51 

to note that many authors give details of such moduli for their 
measured wave forms, but it is virtually impossible to find 
records of the phases.) Also, as the standard case, we take the 
mean flow rate Q0 to be equal to QN, making a comparison 
with the case where Q0 is given by equation (10). 

As well as the incident wave form, Figs. 2(s, b) show the 
dimensionless pressure and flow-rate wave forms at / = 20 
mm, and the flow-rate wave form at / = 70 mm, for the case 
«i =0.05. These are qualitatively similar to the experimental 
results of Newman, et al. [16] with the same value of a,, 
showing an amplification of the pressure wave just proximal 
to the stenosis and a very much reduced flow-rate wave form 
there compared with that at greater distances from the 
stenosis. This is entirely due to the presence of the reflected 
wave, as recognized by Newman, et al. [16], and also con
firmed in their model calculations by Rooz, et al. [18]. We 
should note, however, that the enhanced amplitude of the 
proximal pressure wave was not reproduced in the femoral 
artery by Farrar, et al. [17], although the reduced flow-rate 
wave form certainly was. 

The moduli of the Fourier harmonics of the reflected wave, 
pRn, are given for cases 1, 2, 3 and o^ = 0 . 1 in Fig. 3. The fact 
that there are contributions for n ^ l in case 1, the pure 
cosine wave, is a consequence of the nonlinearity of the 
stenosis head loss, which redistributes energy between dif
ferent Fourier modes. In cases 2 and 3 this redistribution is 
somewhat obscured by the fact that there seems to be a rough 
proportionality between pRn and p,„ in each case. That the 
proportionality is only very rough is exposed by Fig. 4, where 
the ratio between the reflected and incident moduli is plotted 
against n for the two cases 2 and 3 (and with n = 1 for case 
1). The ratio of moduli for pressure and flow rate immediately 
distal to the stenosis is obtained by subtracting the plotted 
value from 1, and that for pressure immediately proximal by 
adding it to 1. The figure reveals two very important facts: (a) 
the modulus ratio depends markedly on frequency, which 
would not occur for a linear system (the linear results are also 
plotted on Fig. 4), and (b) its distribution with frequency is 
significantly different for the two wave forms used. Fact (a) 
appears to contradict the observations of Newman, et al. [15], 
although the scatter in their Fig. 4 was quite considerable; 
Farrar, et al. [17] did remark on this frequency dependence. 
Fact (b) does not seem to have been recognized explicitly 
before, although it is an obvious consequence of nonlinearity. 
It could by itself explain the discrepancies between the results 
for the aorta [15, 16] and those for the femoral artery [17], 
especially if the reflected wave is significantly re-reflected at 
the aortic trifurcation in the latter case. 

This dependence on wave form is also manifest in plots 
against frequency of the modulus and phase of the input 
impedance of the system at a point proximal to the stenosis. 
Such plots are given in Fig. 5 for the case a, = 0 . 1 and / = 20 
mm. There is a slight fall with frequency of the modulus 
according to linear theory (closed circles) because 20 mm is 
not a negligible fraction of the wavelength (0.04) at the 
highest frequency involved (10 Hz, n = 5). There is also a 
monotonic phase variation. This is in marked contrast to the 
considerable frequency dependence according to nonlinear 
theory, and the great difference between the three wave forms 
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n = 5 

Fig. 3 Moduli of the first five Fourier coefficients of the dimensionless 
incident (p,) and reflected (p R ) waves for a i = 0.1 and Q0 = QN. 
Numbers 1, 2, 3 on the individual columns represent the three different 
incident waveforms (1 is the pure cosine wave, so there is no con
tribution to the incident waveform for n > 1). 

1.0 

0.5 

Symbol A • x O 

Wave form 2 3 1 Linear 

10 

1 2 3 4 5 
n 

Fig. 4 Ratio of reflected to incident pressure wave modulus, plotted 
against harmonic number, n, for a1 = 0.1. All cases have Q0 = QN ; 
results of a linear model are shown for comparison. 

used. Also shown in Fig. 5 is the plot corresponding to case 2 
when peripheral resistance is held constant, so Q0 is given by 
equation (10), instead of Q0 = QN. The difference is not 
large, and we may conclude that control of peripheral 
resistance does not have an important influence on the 
oscillatory parts of the wave form. 

The effect on such impedance plots of varying a, and / is 
shown in Fig. 6, where only case 3 and only the case of 
constant peripheral resistance is considered. For all but the 

Symbol x A o • © 

Wave form 1 2 3 3 Linear 

Q„ QN QN O ^ -
Y 

Ph(Zs 

0 

/ 4 

"/ 

1 2 3 

, 
4 5 

Fig. 5 Modulus and phase of dimensionless input impedance, plotted 
against harmonic number n, for ai = 0.1, / = 20 mm, showing the 
effect of changing the incident waveform and the mean flow rate, 
compared with linear theory 

severest stenoses (a, = 0.02) the impedance modulus at / = 
20 mm has a minimum at n = 4, while as the stenosis becomes 
more severe the impedance modulus of course increases for 
any n. Both these effects were observed by Farrar, et al. [17], 
and the latter by Newman, et al. [15]. Also, as the distance 
from the stenosis is increased (for a, = 0.1), the impedance 
modulus falls, and the minimum is abolished; the shape of the 
curve at / = 20 mm agrees quite well with that for one of the 
dogs of Newman, et al. [16 fig. 5b], but the agreement 
deteriorates at larger values of /, no doubt because of the 
neglect in this model both of wave attenuation and of 
reflections from other parts of the arterial tree. 

The phase of the impedance also shows a considerable 
variation with frequency, wave-form, a] and / (Figs. 5, 6). In 
most of the examples considered, the presence of the stenosis 
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Fig. 6 Modulus and phase of dimensionless input impedance, plotted 
against harmonic number n, for wave form 3, Q0 = y' QNly, showing 
the effect of varying «1 orf 

causes the phase to become negative (flow-rate leading 
pressure) as is to be expected for a closed-end type of 
reflection. For the severest stenosis (at = 0.02) the phase 
angle is close to - ir/2 at all frequencies considered (Fig. 6), as 
for a completely closed end. Figure 5 shows that in case 3 at 
a, =0.1 and / = 20 mm the phase is close to that predicted by 
linear theory when n = 1, 2, 3, but increases again for n = 4, 
5. 

Finally we follow Farrar, et al. [17, Fig. 4] and plot in Fig. 
7(a) the peak-to-trough flow-rate amplitude at the stenosis (/ 
= 0), divided by its value (2.0) in the absence of stenosis, and 
(b) the ratio of distal to proximal mean pressures (7'Ay) 
(equivalent to the ratio of stenosed to normal mean flow rate 
in the case of constant peripheral resistance), against the 
severity of the stenosis (1 - c^). The results look very similar 
to those of Farrar, et al. [17] and confirm that although there 
has to be at least an 85 percent stenosis (a, < 0.15) for the 
mean flow to be reduced by 10 percent, the amplitude is 
reduced by that amount for stenoses of 60 percent or more (ax 
< 0.4). 

Conclusion 

The theory presented in this paper is physically comparable 
with, but mathematically and computationally simpler than, 
that of Rooz, et al. [18]. Like that model, it reproduces 
qualitatively many of the features observed experimentally by 
Newman, et al. [15, 16] and by Farrar, et al. [17] on the effect 
of stenoses of different severities on the pulse wave incident 

0.5 

Fig. 7 Ratio of stenosed-to-normal mean flow rate («) and peak-to-
trough flow-rate amplitude (o) plotted against severity of the stenosis 
(1 - «i ) , for waveform 3, Q0 = y'Q^ly,! = 0 mm 

upon them. The main conclusion is that the frequency 
dependence of input impedance of such a nonlinear system 
may, for realistic physiological values of the various 
parameters, depend significantly on the shape of the incident 
wave form, as well as on the severity of the stenosis and the 
distance from it at which measurements are made. An ex
periment to investigate this in detail would be desirable. In 
order to apply such a model in vivo, however, it is important 
to know what can be regarded as given input. We have 
assumed that it is the incident pressure wave form and 
proximal mean pressure, but in fact we should match our 
model of the arterial tree, stenosis and all, to a model of the 
heart which incorporates the fact that it is neither a flow 
source nor a pressure source. The peripheral resistance (or, 
more properly, the input impedance of the peripheral cir
culation) also has to be known; but the evidence of Fig. 5 
suggests that this may not make much difference to the effect 
of the stenosis on the proximal wave forms. 

It would be simple in principle to extend this model in a 
number of ways, although to do so would make the com
putation more cumbersome and remove some of its advantage 
over the model of Rooz, et al. [18]. For example, the proximal 
and distal values of c and Y could be made different from 
each other without difficulty; in addition they could be made 
complex, to account both for wave attenuation in the artery, 
and for a compliance and inertance in the peripheral cir
culation. To do this realistically, however, these wave speeds 
and admittances would have to be made frequency dependent, 
so that Fourier analysis would have to be performed on the 
incident, reflected and transmitted waves even before the 
effect of the stenosis was considered, and the wave forms 
would have to be resynthesized before equation (9) could be 
used. Once such Fourier analysis had taken place, there would 
be no difficulty in including nonquasi-steady pressure drop 
across the stenosis {Ku ^ 0 in equation (6)), and in in
corporating an artery with a stenosis as a branch in a network 
model, or in matching to a realistic heart model. 

Finally we should note that the presence of a 
sphygmomanometer cuff will have an effect on the pulse wave 
in the brachial artery similar to that investigated here, and 
could therefore be one of the factors causing the recorded 
systolic and diastolic pressures to differ from the actual 
pressures [27]. Extension of the present theory to examine this 
effect can be made by allowing the severity of the stenosis, ct\, 
itself to vary with time according to the instantaneous 
transmural pressure, although care must be taken not to 
neglect other collapsible tube effects that are important [28, 
Chapter 6]. 
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