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Abstract

We analyse the problem of executing periodic operations on a minimum number of identical
processors under different constraints. The analysis is based on a reformulation of the problem
in terms of graph colouring. It is shown that different constraints result in colouring problems
that are defined on different classes of graphs, viz. interval graphs, circular-arc graphs and
periodic-interval graphs. We discuss the colouring of such graphs in detail

Keywords: periodic assignment, graph colouring, interval graphs, circuJar-arc graphs, peri­
odic-interval graphs

1 introduction

In this paper we consider the periodic assignment problem, i.e., the problem of assigning periodic
operations to processors. Operations are called periodic if they have to be repeatedly executed
at a constant rate ~ver an infinite-time horizon. Here, we assume that the executions of periodic
operations have fixed start times and that they have to be assigned to a minimum number of
processors. The more general problem of finding start times that minimize the number of proces­
sors is discussed in [Korst, Aarts, Lenstra & Wessels, 1991]. The periodic assignment problem
naturally arises in such diverse areas as real-time processing, vehicle scheduling, and compiler
design [Liu & Layland, 1973; Orlin, 1982; Park & Yun, 1985].

We analyse the periodic assignment problem under different constraints, resulting in a graph
colouring formulation of the problem for three different classes of graphs. The problem of
colouring the vertices of a graph with a minimum number of colours such that adjacent vertices
receive different colours, is known to be NP-hard for arbitrary graphs. Furthermore, no efficient
approximation algorithm is known that colours arbitrary graphs within a constant factor of the
optimum. We show that the graphs in some of the classes of graphs related to periodic assignment
are less difficult to colour.

The organization of the paper is as follows. In Section 2 we introduce some basic concepts and
notation, discuss periodic assignment and show its relation to colouring graphs from three classes
of graphs, viz. interval graphs, circular-arc graphs, and periodic-interval graphs. In Section 3 we
consider the computational complexity of colouring these graphs and discuss appropriate graph
colouring algorithms.

1



2 Periodic Assignment

A periodic operation is an operation that is repeately executed at a constant rate over an infinite­
time horizon. Its executions are considered to be nonpreemptive. Hence, a periodic operation
can be viewed as an infinite sequence of executions of identical length that are equally spaced
in time. A periodic operation 0 is characterized by an execution time e(o) E N, denoting the
length of each execution, and a period p(o) E N, denoting the time between the start times of
two successive executions. We assume that e(o) ::; p(o) for each periodic operation o.

The executions of a periodic operation 0 are all uniquely determined in timet by a reference time
r(0) E {I, ... ,p(0 )} that specifies the start time of the execution of 0 that starts in the interval
[l,p(o)]. Note that r(o) is well defined, since exactly one execution is started in [l,p(o)]. The
executions of operation 0 are started at times r(o) + k p(o), k E 7Z. For a given set of periodic
operations 0 = {ot, ... , o,,}, a schedule S = (r(ol), ... , r(o,,» determines the start times of all
executions. A schedule S is periodic with period P =Icm(p(Ol)," . ,p(o,,», which means that P
is the smallest positiv~ number such that for each time t E 7Z and each operation 0 E 0 we have

operation 0 is executed at t ifand only if it is executed at t + P.

The periodic assignment problem is now defined as follows. Given a set of periodic operations
o and a corresponding schedule S, assign the executions of the operations in 0 to a minimum
number of identical processors, assuming that a processor can execute only one operation at a
time.

Given a periodic schedule S with period P, we define the thickness junction Ts : [l,P] -+ N as
the function that assigns to each time t E [1,P] the number of operations that are executed at
that time. Since a processor can execute only one operation at a time, the maximum thicknessrr =max, Ts(t) gives a ,lower bound on the number of processors that is required to execute a
given schedule S.

With respect to the assignment of executions to processors we consider two different cases, namely

- unconstrained periodic assignment, where different executions of an operation may be as­
signed to different processors, and

- constrained periodic assignment, where all executions of an operation have to be assigned
to the same processor.

An assignment is called periodic with period P' ifP' is the smallest positive integer such that for
each time unit t E 7Z, each 0 EO. and each processor m we have

processor m executes operation 0 at t ifand only ifm executes 0 at t + P' .

If for a given periodic schedule S with period P an assignment is periodic with period pl. then
necessarily PIP'. For the constrained periodic assignment problem, an assignment is necessarily
periodic with aperiod equal to Icm(p(Ol), ... ,p(o,,».

lIn this paper time is measured in time units, ie., time periods of cquallcngth. If an operation 0 with execution
1ime e(o) starts at time-I, then it is started at the beginning of time unit I and is completed at the cud of time UDit
I+e(o) -1. Similarly, a timeinterva1 [11,12] denotes a set ofCODSCCUtive time units, given by {IIt'l + 1, ... ,12}'
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In the following subsections we consider in more detail unconstrained and constrained periodic
assignment.

2.1 Unconstraine~ Periodic Assignment

Before discussing unconstrained periodic assignment, let us first consider as a simple example
the assignment problem for a finite set of executions. The assignment problem then amounts to
assigning the finite set of executions, with given start and execution times, to a minimum number
of processors. This problem can directly be formulated as the problem of colouring the vertices
of a graph with a minimum number of colours, by associating with each execution a vertex in
the corresponding interval graph. An example of a set of executions, ie.,a set of time intervals,

~
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Figure 1: (a) a set of execution intervals and (b) the associated interval graph. The vertices are adjacent
if and only if the associated intervals overlap

and the corresponding interval graph is given in Figure 1.

Definition (interval graph). A graph 9 = (V, E) is an interval graph if we can associate with
each vertex Vj e V an interval [lj,ril, with Ij,rj e 'lZ and Ij ~ rj , such that {Vj, Vj} e E if and
only if the corresponding intervals [lj, rj] and [lj, rj] overlap.

The set of all interval graphs is denoted by SIG. Colouring interval graphs is discussed in Sec­
tion 3.1. Here, we restrict ourselves to showing that T JIJU processors suffice for assigning the
set of executions, where the maximum thickness T JIJU is defined in a similar way as for periodic
schedules. To that end, we use the left edge algorithm [Hashimoto & Stevens, 1971] and show
that this algorithm uses T JIJU processors to assign the executions. The left edge algorithm first
sorts the executions in order of nondecreasing start times and then assigns the executions in this
order to the first av~le processor, ie., the processor with the smallest index that is idle at the
start time of the execution. Now it is easy to show by contradiction that the left edge algorithm
uses exactly T JIJU processors. Suppose that the left edge algorithm uses T JIJU+l processors. Then
at some point in time an execution is assigned to the (TJIJU + l)th processor. But this implies that
TJDU other executions are being carried out at that time, which contradicts the assumption that
T JDU gives the maximum thickness. Consequently, the left edge algorithm assigns a finite set of
executions to exactly TJJJU processors.
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Figure 2: (a) the executions of a set of operations with identical periods, (b) the associated set of circular
arcs, and (c) the associated circular-arc graph. Note that the graph is not an interval graph.

Using this result for a finite set of executions, we formulate the following theorem for uncon­
strained periodic assignment.

Theorem 1 For a given set ofperiodic operations 0 ={OI, ... ,on} and a corresponding sched­
ule S, an unconstrained assignment of the executions of0exists that uses only Tr processors.

Proof Let the left edge algorithm. be used to assign the executions, starting at time O. Oearly,
from the above result for a finite set of executions we deduce that the left edge algorithm. usesTr processors. It remains to be shown that the assignment obtained by the left edge algo­
rithm becomes periodic. The schedule S is periodic with period P =Icm(P(OI), ••. ,p(on». Now
consider the time intervals [1 + LP, (I + 1)P], 1= 0,1, ... In each of these intervals the left edge
algorithm assigns a finite number of executions to a finite number of processors. Hence, only
a finite number of different assignments exist for such intervals. Consequently, the assignment
obtained by the left edge algorithm necessarily becomes periodic, using only Tr processors. -

Note that the number of executions for which the left edge algorithm has to specify a processor
needs not be polynomial in the number of processors.

2.2 Constrained Periodic Assignment

If all executions of a periodic operation have to be assigned to the same processor, then an
assignment is fully detennined if for each periodic operation the processor on which it is repeatedly
executed is specified. A periodic operation OJ with period p(Oj), execution time e(oj) and reference
time r(Oj), requires an infinite set of time intervals during which it has to be executed. This set is
given by ([r(Oj)+Ip(oj), r(Oj) +Ip(oj)+e(oj) -1] II E 7Z}. Such an infinite set of intervals is called
a periodic interval and is denoted by the 3-tuple (p(Oj), e(oj), r(oj», with 0 < e(oj), r(oj) ~ p(Oj).

Let us first consider the special case, where p(Oj) =p for all OJ E O. Qearly, in this case, an
assignment is periodic with period p. The periodic assignment problem can then be reformulated
as the problem of colouring a circular-arc graph with a minimum number of colours. Figure 2
gives an example of a set of periodic operations and an associated circular-arc graph.

4



...iii I Iii iii i I .....

(a)

4~3

1US
(b)

Figure 3: (a) the executions of a set of periodic operations and (b) the associated periodic-interval graph.
Note that the graph is not a circular-arc graph.

Definition (circular-arc graph). A graph 9 = (V, E) is a circular-arc graph ifwe can associate it
with a circle that is divided into a number ofsegments, numbered clockwise as 1,.. .,n, in such a way
that each vertex Vi E V can be associated with a circular arc Ai = [li,ril, with li,ri E {I, ... ,n},
i.e., an arc on the circle that stretches clockwise from segment Ii to segment ri, containing both Ii
and ri, and such that {Vi, Vj} E E if and only if the corresponding arcs [li,ril and [lj,rj] overlap.

The set of all circular-arc graphs is denoted by SCAG. In Section 3.2 we extensively examine the
problem of colouring circular-arc graphs.

If the operations in 0 can have arbitrary integral periods, then we can reformulate the periodic
assignment problem as the problem of colouring a periodic-interval graph with a minimum number
of colours. Figure· 3 gives an example of a periodic-interval graph.

Definition (periodic-interval graph). A graph 9 = (V, E) is a periodic-interval graph if we
can associate with each venex Vi E V a periodic interval (pi,ei,ri), with pi,ei,ri E III and
o< ei, ri ::; Pi' such that {Vi, Vj} E E ifand only if the corresponding periodic intervals (Pi' ei, ri)
and (Pj' ej, rj) overlap, Le., ifand only if there exist integers 1, m for which

[ri+ lpil ri + Ipi + ei - 1] n [rj +mpj, rj +mpj + ej - 1] '=10.
The set of all periodic-interval graphs is denoted by SPIG. The following theorem gives a neces­
sary and sufficient condition for the overlap of two periodic intervals.

Theorem 2 [Korst, Aarts, Lenstra & Wessels, 1991] Two periodic intervals (Pi,ei,ri) and
(Pj' ej, rj) do not overlap ifand only if

ei ::; (rj - ri) mod 8ij ::; gij - ej,

where gij == gcd(pi,Pj)'

We end this section with some remarks. From the definitions of interval, circular-arc and periodic­
interval graphs it is obvious that

SIG C SCAG C SPIG.

Furthermore, the examples given in Figures 2 and 3 show that the inclusions are strict.
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Finally,we observe that these classes of graphs can all be considered as intersection graphs, Le.,
for each of these graphs we can associate objects with the vertices such that vertices are adjacent if
and only if the associated objects intersect or overlap. Intersection graphs can thus be represented
in two different ways, either as a graph (Le., as sets of vertices and edges) or as a collection of
associated objects (intervals, circular arcs, periodic intervals). The latter representation is called
the intersection model. In the following sections we will use both representations interchangeably,
since both representations apply to periodic assignment. Furthermore, by using Theorem 2, it
follows directly that a graph representation can be constructed from an intersection model in
polynomial time. This holds for periodic-interval graphs and hence also for interval and circular­
arc graphs. With respect to the inverse transformation, often called the recognition problem,
we make the following remarks. Early results on characterizing interval graphs are given by
Lekkerkerk.er & Boland [1962], Gilmore & Hoffman [1964], and Fulkerson & Gross [1965].
Based on these characterizations O(Ji3) recognition algorithms can be constructed, with n the
number of vertices. An O(n+m) recognition algorithm is given by Booth & Lueker [1976], with
n the number of vertices and m the number of edges. A simpler O(n +m) algorithm is given by
Korte & Mt>hring [1989]. Thcker [1980] proved that also circular-arc graphs can be recognized
in polynomial time. Recognizing periodic-interval graphs is discussed in Section 3.3.

3 Graph Colouring

In this section we discuss colouring interval graphs, circular-arc graphs and periodic-interval
graphs. Let us first summarize some results known for colouring arbitrary graphs. Graph colouring
is defined as the problem of colouring the vertices of a graph with a minimum number of colours,
such that adjacent vertices receive different colours [Bondy & Murty, 1976]. The minimum
number of colours ·necessary for colouring a graph G is called the chromatic number of G, which
is denoted by X(G). Graph colouring has been shown to be NP-hard [Karp, 1972], which implies
that it is unlikely that there exists a polynomial-time algorithm that colours every graph with X(G)
colours. Furthermore, Garey and Johnson [1976] showed that if a polynomial-time algorithm
exists that colours any graph G with at most ax(G) +b colours, with a < 2, then there also exists
a polynomial-time algorithm that colours each graph G with X(G) colours. Consequently, unless
P =NP, no polynomial-time approximation algorithm exists that is guaranteed to use ax(G) +b
or less colours, with a < 2. Furthermore, no polynomial-time approximation algorithm is known
that guarantees to colour each graph G with at most ax(G)+b colours, for any fixed a and b. And
there is evidence that such an algorithm does not exist [Linia1 & Vazirani, 1989]. The best known
performance ratio for a polynomial-time approximation algorithm is O(n(log log n)3/(logn~),
where n denotes the number of vertices [Berger & Rompel, 1990]. Hence, graph colouring is
not only difficult to solve to optimality, it also seems equally hard to solve to proximity within a
constant factor of the optimum.
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3.1 Colouring Interval Graphs

As we already showed in Section 2.1, interval graphs can be optimally coloured in o (nlogn) time
by the left edge algorithm of Hashimoto & Stevens [1971]. We showed that this algorithm uses
r JDaX colours to colour the vertices of an interval graph.

Given a set of intervals {[I;, r;] I I; ~ rj, i = 1, ... , n} and a set of colours {Cl, ... ,Cn }. the
algorithm can be restated as follows.

Left Edge Algorithm

1. Sort the intervals in order of nondecreasing left end point.
2. Colour the interyals in this order by assigning to each interval [/j, r;] the colour with the

smallest index that has not yet been assigned to an interval overlapping [I;, rj].

Gupta, Lee & Leung [1979] show that obtaining a minimum number of colours for interval graphs
requires (nlogn) time, indicating that the time complexity of the left edge algorithm is optimal.

3.2 Colouring Circular-Arc Graphs

Garey, Johnson, Miller & Papadimitriou [1980] showed that colouring circular-arc graphs is NP­
hard. Furthermore, they showed that k-colourability, Le., the problem of determining whether a
circular-arc graph can be coloured with k or less colours, can be solved in O(n k! k log k) time.
Thus, for fixed k this problem can be solved in polynomial time.

A circular-arc graph is said to be proper ifnone of the corresponding arcs is completely contained
in another arc. Proper circular-arc graphs can be coloured with a minimum number of colours in
polynomial time. Orlin, Bonuccelli & Bovet (1981] gave an O(n2 log n) algorithm which is based
on the following observation. For proper circular-arc graphs, k-colourability can be transformed
into a shortest path problem which can be solved in O(n'l) time. Combining this with a binary
search procedure results in an O(n2 10g n) algorithm. Successive improvements of this result are
presented by Teng & Tucker [1985] and Shih & Hsu [1989], having O(n1.5logn) and O(n1.5) time
complexities, respectively.

To the best of our knowledge, Tucker [1975] is the only author that considered approximation
algorithms for colouring circular-arc graphs. Here, we consider two approximation algorithms,
viz.

(J) a generally applicable graph colouring algorithm that was first proposed by Welsh & Powell
[1967], and

(iJ) an extension of an algorithm that was proposed by Tucker, which we call Sort&Match.

In the following subsections we formulate both algorithms and examine their worst-case behaviour.
To discuss the worst-case behaviour of an approximation algorithm A we introduce the following
notation. For a colouring algorithm A, let A(g) be the maximum number of colours A might use
when applied to graph g. Then, the performance ratio RA(9) =A(9)/X(g) gives an upper bound
on the relative deviation from the optimum for g.

7



3.2.1 Algorithm of Welsh & Powell

Let a graph 0 = (V, E) and a set of colours {CI,"" Cn} be given. Then the colouring algorithm
of Welsh & Powell [1967] can be described as follows:

Algorithm of Welsh & Powell (W&P)

1. Sort the vertices in V in order of nonincreasing degree. The degree d(vj) of a vertex Vj E V
gives the number of vertices to which Vj is adjacent.

2. Colour the vertices in this order by assigning to each vertex Vj the colour with the smallest
index that has not yet been assigned to a vertex that is adjacent to Vj.

For arbitrary graphs, W&P can give results that are arbitrarily far from optimal, i.e., Rw&p(O) has
no finite upper bound. Moreover, graphs exist for which the perfonnance ratio Rw&p(Q) grows
linearly with IVI. This can be seen from the following subset of instances. Let Om =(Vm, Em) with
Vm = {aj, bj I 1 :5 i :5 m} and Em ={ {aj, bj} I i::l j}. Since all vertices have equal degree, they
can be ordered arbitrarily in the first step. If the order of the vertices is aI, bI, a2, In, ... ,am, bm,
then W&P(Qm) =m, while X(Q) =2. Fortunately, Om is not a circular-arc graph, if m > 3.

Colouring circular-arc graphs with W&P requires less than twice the minimum number of colours,
as is shown by the following theorem.

Theorem 3 For any circular-arc graph 0, RW&P(Q) < 2.

Proof The proof .is by contradiction. For convenience we use 'vertices' and •circular arcs'
interchangeably in this proof. Suppose that for some circular-arc graph 0 the algorithm of Welsh
& Powell requires m colours, with m ~ 2X(Q). Clearly, in that case some arc aj receives colour
Cm and must consequently be adjacent to at least m - 1 other arcs, which receive a colour from
{CI, ••• ,Cm-I} prior to arc aj. Let this subset of neighbours of aj be denoted by N(aj). Clearly,
d(aj) ~ d(aj) for each .aj E N(aj). Now we consider two cases, viz.

(1) None of the arcs in N(a;) are completely contained in at. Then, each of the arcs in N(aj)
covers at least one of the end points of ai. Hence, one of the end points is covered by at
least rm2' 11arcs. Since rm2' 11~ X(Q)' this results in a thickness of at least X(Q)+ 1. How­
ever, this contradicts the fact that X(Q) is greater than or equal to the maximum thickness.

(2) One or more arcs in N(a;) are completely contained in at. Then, there is at least one of
these arcs, say arc aj, such that none of the other arcs in N(ai) are completely contained in
aj' Since aj is completely contained in ai and d(aj) ~ d(aj), we conclude that d(aj) = d(aj).
Consequently, this implies that all arcs that overlap with aj also overlap with ajJ and vice
versa. Hence, one of the end points of aj is covered by at least rm2'11arcs. Again, this
leads to a contradiction with the fact that X(Q) is greater than or equal to the maximum
thickness.

Hence, for both cases we have derived a contradiction, which completes the proof of the theorem.

•
We next show that the worst-case performance bound given by Theorem 3 is tight. To that end,
we first give the following lemma.
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Lemma 1 For all mEN, gcd(",1,2m -1) = 1.

Proof Let a = gcd(m2 ,2m - 1). Suppose a > 1. Now, if al",1 and al(2m - 1), then also for any
prime factor 11"' of a, 1I"'Im2 and 1I"'1(2m - 1). But, for any prime number 11"', if 11"'1",1 then 1I"'Im and
if 1I"'Im then 11"',{'(2m - 1). Consequently, a cannot be greater than 1. •

Using Lemma 1 we can now prove the following theorem.

Theorem 4 For any c > 0, a circular-arc graph g exists such that Rw&:p({}) > 2 - E.

Proof This follows directly from the set of instances defined below. Let 8m be a set of m2 arcs
on a circle with circumference 2nz2, with m odd and m ~ 3. The arcs are defined by

«41m - 21) mod 2nz2, (41m - 21 +2m - 1) mod 2m2), 1= 0, 1, ... ,,,,1 - 1.

All of these arcs are different, since gcd(",1, 2m - 1) =1, as shown in Lemma 1. All arcs overlap
with 2m - 2 other arcs. Consequently, all vertices in the corresponding circular-arc graph have
the same degree and the arcs are thus coloured in an arbitrary order by W&P. If the arcs are
coloured in the order as given above, then W&P requires 2m - 1 colours. With each new colour
W&P colours at most (m + 1)/2 arcs. However, an optimal colouring requires only m colours.
Hence, choosing m > 1/E results in a graph that has the required property. This completes the
proof of the theorem. . •

3.2.2 Sort&Match Algorithm

Elaborating on the work of Tucker [1975], we present.a two-step approximation algorithm for
colouring circular-arc graphs, called Son&Match. For reasons of simplicity the algorithm is
formulated in terms of colouring circular arcs instead of vertices.

Sort&Match (S&:M)

1. Determine on the circle a point t with minimum thickness. Partition the set of arcs into two
subsets A and B, where A is the set of arcs that cover point t. Hence, IAI = Trm. Now,
the arcs in B define an interval graph. Consequently, the arcs in B can be coloured, using
the left edge algorithm, with Trx colours.

2. Determine a maximum subset A' ~ A, whose arcs can be coloured with a colour that has
already been used in step 1. This problem can be formulated as a maximum-cardinality
matching problem in a bipartite graph g =(V, E), with V =VI U V2, Each vertex v E VI
is associated with an arc in A and each vertex u E 112 is associated with a colour that is
used in step 1. An edge {v, u} is in E if the arc associated with v can be given the colour
associated with u. This matching problem can be solved efficiently using an augmenting
path algorithm [Edmonds, 1965; Hopcroft & Karp, 1973]. Finally, each remaining arc in
A - A' is given a different free colour.

The following theorem states the worst-case performance of S&M.

9



Theorem 5 For any circular-arc graph g, RSd:MW) ~ 2.

Proof Since the arcs in subset B are coloured with Trx colours and the arcs in subset .A are
coloured using at most Trn colours, we obtain that S&MW) ~ Trx +Trn ~ 2Trx. Combining
this result with the fact that xW) ~ TF, we obtain the theorem. -

Tucker [1975] only considers the first step of the algorithm presented above, but essentially proves
the same worst-case performance bound. We can again prove that this bound is tight.

Theorem 6 For any c > 0, a circular-arc graph g exists such that RSd:MW) > 2 - c.

Proof This is directly derived from the following subset of instances. Let Sm be a set of 3m - 3
arcs on a circle with circumference 6m, m ~ 4, defined by

(2/,2m+2/-1), I=O, ,m-l,
(2m + 2/+ 2,4m+ 21 +1), 1=O, ,m - 1, and
(4m +2/+2,2/+ I), 1= O, ,m - 4.

Applying S&M to Sm results in a colouring with 2m - 3 colours, while the minimum number of
colours is m. Hence, by choosing m > 3/c, we obtain a graph with the required property. This
completes the proof of the theorem. _

Note that applying W&P to the above set of arcs may also result in a colouring with 2m - 3
colours. Hence, choosing the best result of both S&M and W&P does not improve the worst case
performance ratio of 2.

3.2.3 Experimental Results

In this subsection we present some experimental results that give an indication of the performance
of S&M, W&P and min(S&M, W &P). The results are obtained by applying the algorithms to

randomly generated instances. Each instance contains 100 arcs on a circle with a circumference
equal to 1. The left end point of an arc is chosen uniformly from the interval [0,1) and the length
of an arc is chosen uniformly from the interval [minlength,maxlength), with 0 ::; minlength ::;
maxlength ::; 1. For different choices of minlength and maxlength, Table 1 gives the mean error
and corresponding mean deviation for S&M, W&P and min(S&M, W &P). Since the minimum
number of colours is unknown, errors are calculated from the cardinality of a maximum clique.
The cardinality of a maximum clique clearly gives a lower bound on the minimum number of
colours. Although determining the cardinality of a maximum clique is NP-hard for arbitrary
graphs, it can be obtained in polynomial time for circular-arc graphs, by iteratively constructing
a maximum matching in bipartite graphs [Gavril, 1974]. Consequently, the errors from the
minimum number of colours are no more than the given errors. Comparing both algorithms, we
see that on average S&M outperforms W&P if the arc lengths are small. However, for larger
arc lengths W&P produces better average results than S&M. This motivates the interest in the
best result of both algorithms. From Table 1 we observe that the mean error of min(S&M,W&P)
remains almost always within 5% of the optimum.

An important exception is given by instances with arc lengths chosen from [0.3,0.4). Both
S&M and W&P seem to perform less well for these instances - they give average errors of
27.0% and 16.6%, respectively. These large errors may have been caused by the fact that for
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max. arc 1eDgth

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0

min. 0.0 0.00.0 0.62.6 1.2 3.2 2.13.7 435.5 6.15.7 934.9 1034.8 8.04.0 5.93.0
arc 2.5 43 2.83.7 2.72.9 3.5 2.5 3.5 2.7 3.62.5 2.72.0 1.9 1.6 131.4 0.71.0

length 0.00.0 031.4 0.61.7 1.0 1.9 2.02.0 2.82.6 2.5 1.9 1.8 1.6 1.2 13 0.61.0

0.1 0.82.5 2.5 53 4.2 5.6 4.95.6 735.9 10.16.0 9.643 6.43.5 5.13.2
4.94.0 633.7 5.63.4 5.633 4.2 2.5 3.02.1 1.41.6 0.81.1 0.60.8
0.61.8 1.733 2.94.0 3.43.9 3.42.7 2.92.2 1.41.6 0.81.1 0.5 0.8

0.2 6.07.7 4.76.7 837.4 735.5 8.75.0 6.5 3.6 4.42.8 3.5 2.4
5.43.9 7.74.9 6.83.8 3.62.2 1.41.4 0.8 1.1 0.5 0.8 0.40.7
3.64.1 3.85.0 5.44.7 3.2 2.4 1.2 13 0.8 1.1 0.5 0.8 0.40.7

0.3 27.013.6 10.2 8.5 5.643 4.03.0 2.4 1.8 1.81.6 1.41.2
16.67.4 5.63.4 13 1.4 0.5 0.9 0.2 0.4 0.10.4 0.10.4
1637.8 4.5 4.0 1.2 1.4 0.5 0.9 0.10.4 0.10.4 0.10.4

0.4 1.1 2.1 1.2 1.3 0.40.7 0.2 0.5 0.2 0.5 0.00.4
1.8 1.8 0.2 0.5 0.00.2 0.00.2 0.00.1 0.00.0
0.61.1 0.10.4 0.00.1 0.00.1 0.00.0 0.00.0

Table 1: Results obtained by applying S&M, W&P and min(S&M,W&P) to randomly generated circular-
arc graphs. Each entry in the table gives the means error and mean deviation for S&M, W&P and
min(S&M,W&P). respectively. for both algorithms. The results of each entry are obtained by apply-
ing the algorithms to 100 instances. Each instance contains 100 circular arcs. for which left end points are
chosen uniformly from [0, 1) and arc lengths uniformly from [min. arc length, max. arc length).

these instances the cardinality of a maximum clique is a bad approximation of the chromatic
number. Experimental results, however, contradict this assumption. We have optimally colomed
50 instances from this class each containing 30 arcs. For these instances the chromatic number
deviated on average only 1% from the cardinality of the maximum clique.

In addition to the information in Table 1, we mention that, except if arc lengths are chosen from
[0.3,0.4), the observed maximum error for S&M, W&P and min(S&M.W&P) is 33.3%, 21.2%
and 18.4%, respectively. If the arc lengths are chosen from [0.3,0.4), then the observed maximum
error for S&M, W&P and min(S&M.W&P) is 56.4%,32.5% and 32.5%, respectively.

From the experimental results presented in this subsection, we conclude that the average-case
performance of S&M and W&P is usually much better than the worst-case bounds given in the
previous subsections. Furthermore, we conclude that both algorithms perform less well if the
lengths of the circular arcs are approximately one third of the circumference of the circle.

3.3 Colouring Periodic-Interval Graphs

Colouring periodic-interval graphs is NP-hard. This follows immediately from the fact that
colouring circular-arc graphs is NP-hard and that each circular-arc graph is a periodic-interval
graph. The next theorem gives a somewhat surprising result.
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Theorem 7 Each graph is a periodic-interval graph.

Proof Let 9 =(V, £) be an arbitrary graph. We show that we can associate with each Vi E V a
periodic interval (pj,ei,ri), such that, for each pair of vertices Vi, Vj E V, {Vi, Vj} E £ if and only
if the associated periodic intervals (Pj, ej, rj) and (Pj' ej. rj) overlap.

First, construct the complementary graph gc =(V, £C), for which {Vj, Vj} E £c if {Vi, Vj} ¢ £, and
vice versa. Next, construct all maximal cliques of gc, denoted by Ct,C2,''''Cm. A maximal
clique is a complete subgraph that cannot be enlarged by adding one more vertex. Fmthermore,
associate with each maximal clique Ci a unique prime number ?ri, with ?ri > n. We can now
associate a periodic interval (Pi' ej, rj) with each Vj E V according to: ri = i, ej = 1, and
Pi = I1jEl; ?rj, where 1j = {; I Vi E Cj}. Note that gcd(pj,Pj) = 1 for two periodic intervals
(pi,ei,rj) and (Pj,ej.rj), for with {Vj, Vj} E £. Consequently, using Theorem 2, they necessarily
overlap. Furthermore, for each independent set in g, the greatest common divisor of the periods
of the associated periodic intervals is at least n. The associated periodic intervals do not overlap

therefore. This completes the proof of the theorem. -

In Section 1 we stated that no polynomial-time approximation algorithm is known that colours
arbitrary graphs within a constant factor of the optimum and that there is evidence that no such
algorithm exists. Note that Theorem 7 does not imply that the same holds for periodic-interval
graphs, since the transformation from an arbitrary graph to a set of periodic intervals, as presented
in the proof of the theorem, is not polynomial. Hence, it remains an open problem whether a
polynomial-time algorithm exists that colours periodic intervals within a constant factor of the
optimum.

We end this paper with the observation that it also remains open whether or not a polynomial-time
algorithm exists for the transformation of a graph representation to an intersection model.
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