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Nonlinear Marine Structures 
With Random Excitation 
Various important types of offshore structure contain significant nonlinearities or 
time-varying coefficients in their equations of motion. Well-known examples include 
tension leg platforms, free-hanging risers, single-buoy moorings, ships moored 
against fenders and vessels constrained by stiffening moorings. When subject to 
sinusoidal wave excitation, time domain mathematical models of these structures 
can display large subharmonic or chaotic motions. This paper shows that such 
behavior is often an artifact of the regularity of the excitation and is usually unlikely 
to present a significant problem in a random sea. Narrow-band vessel response can, 
however, generate near-harmonic motions to create conditions in which these 
instabilities may become important. 

Introduction 
Some of the classical nonlinear and time-varying equations 

of engineering mathematics appear in the modeling of the 
dynamic behavior of offshore structures. The dynamics of 
free-hanging risers, tension leg platforms and suspended loads 
can be cast in the form of Mathieu's equation; wave excitation 
causes the time variation of the spring parameter (references 
[1-3]). Articulated loading towers, constrained by a connec
tion to a massive tanker or vessels moored against fenders 
can be characterized by a second-order differential equation 
with a bilinear spring rate whose value changes with the sign 
of the displacement (reference [4]). 

Disturbingly large subharmonic resonances or chaotic mo
tions can result if the nonlinear equations (reference [4]) or 
the spring in the Mathieu equation varies harmonically (ref
erence [1]). This paper presents physical and mathematical 
arguments which indicate that these large responses are caused 
by a phase lock between the motion of the structure and the 
external excitation, something which is generally unlikely to 
last for long if a structure is subject to a random excitation. 

To test these predictions, two typical systems are simulated 
and randomness is introduced into the previously regular 
forcing in three different ways; as additive white noise, as 
frequency wander and as bandwidth spread. The responses 
are Fourier analyzed and maximum, minimum, mean and 
rms values are recorded. Random inputs cause the Poincare 
points to wander in a "Poincare region"; these are displayed 
as a function of the randomness parameter. The size of the 
subharmonic motions decays quickly with increasing values 
of the randomness parameter and they are generally small for 
realistically random wave forcing signals. 

Where the motion of a vessel is a significant input to a 
dynamic system, the filtering action of the vessel's dynamics 
driven by the wave action can generate a relatively regular 
motion; Patel [3] reports observations of the Mathieu excita-
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tion in the motion of a load carried by a floating crane. 
Similarly, free-hanging risers could be excited by near-har
monic heaving of the supporting vessel. Alternatively, the 
filtering action of distance could produce a narrow-banded 
spectrum at a distance from a storm; the waves in such an 
extreme narrow-banded swell might be small but more dan
gerous than those from a larger but broader-banded spectrum. 

Complex dynamic behavior of this type is likely to be very 
important in the generation of noise by rotating machinery 
which can impart an extremely regular forcing signal. 

Much of the study to date of nonlinear systems has focussed 
on deterministic problems and has ignored the stochastic 
nature of both typical inputs and the chaotic and subharmonic 
responses. Equally, many studies of random phenomena have 
focussed on stochastic analysis of essentially linear systems. 
This admittedly limited and exploratory paper will hopefully 
illustrate the value of an integrated approach and demonstrate 
the importance of each field to workers in the other. 

Mathematical Models 

The detailed derivation and analysis of the mathematical 
models analyzed here is presented in the references. The 
bilinear spring and the Mathieu equation were chosen as 
representative nonlinear and time varying systems; the con
clusions which result are probably valid for a range of impor
tant physical systems and nonlinearities. 

The tension leg platform (reference [1]) can move horizon
tally under the action of incident waves, but is restrained by 
taut tethers which attach it to the seabed; their restoring force 
can be approximated by a linear spring of strength T(t)/L 
where L is the tether length and T(t) is the instantaneous 
tension which varies about a mean value, T, in response to 
the vertical wave forces acting on the platform. If the platform 
mass and added fluid inertia is written as M and N is the 
effective fluid damping due to drag and wavemaking effects, 
the motion is represented as a second-order differential equa
tion with a time-varying spring. 

Mx + Nx + xT(t)/L = F(t) (1) 
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where F(t) is the exciting force due to the waves. The time-
varying tension is caused by the vertical wave forces acting 
on the platform and changes at the wave frequency. Jefferys 
and Patel [5] discuss the analysis of this equation and elucidate 
the worst possible behavior for T{t), which maximizes the 
work done and hence the steady oscillation amplitude of the 
platform. The external forcing is at a frequency well removed 
from the resonant frequency, and hence can do no work on 
resonant motions; it can be ignored in a stability analysis. 

The system can be expressed as a damped Mathieu equation 
by appropriate normalization and renaming 

x + 2cw„x + w„2[l + f(t)]x(t) = 0 (2) 

where w„ is a natural frequency and c is a damping ratio. The 
spring rate proportional variation f(t) is initially assumed 
sinusoidal at frequency w; substitution for x removes the 
damping term and yields the classic Mathieu equation. 

Hsu [2] discusses the analysis of a free-hanging marine riser, 
suspended from a floating drilling vessel, and shows that the 
Mathieu equation again results; this time the time-varying 
spring stiffness is caused by the vertical motions of the sus
pension, which introduces a time-varying spring into the 
second-order differential equation, which characterizes each 
mode of the riser. 

Patel et al. [3] show a similar effect in the motion of the 
hook of a crane vessel; the vertical motion of the jib tip 
changes the tension of the load-carrying cable, which leads to 
a Mathieu equation for the pendulum motion of the load. 

Bilinear springs are fairly common; Thompson et al. [4] 
analyze the motion of a single-buoy mooring, a columnar 
buoy, pivoted at its base, which transfers oil from a sea bed 
pipeline to a moored tanker. When the connection to the 
tanker is slack, only hydrostatic force restores the buoy to its 
upright position; if the displacement of the buoy exceeds a 
certain value, the mooring hawser tightens and its longitudinal 
stiffness is added to the restoring force. As a first approxima
tion, the tanker may be assumed infinitely massive and the 
hawser may be assumed to tighten at zero displacement. 

The equation of motion is 

Mx + Nx + K(x)x = F(t) (3) 

where / is the buoy inertia, N is a damping and K(x) is a 
position-dependent spring, which changes rate by a factor of 
a according to the sign of x 

K(x) = Kx>0 K(x) = aKx<0 (4) 

The resulting normalized equation is 

n2x + 2cnx + p(x)x = f(t) (5) 

P(x) = (1 + -faf/Wom2) x > 0 (6) 

P(x) = (1 + V^)2/(4«2) x < 0 (7) 

The undamped average natural frequency is denoted by n, 
and c is a damping constant. A forcing function, f(t), initially 
assumed to be sinusoidal excites the system. 

In the limit as a, the spring rate ratio, tends to infinity, this 
system becomes an "impact oscillator"; the state cannot enter 
the half-plane where x < 0 and "bounces" back into the 
positive half-plane with the opposite velocity whenever the 
boundary is encountered. This is a reasonable model of a ship 
moored against fenders and restrained by soft catenary moor
ings. 

Nomenclature 

a = ratio of spring rates K, K(x) 
c = damping ratio M 
ei = randomness parameter N 

F(t),f(t) = forcing of excitation 

Thompson et al. [4] show that for small values of a typically 
less than three, subharmonic behavior is difficult to find; this 
is comforting in that it implies that small departures from 
nonlinearity will not cause qualitatively nonlinear behavior. 

The behavior is linear in each half of the phase space and 
the response is merely scaled by the forcing so this is a 
particularly "simple" form of nonlinear system. Nonetheless, 
when forced by regular sinusoidal excitation it can display 
extremely complex subharmonic and chaotic behavior which 
is infinitely initial condition and parameter sensitive (refer
ence [4]). These responses can coexist with stable small solu
tions at the fundamental frequency; which one results depends 
purely on the initial conditions, a problem which can cause 
serious problems in simulations or model tests. 

"Tugger" lines attached to a crane load to restrain Mathieu 
oscillations could also generate a similar equation of motion, 
leading to an alternative form of instability! 

Cause of Subharmonic Motions 

The existence, stability and size of subharmonic motions 
of harmonically forced and autonomous systems can be pre
dicted by describing function techniques; for a comprehensive 
treatment, see Mees [7]. This method is very powerful so long 
as the forcing is regular, but is less easy to apply if the 
excitation is (pseudo) random; the arguments summarized in 
the forthcoming are intended to provide insight into the 
physical basis of the problem and indicate the importance of 
the regular forcing. 

An "instability" is a persistently growing motion which 
occurs if energy is injected into a system faster than it can be 
dissipated. The amplitude of oscillation continues to grow 
only while the energy input is greater than the rate of dissi
pation. Turbo-generators, for instance, possess numerous 
whirl and torsional resonances at frequencies lying between 
zero and their operational speed, but this causes no problem. 
They are run through the resonant frequencies quickly and 
spend little time with their rotational speed in the critical 
regime so the oscillation amplitude never reaches its steady 
(unacceptable) level. 

In the Mathieu instability, the time-varying spring force 
does not work on the system faster than it can be dissipated 
by a linear damper at any response amplitude. The work done 
by the spring is 

J f'T 

I (1 + f{t))x{t)x(t) dt (8) 
n 

Integrating by parts 

E = " [f *2(0] + f 1 f{t)x2{t) dt (9) 

The first term represents the energy stored in the time-
independent spring, while the second is the integrated work 
done by the time-varying part of the spring. Hence, the power 
input by the spring is 

E = Kf{t)x2(t)/2 (10) 

Clearly, net positive work will be done if the spring rate 
increase, K • f{t), is large whenever the modulus of x(t) is 
large. The amplitude of oscillation increases until the average 
energy dissipation equals the energy input, so long as the 
phase relationship between the spring change, f(t), and the 
motion, x(t), is maintained. If the motion is harmonic and at 

= spring rate n — normalized frequency 
= inertia w = frequency 
= damping x, X = displacement 
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the natural frequency of the system, as it must be for danger
ously large oscillations to occur in the absence of external 
forces, the spring must vary at twice this resonant frequency, 
the result predicted by classical theory. 

Linear damping dissipates either more or less energy than 
the spring puts in at any amplitude of harmonic motion; if 
an oscillation occurs, its amplitude will finally be limited by 
nonlinear effects. In marine systems, quadratic damping usu
ally dominates and limits any Mathieu instabilities to finite, 
albeit potentially unacceptable amplitudes. 

The energy dissipation per cycle of linear and quadratic 
dampers, NL, NQ subject to motion of amplitude X is 

-1 

dEL = NLW'-X2/! 

dEQ = (ViT)NQw3X3 

(11) 

(12) 

If the spring variation is sinusoidal with amplitude^, then 
maximum motion amplitude is 

X = 
3TT(A - 2NLw) 

\6NQw2 (13) 

If the excitation,/(r), is not phase locked to the response, 
as is likely in many marine applications, the work done by 
the spring can be negative as often as it is positive; the resulting 
oscillation will be small unless a great deal of energy is input 
by a sequence of a very few waves of about the right period 
and phase. Thus, the spring variation must be regular and 
greater than a limit defined by the level of damping if signif
icant oscillations are to occur. 

The other nonlinear systems are conservative; work is done 
by the external force acting on the system. If it is harmonic 
and the displacement is expressed as a Fourier series of sub 
and superharmonics (reference [7]), the net work done is due 
only to the product with the velocity term at the forcing 
frequency. 

-r x(t)f(t) dt (14) 

x(t) = £ akcos(wt/k + 0t_) + bkcos(kwt + 4>k+) (15) 
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Fig. 1 White noise Poincare points bilinear spring 

(c) 

E = (fl.cos 0,- + 6,cos 0i+) | / | /2 (16) 

Any signal, x(t), which satisfies the equations of motion 
and yields a positive value for E can grow; the forcing puts 
no energy into sub or superharmonic motions directly. The 
nonlinearity couples the fundamental response to low-fre
quency motions, which can grow to large amplitude if the 
subharmonic coincides with a resonance. In other words, 
some of the harmonics generated when the resonant response 
passes through the nonlinearity are at the forcing frequency; 
the essence of the describing function technique is to match 
these harmonics according to the constraints imposed by the 
differential equation. 
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Types of Randomness 

To investigate the effect of random inputs, the basic sine 
wave is to be perturbed in some "continuous" fashion which 
can be characterized by a randomness parameter, e. Three 
basic approaches are discussed here, only the last of which 
yields a realistic Gaussian signal. 

1 The sine wave can be modified by additive random 
noise which is some fraction, e, of the amplitude of the 
oscillation. The spectrum of the exciting force is a delta 
function at the forcing frequency with a steady component at 
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Fig. 2 Frequency wandering Poincare points bilinear spring 

all frequencies. 

fit) = a(sin w„t + eiw(O) (17) 

In the simulations described in the forthcoming, the input 
signal for the simulation was generated at equal time steps 
and is perturbed by a random number of standard deviation 
e, each time 

2 The frequency of the sine wave may be allowed to 
"walk" at random throughout a frequency band of half-width, 
e2, centered on the base frequency, w0. 

f(t) — a sin wt 

w0{\ - e2) < w < w„(l + e2) 

(18) 

(19) 

(b) 

Clearly, there is some arbitrariness in the rate at which the 
frequency is allowed to change; in the work reported here, a 
change was allowed every time the phase reached 2w. Webster 
and Trudell [8] discusses signal generation by this technique 
in some detail. 

The resulting time history looks very like that of the original 
sine wave, while the spectrum fills a block of half-width e2w0 
around the base frequency w0. The amplitude of the compo
nents is chosen so that the total power is independent of 
bandwidth e2. 

3 Alternatively, the signal can be composed of a summa
tion of equal amplitude sinusoids lying within the bandwidth 
specified in the foregoing. 

N 

At) = 2 a,sin (w,t + fr) (20) 
I = I 

(1 - e3)w0 < w, = kDW<(\ + e3)w0 (21) 

where 

DW=2TT/T (22) 

In this work, the signal was generated by inverse Fourier 
transformation of the frequency domain representation; the 
frequency components were multiples of a base frequency, 
DW, chosen to yield a time series of adequate length, T. The 
frequencies, w„ were chosen to lie on FFT "teeth" so that all 
components completed an integer number of cycles during 
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the simulation period. The fundamental wa was at a frequency 
of 16 DW and the amplitudes were selected so that the total 
power remained constant. Component phases may be set 
initially equal or may be randomized. 

Although the spectra of this signal and the previous one are 
very similar, a nonlinear system will respond to them very 
differently. The response of a linear system to an input is the 
sum of the responses to its separate components; a nonlinear 
system responds to the time series "directly" and superposi
tion is invalid. The first two signals display a very non-
Gaussian probability distribution, whereas the third ap
proaches the Gaussian distribution as the number of sinusoids 
in the frequency band approaches infinity. Tucker et al. [9] 
point out that a signal simulated by deterministically chosen 
amplitudes, as in this paper, displays inadequate variance of 
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Fig. 3 Bandwidth spread Poincare points bilinear spring 

power; strictly, to obtain "correct" results, we should also 
randomize the component amplitudes if a properly random 
seaway was to be simulated by the third technique. 

This third type of signal is least like a sine wave and is 
expected to have the greatest impact on the nonlinear phe
nomena. 

A typical North Sea JONSWAP spectrum has most of its 
energy in a band of half-width 0.15, but energy outside this 
limit could have some impact on the behavior of the nonlinear 
and time-varying systems investigated here. Narrower spectra 
than JONSWAP (itself narrower than the Pierson-Moskowitz) 
can be caused by swell from a distant storm; the longest and 
hence fastest waves arrive first and can be fairly monochro
matic. Our results are not intended to represent responses to 
typical spectra, but merely illustrate the fundamental physics 
of the problem. 

In all cases, the input was generated so that there were 16 
data samples per cycle of the fundamental frequency and 
2048 samples in total. Thus, the fundamental executes 128 
cycles during the simulation. 

Digital Simulation 

Previous work (reference [4]) on the bilinear and impact 
oscillators with monochromatic forcing has used the analytic 
solution to the motion of the system in the two half-planes in 
a numerical solution scheme; this approach is not possible 
with the Mathieu system and is difficult with the randomly 
forced bilinear oscillator. An implementation of a variable 
step length Adams method with interpolation to yield equally 
spaced output worked well on the Mathieu problem and the 
bilinear oscillator with small values (less than 10) of the spring 
ratio a. Although the spring ratio is discontinuous at t = 0, 
the spring force is itself zero there and the numerical errors 
introduced by this approach were insignificant; good correla
tions with the semi analytic approach of reference [4] resulted 
under harmonic forcing. 

The impact oscillator (reference [4]) has also been simulated 
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using a related routine which allows intervention during the 
integration; when the displacement enters the negative half-
plane, the simulation is stopped and the velocity at x = 0 is 
recovered by interpolation. The simulation is then restarted 
with zero displacement and the opposite velocity; again, this 
technique correlated well with earlier results when harmonic 
forcing was employed and allowed stochastic simulation of 
the impact oscillator. 

Analysis of Response 
The response was analyzed in essentially the same way, 

whatever the nature of the forcing input. 
A minor generalization of the definition of Poincare points 

was necessary when the forcing frequency wandered. Under 
regular harmonic excitation, these "snapshots" of the state of 
the system are recorded at the fundamental frequency at an 
arbitrary point in the cycle; if a subharmonic of order n is 
present, they fall on n points in the position-velocity plane. 
To use them under frequency-wandering excitation, they 
must be recorded at some regular phase with respect to the 
forcing; here the zero upcrossing of the forcing function was 
used. If the randomness was introduced by bandwidth spread 
or additive white noise, the Poincare point were recorded at 
the fundamental frequency and an arbitrary phase. 

Maximum and minimum values were recorded and the 
mean and rms were computed. 

The response signals were split into 4 equal length blocks, 
fast Fourier transformed and the resulting power spectra 
averaged to improve statistical reliability. Within each block, 
the fundamental executes 16 cycles, the second-order subhar
monic 8 and the fourth-order subharmonic 4. Thus, subhar-
monics of the order 2", and any superharmonics fell exactly 
on FFT teeth, and windowing problems were eliminated. 

Examples 

This pilot study is limited to the bilinear and Mathieu 
systems with specified parameters. These nonlinear and time 
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varying systems provide an illustration of the relation between 
the regular forcing and subharmonic responses which is valid 
for other parameter settings investigated but not reported 
here, and probably other systems. 

(a) The Bilinear Oscillator. Thompson et al [4] have 
carried out an extensive analysis of the bilinear oscillator 
discussed in the foregoing; the response is simply scaled by 
the size of the forcing, but is a strong function of frequency 
and initial condition. This study uses parameters which led 
to either a strong fourth-order subharmonic or a small first-
order solution, depending on the initial conditions. The 
damping, c, is set at 0.1, the forcing frequency, n, is 3.95 the 
ratio of spring stiffnesses, a is 10; the system was always 
started on the subharmonic response. 

The forcing function f{t) takes one of the three forms 
discussed in the foregoing; the effect of each on the behavior 
was investigated in depth. 

Figures 1, 2, and 3 show the same information for the three 
different types of randomness, additive white noise, frequency 
wander and frequency superposition. Each plot shows the 
Poincare points for different values of the randomness param
eter e; note the different starting phase for the frequency-
wandering case means that the four points are in different 
regions of the phase space. In each case, as the randomness 
increases, the Poincare region expands in a characteristic 
fashion until they merge; at the highest value of e, there is no 
obvious grouping and the spectra must be consulted for 
evidence of fourth-order subharmonic response. 

The plots of the fourth and first-order subharmonic re
sponse against e (Figs. 4(a), (b), (c)) show that the first 
harmonic amplitude is not strongly affected by randomness, 
while the fourth-order response is dramatically decreased by 
it. As expected, the most nonsinusoidal signal, the frequency 
superposition causes the most degradation. The rms of the 
signal is simply the sum of the powers of these two compo
nents since no other frequencies are significant. 

The maxima are plotted against e in Fig. 5; the maxima fall 
more slowly than the spectral values, suggesting that while 
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randomness decreases the rms, occasional "appropriate" se
quences of inputs can still generate a particularly strong 
response. The time series are not long enough to make firm 
predictions about the long-term extreme values, something 
which is rather difficult for the non-Gaussian time series 
produced by such a nonlinear system. This is an area of 
current research. 

(b) The Mathieu Oscillator. The Mathieu oscillator was 
forced by a fundamental frequency at twice its natural fre
quency, the condition known to cause the largest response. 
When the Mathieu instability occurs, no linear damping can 
restrain its response; it is known (reference [6]) that small 
amounts of square law damping limits the oscillation ampli
tude to a finite value without significantly interfering with the 
mechanism of the instability, so this was included. It is, 
conveniently, also representative of the dissipation mecha
nism of many marine structures. 

The square law damping ratio was set to a level of 0.1 and 
the strength of the Mathieu forcing, / was fixed at 0.5, a 
substantial value for many typical problems. 

Figure 6 shows plots of rms response for a range of values 
of e and all types of randomness. Here, the fundamental 
response is not involved in the energy input and is negligible 
with respect to the subharmonic response at the resonant 
frequency. White noise and frequency wander have relatively 
little effect on the amplitude of oscillation; the bandwidth 
spread destroys the subharmonic resonance very effectively. 
Figure 7 shows the maxima as functions of the randomness 
parameters. 

The Poincare points display unexciting behavior, similar to 
that shown in Figs. 1 and 2 for the first two types of random
ness; the frequency wandering plots are shown here in Fig. 8. 

Conclusions 

Randomness in the input to a nonlinear system can dra
matically increase the amplitudes of subharmonic and chaotic 
responses. In some marine applications, the filtering effects of 
distance or vessel dynamics can generate spectra of extreme 
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narrow handedness, which are unexceptional in amplitude 
terms yet may be extremely dangerous if they excite a lightly 
damped resonance. 

The average subharmonic response in any sea state may be 
small, but the extreme may not; some "appropriate" sequence 
of waves may excite the system through a nonlinear mecha
nism to generate a dangerous transient motion. 

The severity of the nonlinear response is a roughly contin
uous function of the severity of the nonlinearity; models based 
on reasonable approximations to linearity will exhibit sub-
harmonic or chaotic behavior, which is either small in ampli
tude terms or is weak in that an implausibly large number of 
regular forcing cycles are required to build the motion up to 
its steady amplitude. 
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Fig. 8 Mathieu Poincare points—bandwidth spread 

The system damping is also an important parameter; while 
the numerical results here are restricted to one value of the 
damping parameter, it is clear that lightly damped systems 
will be most susceptible to a fast buildup of subharmonic 
energy caused by light nonlinear or time-varying forcing. 

While this study has been limited to one representative 
from each of time-varying and nonlinear systems, the conclu
sions should be broadly applicable as they are based on the 
fundamental principles of energy conservation. 
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