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Based on the discrepancy principle, we develop in this paper a new method of choosing
the location of source points to solve the backward heat conduction problem (BHCP) by
using the method of fundamental solutions (MFS). The standard Tikhonov regularization
technique with the L curve method for an optimal regularized parameter is adopted
for solving the resultant highly ill-conditioned system of linear equations. Numerical
verifications of the proposed computational method are presented for both the one-
dimensional and the two-dimensional BHCP.
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1. Introduction

The method of fundamental solutions (MFS) was introduced by Kupradze and Alek-
sidze [1964]. In the last decade, it has been successfully used in multivariate inter-
polation and in solution of partial differential equations (PDEs) [Golberg and Chen
(1999)], e.g. the solutions to potential problems by Mathon and Johnston [1977],
the exterior Dirichlet problem for acoustic equations by Kress and Mohsen [1986],
the general second order linear elliptic PDEs by Clements [1998] and the homoge-
neous diffusion problems by Young et al. [2004]. Recently, Hon and Wei applied the
MFS to solve the Cauchy problem of heat equations in the one-dimensional Hon
and Wei (2004) and multidimensional cases [Hon and Wei (2005)]. The recent devel-
opment of the MFS and related methods can be found in the paper of Fairweather
and Karageorghis [1998]. The conditions for the uniqueness of the backward heat
conduction problem (BHCP) had been investigated by Miranker [1961].

It is known that the location of source points in the MFS plays a very important
role in the accuracy of the method. Until recently the placement of the source
points fell mainly into two categories: on a circle containing the solution domain
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[Kress and Mohsen (1986)] and a line below the initial time for parabolic equations
[Hon and Wei (2004, 2005); Mera (2005)]. Most researchers choose the radius of the
circle based on trial and error. In this paper, we try to develop a new method for
choosing the radius of the circle based on the discrepancy principle. For numerical
illustration, we apply the method to solve the BHCP, which is also called the final
boundary value problem.

The solution of the BHCP does not continuously depend on the final tempera-
ture data see Payne (1975), which means that any small change in the given final
temperature data may induce enormous change in the solution (see for instance
Miranker [1961]). In other words, the BHCP is a typical ill-posed problem. Stable
approximation by using regularization techniques was provided by Cannon [1964]
and Han et al. [1995]. A method based on perturbation of the original parabolic heat
equation was proposed by Lattes and Lions [1969] and Lesnic et al. [1998]. Some iter-
ative solution methods were also developed for solving the BHCP. Recently, Mera
[2005] applied the MFS to solve the BHCP. In his paper, he placed the source points
on a line below the initial time. In this paper, we offer a new method of choosing
the location of source points which is different from the method proposed by Mera
[2005]. Numerical verification of our proposed method indicates that this scheme
improves the accuracy of the computation. To solve the highly ill-conditioned resul-
tant system of linear equations in our computation, we adapt the use of the standard
Tikhonov regularization technique with the L curve method [Hansen and O’Leary
(1993); Hansen (1992a, 1992b); Hansen (2000)] for an optimal regularization
parameter.

2. Formulation of the Problem

In the real life physical heat conduction problem, we have to determine the tem-
perature distribution from collected temperature data at a particular time T and
certain fixed boundary conditions. Assume that the function u(x, t) satisfies the
heat conduction equation

∂

∂t
u(x, t) = ∇2u(x, t), (x, t) ∈ Ω × (0, T ), (2.1)

with the final condition

u(x, T ) = f(x), x ∈ Ω, (2.2)

and the measured Dirichlet boundary condition

u(x, t) = g(x, t), x ∈ Γ, 0 < t < T, (2.3)

where f(x), g(x, t) are known functions, the domain Ω ∈ �d, d = 1, 2, and Γ = ∂Ω
is the boundary of the domain.

In practical application, the Dirichlet boundary condition (2.3) and the final
condition (2.2) are given only at some scattered data points. Assume that these
data are collected at the discrete points (xi, ti), i = 1, . . . , m, on Ω × T satisfying
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the final condition (2.2) and (xi, ti), i = m+1, . . . , m+n on Γ× [0, T ] satisfying the
boundary condition (2.3). We also call these discrete points (xi, ti), i = 1, . . . , m+n,

the collocation points.

3. Method of Fundamental Solutions

Here, we choose N source points {(ηj , τj)}N
j=1, which are uniformly located on

∂Υ × [−δt, T ], where Υ is an extended domain containing the domain Ω, which
satisfies ∂Υ

⋂
∂Ω = ∅. See Fig. 1 for the one-dimensional case.

The fundamental solution to the problem (2.1) is given as follows:

K(x, t) =
H(t)

(4πt)
d
2
e

‖x‖
4t , (3.1)

where H(t) is the Heaviside function and d = 1, 2 is the dimension of the space.
The basis functions are given as follows:

φj(x, t) = K(x − ηj , t − τj) j = 1, . . . , N, (3.2)

which satisfies the PDE (2.1). The above choice of source points ensures that the
basis function φ does not have a singularity in the domain Ω.

Based on the idea of the method of fundamental solutions given by Hon and Wei
[2004, 2005] and Mera [2005], the solution to the BHCP is sought in the following

Fig. 1. × represents source points (ηj , τj), and ◦ collocation points.
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form:

u(x, t) ≈ ũ(x, t) =
N∑

j=1

λjφj(x, t), (3.3)

where λi are unknown coefficients to be determined. For this choice of basis func-
tions the approximated solution ũ already satisfies the heat equation (2.1) and the
coefficients λj , j = 1, . . . , N , are determined such that ũ satisfies the boundary con-
dition (2.3) and the final condition (2.2). We obtain the following system of linear
algebraic equations for the unknown λj :

ũ(xi, ti) =
N∑

j=1

λjφj(xi, ti) =
{

f(xi) i = 1, 2, . . . , m,

g(xi, ti) i = m + 1, m + 2, . . . , m + n.
(3.4)

In matrix form, the values of the unknown coefficients λj can be obtained from
solving the matrix equation

Aλ = b, (3.5)

where A is an (n + m) × N square matrix,

Aij = φj(xi, ti),

and b is an n + m vector,

b =
(

f(xi)
g(xi, ti)

)
.

Since the original problem (2.1)–(2.2) is highly ill-posed, the ill-conditioning of
the matrix A in Eq. (3.5) persists. In other words, most standard numerical methods
cannot achieve good accuracy in solving the matrix equation (3.5) due to the bad
conditioning of A. In fact, the condition number of A increases dramatically with
respect to the total number of collocation points. Several regularization methods
have been developed for solving these kinds of ill-conditioning problems [Hansen and
O’Leary (1993); Hansen (1992a, 1992b, 2000)]. In our computation we adapt the
standard Tikhonov regularization Tikhonov and Arsenin (1977) to solve the matrix
equation (3.5). The Tikhonov-regularized solution λα for Eq. (3.5) is defined as the
solution to the following least squares problem:

min
λ

{‖Aλ − b‖2 + α2 ‖λ‖2}, (3.6)

where ‖ • ‖ denotes the usual Euclidean norm and α is called the regularization
parameter.

The determination of a suitable value of the regularization parameter α is crucial
and is still under intensive research [Tikhonov and Arsenin (1977); Tautenhahn and
Hämarik (1999)]. In our computation we use the L curve method, which is a kind
of noise-free rules, to determine a suitable value of α. The L curve method was
first developed by Lawson and Hanson [1974] and also applied by Chen et al. [1995]
for solving the deconvolution problem. Hansen and O’Leary [1993] investigated the
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properties of regularized systems under different values of α. The L curve method
is sketched in the following:

Define a curve

L = {(log(‖λα ‖2), log(‖Aλα − b‖2)), α > 0}. (3.7)

This curve is known as the L curve and a suitable regularization parameter α is
the one that corresponds to a regularized solution near the “corner” of the L curve
[Hansen (1992a, 1992b, 2000)].

In our computation, we used the Matlab code developed by Hansen [1994] for
solving the discrete ill-conditioned system (3.5). Denote the regularized solution of
(3.5) by λα∗

. The approximated solution ũ∗
α for the BHCP problem (2.1)–(2.2) is

then given as

ũα∗(x, t) =
N∑

j=1

λ∗
jφj(x, t). (3.8)

Bakushinskii [1985] proved that the convergence of xδ
α cannot be guaranteed

in using the free-noise rule. To the knowledge of the authors, there is still no con-
vergence proof available in using other methods to determine the regularization
parameter, such as Morozov’s discrepancy principle and the monotone error rule
Tautenhahn and Hämarik (1999). Nevertheless, these methods perform well in prac-
tice (see for instances Hanke and Hansen [1993] and Gellrich and Hofmann [1993]).
The numerical results given in the following section indicate that the proposed
scheme is feasible and efficient.

4. The Location and the Number of Source Points

For simplicity, the analysis of the choice of parameters is investigated only in the
one-dimensional situation. Without loss of generality we assume that the spatial
domain Ω is the interval [0, 1] and we fix m = 20 and n = 40 in the following
computation for the one-dimensional case.

An optimal placement of the location of source points is still an open problem for
the MFS. Golberg and Chen [1997] suggested that the source points are chosen to
be equally distributed around a circle of radius R, which is not suitable for problems
with a nonsmooth domain. Mera [2005] chose the source points on a line below the
initial time in solving the BHCP, which is similar to the method presented by Hon
and Wei [2004]. More details can be found in the recent works Alves and Antunes
(2005, 2008); Chen, Lee, Yu and Shieh (2008).

The discrepancy principle, which is a posteriori choice of the regularization
parameter, was introduced by Morozov in 1966. It has been proven that the principle
is suitable both for numerical computations and for convergence theories.

In this paper, we choose the location of source points on a position which has
the same distance, R, away from the boundary of the domain. In other words, we
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choose the source points located on ∂Υ × [−δt, T ], where ∂Υ is the boundary of
interval [−R, 1+R] in the one-dimensional case. Based on the idea of the discrepancy
principle, we fix the radius R of the source points through

‖ A ∗ λα∗
R∗,δ − b̃ ‖= δ, (4.1)

where λα∗
R∗,δ is the regularized solution to (3.5) for R = R∗ in the MFS and δ is

the noisy level. Hence, the location of source points depends in the parameters δt

and R. The following investigation shows that the accuracy of the method increases
with respect to an increase in the value of δt and R∗ in the MFS.

In real data measurement, we can collect only the perturbed data (Gaussian-
distributed random vector) f̃(xi), i = 1, . . . , m, and g̃(xi, ti), i = m + 1, . . . , m + n,

which satisfy √√√√ 1
m

(
m∑

i=1

(f(xi) − f̃(xi))2
)

≤ δ · max|f |, (4.2)

and √√√√ 1
n

(
n∑

i=1

(g(xi+m, ti+m) − g̃(xi+m, ti+m))2
)

≤ δ · max|g|, (4.3)

where δ is the tolerated noise level.
In order to estimate the computational error of the numerical approximation,

we choose some extra test points to compute the root mean square error (RMSE):

RMSE =

√√√√ 1
M

M∑
i=1

(ũ(x̄i, 0) − u(x̄i, 0))2, (4.4)

where M is the total number of test points on the domain Ω, and {x̄i}M
i=1 is a set

of test points which are uniformly distributed in Ω. In our computations, we take
M = 40 in the one-dimensional case.

For simplicity, the m + n collocation points are uniformly distributed on the
boundary ∂Ω× [0, T ] and Ω× {T }. The N source points are taken to be uniformly
distributed on the source points location ∂Υ× [−δt, T ]. We denote h as the distance
between two source points.

To analyze the choice of parameters and verify the effect of the proposed algo-
rithm, we choose the following benchmark function used in the papers of Lattes
[1969], Lesnic [1998] and Mera [2005]:

u(x, t) = e−π2t sin(πx), (4.5)

which has a severe behavior since u(x, t) decays to zero rapidly as t increases.
Firstly, we investigate the convergence of our proposed numerical algorithm with

respect to the value of δt. In our computations, we fix T = 0.5, h = 0.5, R = 2.5
and δ = 0.03. Figure 2 shows that the RMSE of the numerical solution decreases
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Fig. 2. The RMSE with respect to parameter log10(δt) for T = 0.5, h = 0.5, R = 2 and δ = 0.03.
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Fig. 3. The numerical solution for the initial temperature obtained with T = 0.5, N = 40,
R = 2, δ = 0.03 and various δt.

dramatically with respect to the increase in the value of δt until the value of δt

reaches 1. Figure 3 presents numerical solutions for the initial temperature obtained
in the MFS with various δt. It can be seen that the numerical solution already
approaches the exact solution excellently when δt = 1. For this reason, we always
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Fig. 4. The RMSE with respect to parameter R for T = 0.5, δt = 1, N = 40 and δ = 0.03.

choose δt = 1 in the one-dimensional case. It was found that in general the MFS
produces accurate numerical solutions for other test cases even when δt is large.

To investigate the effect of the choice of R in our computations, we fix δt = 1,

N = 20 and δ = 0.03. Figure 4 displays the RMSE as a function of the parameter
R. It can be observed from the figure that the RMSE does not decrease with respect
to an increase or decrease in the value of R as other parameters. In this case the
R∗ computed by our method is 1.96, which is located within the range for optimal
convergence.

The following numerical results indicate that this choice of the location of source
points performs well in all of the following examples and better than the method
given in the paper of Mera [2005].

Lastly, we investigate the convergence of the numerical solution with respect to
the total number (N) of source points. Here, we fix T = 0.5, Υ = [−2, 3], δt = 1
and δ = 0.03. The source points are chosen to be uniformly distributed on the
location ∂Υ× [−δt, T ]. Figure 5 displays the RMSE as a function of the parameter
N . It can be seen that the RMSE of the numerical solution decreases dramatically
with respect to an increase in the value of N until the value of N reaches 20.
Figure 6 shows that for N = 20 the numerical solution already approxmiates the
exact solution very well.
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Fig. 5. The RMSE with respect to parameter N for T = 0.5, δt = 1, R = 2 and δ = 0.03.
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Fig. 6. The numerical solution for the initial temperature obtained with the final time T = 0.5,
δt = 1, R = 2, δ = 0.03 and various N .

5. Numerical Solutions for the BHCP

In this section, both the one-dimensional and the two-dimensional BHCP will be
considered, in Secs. 5.1 and 5.2, respectively.

5.1. Numerical example for the one-dimensional BHCP

For numerical verification, we use in this section the proposed method to solve
the BHCP in both the one-dimensional and the two-dimensional case. In the
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computation, a different noise level δ will be used. We always choose δt = 1, N = 20
and R = R∗, which is chosen by using the proposed discrepancy principle given in
the last section. The numerical approximation to the solution u(x, 0) with a differ-
ent noise level δ is displayed in Fig. 7. It can be seen that even for large δ = 0.1 our
proposed method produces an accurate numerical solution. Figures 8–10 display the
approximation to u(x, t) and its error in the domain Ω with noise level δ = 0.03
and T = 1. Again, it can be seen that our method performs well in this example.

Next, we investigate the performance of our method in comparison with the
result given in the paper of Mera [2005], in which he compares his method with
other numerical methods, such as the boundary element method (BEM) and the
finite difference method (FDM).

Figure 11 displays the numerical solutions obtained by using our proposed
method with δt = 1 and R = R∗ and Mera’s method in comparison with the exact
solution. Both numerical results are obtained for the finite time T = 1, the noise
level δ = 0.03, the number of collocation points m = 20, n = 40, and the number of
source points N = 40. It can be seen that our method outperforms Mera’s method
under the same parameter setting and requires a similar computational cost. The
comparison has been made by using various other numerical examples, and similar
results have been obtained.
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Fig. 7. The numerical solution ũ(x, 0) for T = 0.5, δt = 1, N = 20, R = 1.96 and noise levels
δ = 0.01(•), δ = 0.03 (�), δ = 0.05 (+), δ = 0.1 (◦).
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Fig. 8. The exact solution (-) and the numerical solution (◦) for the initial temperature obtained
with T = 1, δt = 1, N = 40, R = R∗ = 5.3 and δ = 0.03.
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Fig. 10. The difference between the exact and the numerical solution to u(x, t) for T = 1,
δt = 1, N = 40, R = R∗ = 5.3 and δ = 0.03.
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Fig. 11. The numerical solution u(x, 0) obtained by our method (◦) and the method in the paper
of Mera [2005] (×), and the exact solution (-) for final time T = 0.7 and noise level δ = 0.05.
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Fig. 12. The exact solution u(x1, x2, 0) = x1 + x2 (left) and its approximation ũ(x1, x2, 0) (right)
with T = 1, δt = 1, N = 400, R = 0.11 and δ = 0.05.

Numerical results in the last subsection also indicate that the proposed method
performs very well even for the large final time T = 1, which is larger than the
maximum T = 0.7 used in the paper of Mera [2005].

5.2. Numerical example for the two-dimensional BHCP

In this subsection, it will be seen that our proposed method also performs well in
solving the two-dimensional BHCP. The total number of source points is chosen to
be N = 400 in this computation.

In order to verify the effectiveness of our method, we consider the exact solution
given by u(x1, x2, t) = x1 + x2. In the computation, we choose m = 64 and n = 196
collocation points which are uniformly distributed on the boundary of the solution
domain Ω × [δt, T ], where Ω = [−0.5, 0.5]× [−0.5, 0.5], and N = 400 source points
which are uniformly distributed in ∂Υ × [0, T ], where Υ = [−R − 0.5, R + 0.5] ×
[−R−0.5, R+0.5] and δt = 1. We also fix the final time T = 1. The boundary data
are perturbed with noise level δ = 0.05.

Figure 12 presents the comparison between the exact solution u(x1, x2, 0) and
the numerical solution obtained by our method. The error function between the
exact solution and the numerical solution is displayed in Fig. 13. It can be seen that
the numerical solution obtained by our method has a good approximation to the
exact solution even for the two-dimensional BHCP and the large finite time T = 1.
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Fig. 13. The difference between the exact and the numerical solution to u(x1, x2, 0) for δt = 1, N =
400, R = 0.11, δ = 0.05.

To further explore the application of the proposed method for solving the two-
dimensional BHCP, we consider the example

u(x1, x2, t) = sin
(

1√
2
π(x1 + x2)

)
e−π2t, (5.1)

which is a typical example for testing the efficiency of solving the two-dimensional
BHCP. Here, we choose the same parameters used in the last example. The exact
solution u(x1, x2, 0) and the numerical solution obtained by using our method are
displayed in Fig. 14. The error between the exact solution and the numerical solution
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Fig. 14. The exact solution u(x1, x2, 0) = sin( 1√
2
π(x1 + x2)) (left) and its approximation

ũ(x1, x2, 0) (right) with T = 1, δt = 1, N = 400, R = 0.11 and δ = 0.05.
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Fig. 15. The difference between the exact and the numerical solution to u(x1, x2, 0) for δt = 1,
N = 400, R = 0.11, δ = 0.05.

is shown in Fig. 15. It can be found that our method also produces an accurate
solution in this severe example.

6. Conclusion

Based on the idea of the discrepancy principle, we develop in this paper a new com-
putational method for choosing the location of source points to solve the backward
heat conduction problem by using the method of fundamental solutions. Numerical
results indicate that the proposed method gives an accurate and reliable scheme and
performs better than other existing methods. Finally, the method can be readily
extended to solve problems in complex and irregular domains.
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