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Abstract

With the discovery of new exploit techniques, novel
protection mechanisms are needed as well. Miti-
gations like DEP (Data Execution Prevention) or
ASLR (Address Space Layout Randomization) cre-
ated a significantly more difficult environment for
exploitation. Attackers, however, have recently re-
searched new exploitation methods which are ca-
pable of bypassing the operating system’s memory
mitigations. One of the newest and most popu-
lar exploitation techniques to bypass both of the
aforementioned security protections is JIT memory
spraying, introduced by Dion Blazakis [3].

In this article we will present a short overview of
the JIT spraying technique and also novel mitiga-
tion methods against this innovative class of at-
tacks. An anti-JIT spraying library was created as
part of our shellcode execution prevention system.

1 Introduction

In order to increase the security level of the op-
erating system, Microsoft has implemented several
mitigation mechanisms including DEP and ASLR.
Data Execution Prevention (DEP) is a security fea-
ture that prohibits the application from executing
code from a non-executable memory area. To ex-
ploit a vulnerability, an attacker must first find a
executable memory region and then be able to fill
it with necessary data (i.e., shellcode instructions).
Generally, achieving this goal using old exploita-
tion techniques is made significantly harder with
the addition of the DEP mitigation. As a result, at-

tackers improved upon the classic return-into-libc
technique and started using Return-Oriented Pro-
gramming (ROP) [4, 7] to bypass DEP. However,
techniques like ROP still rely on the attacker un-
derstanding memory layout characteristics, leading
Microsoft to implement ASLR as countermeasure.
ASLR renders the layout of an application’s ad-
dress space less predictable because it relocates the
base addresses of the executable modules and other
memory mappings. The JIT spraying technique [3]
was introduced to bypass ASLR and DEP simulta-
neously. In this article we present our novel mecha-
nisms which are created specifically to prevent the
JIT spraying technique from successful execution.
This research targeted Microsoft Windows operat-
ing systems with the x86-32 CPU architecture. The
mitigations specifically focus on the ActionScript
JIT compiler, which is currently being heavily used
for this type of attack.

2 JIT Spraying

There are two general reasons why JIT spraying
is a very useful exploitation method. Firstly, the
code generated by the JIT compiler is stored in
memory marked as executable. This should be ob-
vious because otherwise JIT compiler would be un-
able to work correctly on systems shipped with the
DEP feature. Evidently, if the attacker’s code is
generated by JIT engine it will also reside in the
executable area. In other words, DEP is not in-
volved in the protection of code emitted by the JIT
compiler. This is a very useful method since the
memory was not marked as executable in prior ap-
proaches like normal heap spraying. The second
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reason JIT spraying is powerful is that attacker’s
code location can be predicted correctly [3, 1], so
at this point ASLR is also no longer a big threat
for the attacker. In this article we will focus specif-
ically on detecting JIT code generation required for
the address discovery methods discussed in the ref-
erenced citation. The reader is encouraged to have
a full understanding of the referenced work.

2.1 JIT Code Generation

Just-In-Time compilation converts code at run-
time; typically from bytecode into machine code.
By doing this, an interpreted program’s perfor-
mance greatly improves. The JIT spraying method
“forces” the JIT compiler to produce a lot of ex-
ecutable pages with embedded attacker’s code. In
order to write the code to specific location, the JIT
compiler must first mark the destination memory
as writable. Since multiple generated code chunks
may reside on the same memory page, the JIT com-
piler marks the entire page as RWX (Readable-
Writable-Executable). These permissions are nec-
essary because a different chunk of memory residing
on the same page may be executed asynchronously
(for example by a different thread), resulting in ac-
cess violation if the requested memory page was
not executable at that moment. After the code is
written the compiler marks the destination region
as RX - readable and executable not writable any-
more, as shown in Listing 1.

In order to force the JIT compiler to generate code
that includes shellcode data, attackers must make
use of ActionScript operators. Even though Ac-
tionScript consists of multiple operators like: arith-
metic, arithmetic compound assignment, bitwise
etc. only one appears to be used in the currently
known shellcodes. Listing 2 presents generated
code for few different types of operators (expression
used: a OP b OP c OP d ...). As a test-case, the
data values we have used come from one of the very
few available JIT shellcodes [1].

Listing 2 shows that when it comes to ActionScript
operators, only XOR appears to produce desirable
results. For example, with the XOR operator, the
attacker controls four bytes of every single instruc-
tion. In other cases the expression arguments do

Requests :
MEM: 0 x057d0090 size =1 prot=RWX
MEM: 0 x057d0090 size =c prot=RX

Generated code :
0 x057d0090 mov edx ,[ esp +0 ch]
0 x057d0094 mov ecx ,[ edx]
0 x057d0096 call 0 fdea9d1ah
0 x057d009b ret

Requests :
MEM: 0 x057d0170 size =1 prot=RWX
MEM: 0 x057d0170 size =1a prot=RX

Generated code :
0 x057d0170 mov edx ,[ esp +0 ch]
0 x057d0174 push dword [edx +0 ch]
0 x057d0177 push dword [edx +08h]
0 x057d017a push dword [edx +04h]
0 x057d017d mov ecx ,[ edx]
0 x057d017f call 0 fdea5601h
0 x057d0184 mov eax ,04h
0 x057d0189 ret

Listing 1: Sample listing of changes of memory
rights requested by JIT compiler.

not provide precise and predictable control over the
emitted code blocks. By supplying different argu-
ments to the expression it is possible to change the
contents of specified blocks and make them more
dependable on attacker’s arguments, but the XOR
operator appears to be the best option for shell-
code usage and that is probably why every known
JIT shellcode makes use of this operator. Once
the attacker is able to spray controlled executable
instructions into the heap, the rest of the exploita-
tion process goes the standard route. The main
idea here is to spray the memory with instructions
that include attacker’s payload and then be able
to transfer the execution there (like for example be
able to point the instruction pointer (EIP) to the
address of xor eax, IMM32 operand).

3 Mitigations

In order to stop JIT spraying attacks we must be
able to decide whether the code generated by the
Just-In-Time engine should be marked as shellcode
or not. This is not a trivial task, since the shellcode
detector must not heavily impact the original pro-
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Operator XOR (^):
[b8 90 90 90 3c ] mov eax ,03 c909090h
[35 90 90 90 3c ] xor eax ,03 c909090h
[35 90 90 90 3c ] xor eax ,03 c909090h
[35 90 90 90 3c ] xor eax ,03 c909090h
[35 90 90 90 3c ] xor eax ,03 c909090h
[35 90 90 90 3c ] xor eax ,03 c909090h
[35 90 90 90 3c ] xor eax ,03 c909090h
...entire block of xors...
[35 31 d2 58 3c ] xor eax ,03 c58d231h
[35 80 ca ff 3c ] xor eax ,03 cffca80h
...

Operator ADD (+):
[b8 90 90 90 3c ] mov eax ,03 c909090h
[f2 0f 2a c0 ] cvtsi2sd xmm0 ,eax
[66 0f 28 c8 ] movapd xmm1 ,xmm0
[f2 0f 58 c8 ] addsd xmm1 ,xmm0
[f2 0f 58 c8 ] addsd xmm1 ,xmm0
...addsd...
[b8 31 d2 58 3c ] mov eax ,03 c58d231h
[f2 0f 2a c0 ] cvtsi2sd xmm0 ,eax
[f2 0f 58 c8 ] addsd xmm1 ,xmm0
[b8 80 ca ff 3c ] mov eax ,03 cffca80h
[f2 0f 2a c0 ] cvtsi2sd xmm0 ,eax
[f2 0f 58 c8 ] addsd xmm1 ,xmm0
...so on...

Operator MUL (*):
[b8 90 90 90 3c ] mov eax ,03 c909090h
[f2 0f 2a c0 ] cvtsi2sd xmm0 ,eax
[66 0f 28 c8 ] movapd xmm1 ,xmm0
[f2 0f 59 c8 ] mulsd xmm1 ,xmm0
[f2 0f 59 c8 ] mulsd xmm1 ,xmm0
...mulsd...
[b8 31 d2 58 3c ] mov eax ,03 c58d231h
[f2 0f 2a c0 ] cvtsi2sd xmm0 ,eax
[f2 0f 59 c8 ] mulsd xmm1 ,xmm0
[b8 80 ca ff 3c ] mov eax ,03 cffca80h
[f2 0f 2a c0 ] cvtsi2sd xmm0 ,eax
[f2 0f 59 c8 ] mulsd xmm1 ,xmm0
...so on...

Operator DIV (/):
[b8 90 90 90 3c ] mov eax ,03 c909090h
[f2 0f 2a c0 ] cvtsi2sd xmm0 ,eax
[66 0f 28 c8 ] movapd xmm1 ,xmm0
[f2 0f 5e c8 ] divsd xmm1 ,xmm0
[f2 0f 5e c8 ] divsd xmm1 ,xmm0

...divsd...
[b8 31 d2 58 3c ] mov eax ,03 c58d231h
[f2 0f 2a c0 ] cvtsi2sd xmm0 ,eax
[f2 0f 5e c8 ] divsd xmm1 ,xmm0
[b8 80 ca ff 3c ] mov eax ,03 cffca80h
[f2 0f 2a c0 ] cvtsi2sd xmm0 ,eax
[f2 0f 5e c8 ] divsd xmm1 ,xmm0
...so on...

Listing 2: Code generated by JIT compiler depend-
ing on the used operator.

gram performance and it must also be free of false
positive alerts. At this point there are two general
approaches to implement in the shellcode detector:

• Signature detection approach (scanning for
NOP sleds, GetPC code, decoding chunk (de-
cryption) codes etc.)

• Heuristic detection approach.

Signature based detectors are the most simple to
implement but they also tend to generate a high
number of false positive alerts. Signature detection
is often not enough since the attacker may able to
bypass it by constructing the code in another fash-
ion [5, 8, 6, 2]. To make the detection process more
reliable and less static we have decided to use the
heuristic detection approach.

As shown in subsection 2.1, before the JIT gen-
erated code is executed the memory protections
need to be changed to RX (Read-Executable).
To achieve this, the JIT engine executes the
VirtualProtect API function. It appears that
the JIT generated code always starts at the
memory address specified as a parameter to the
VirtualProtect API. This can be a serious ad-
vantage for detection purposes since at this point
we know the selected address (API argument)
is always a valid starting point (entry point) for
disassembling. A second very useful factor here
is that the generated code that typically contains
embedded shellcode is generated in a very special
fashion (see Listing 2):

mov reg , IMM32
operation reg , IMM32

So in case of XOR operator :
mov eax , IMM32
xor eax , IMM32
xor eax , IMM32
...

Listing 3: General structure of JIT generated code
used in JIT spraying.

Our heuristic detection method is simple but very
reliable. As shown in Listing 3, every JIT shellcode
currently available generates instructions that use
32 bit immediate values as a source operand and
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the destination operand of such instruction is al-
ways a register that was previously initialized with
another 32 bit immediate value. The initialization
instruction is typically a mov reg,IMM32 or in most
of the cases a mov eax,IMM32. Our detection algo-
rithm is described as follows (Algorithm 1):

Algorithm 1: JIT shellcode detection
input : region_addr, region_size
output: detection marker
begin

foreach found_mov_imm32 do
numinstr ←− 0
numbadinstr ←− 0
while numinstr < MAXinum do

instr ←− disasm_next_instr()
if !instr or is_terminator(instr)
then

break
if uses_imm32_operands(instr)
then

numbadinstr ←− numbadinstr + 1
numinstr ←− numinstr + 1

if numbadinstr > MAXibadnum then
report_shellcode()

end

where:

• numinstr - represents the number of disassem-
bled instructions

• numbadinstr - represents the number of "bad"
instructions, in other words instructions that
use 32 bit immediate operands

• is_terminator - represents a function which
checks if the currently disassembled instruc-
tion should be marked as terminator (instruc-
tions like CALL,RET,JMP and so on should be
considered as terminators

• uses_imm32_operands - represents a func-
tion which checks if currently processed in-
struction uses 32 bit immediate operands as
source

• MAXibadnum - represents a static number
which describes the maximum number of "bad"
instructions in the disassembled block

Our algorithm calculates the number of bad in-
structions (instructions that use 32 bit immediate
operands as source) starting from the initialization
instruction. This algorithm does not assume any
specific destination register (so no matter if EAX
is used or any other x86-32 CPU register). Addi-
tionally it keeps counting the number of bad in-
structions even if they are separated by some other
instruction(s) that does not use 32 bit immediate
operands (for example by some MMX/SIMD in-
struction or any other which does not use 32 bit
immediate operand as long as it is not a block ter-
minator). It is also worth adding that entire scan-
ning procedure takes place before attacker will have
a chance to use the code generated by JIT engine
since we constantly monitor all of the newly gener-
ated regions.

One might argue it would be easier to start the dis-
assembly from the entry point instead of searching
for mov reg,IMM32. This is a more expensive ap-
proach, however, since the speed of that method
would depend directly on the size of the block gen-
erated by JIT engine — the longer the block, the
slower the algorithm. Secondly, disassembling is
always a very costly process when it comes to per-
formance. By searching for mov reg,IMM32 and
starting from that point we do not have to perform
the entire region’s disassembly.

4 Countermeasures

As we have described before in subsection 2.1, the
attacker typically controls the 32 bit immediate
operands. This gives him an opportunity to use 24
bits of the controlled value to encode shellcode in-
structions (since one byte is typically already used
to perform a semantic NOP (i.e., CMP AL)). In or-
der to bypass our protection, an attacker could try
to produce his shellcode by creating multiple lands
and linking them with short JMP/JCC jumps (since
they are only 2 bytes long). By doing this, an at-
tacker can reduce the number of emitted instruc-
tions that use 32 bit immediate operands and relo-
cate them through different memory regions. How-
ever, we have already created a working mitigation
for this technique by additional scanning of the im-
mediate value for JMP/JCC opcodes. Since those
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jumps are always short attacker can only jump into
a location between -128 to +127 bytes from the
jump instruction. Considering the fact that by us-
ing this method attacker loses additional space for
valuable shellcode instructions, he must emit a rel-
atively large number of jump instructions. In our
method we are not only scanning for JMP/JCC op-
codes inside of the immediate value, but we also
check if the destination address of such jump points
to a valid location that also includes another jump
instruction and so on. In other words, we are try-
ing to validate the potential jump chain. This step
is necessary in order to avoid false-positive alerts.
By connecting this approach with the previously
described one in section 3 we have made the JIT
spraying mitigation a lot harder to bypass.

5 Testimonials

Tests showed that anti JIT spraying protection li-
brary have not generated any false-positive alerts
when browsing typical sites overloaded with Ac-
tionScript and flash animations. The library it-
self has not produced any noticeable changes to the
original application’s performance. All tests were
performed on Flash version 10c (on Microsoft Win-
dows Vista and XP operating systems).

6 Conclusion

In this article we have presented basic concepts of
JIT memory spraying. This technique is a good
countermeasure against protection mechanisms like
DEP and ASLR and moreover it is getting more
and more popular. In order to stop JIT spraying
attacks from successful exploitation we have cre-
ated mitigation techniques that are solid, reliable
and fast. We hope the reader found this article
interesting.
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