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ABSTRACT 

Design optimization is becoming and increasingly important 
tool for design. In order to have an impact on the product 
development process it must permeate all levels of the 
design in such a way that a holistic view is maintained 
through all stages of the design. One important area is in the 
case of optimization based on simulation, which generally 
requires non-gradient methods and as a consequence direct-
search methods is a natural choice. The idea in this paper is 
to use the design optimization approach in the optimization 
algorithm itself in order to produce an efficient and robust 
optimization algorithm.  

The result is a single performance index to measure 
the effectiveness of an optimization algorithm, and the 
COMPLEX-RF optimization algorithm, with optimized 
parameters. 

INTRODUCTION 

The rapid development in simulation methods and the 
general increase in hardware performance imply that design 
methods based on different kinds of numerical optimization 
for system design, are becoming increasingly important.  
Numerical optimization methods require that the object 
function is evaluated (using simulation) a large number of 
times, but they are very attractive since they can optimize 
complete non-linear systems and do not rely on grossly 
simplified models as more analytical methods do. Work in 
this area has shown that optimization can be used both for 
parameter optimization and for component sizing, see Krus, 
Jansson and Palmberg 93. Over the year a number of more 
or less advanced schemes for design optimization has 
evolved. There is a relative rich literature in design 
omtimization, see for example G.V. Reklaitis, A. Ravindran, 
K.M. Ragsdell ,1983, Papalambros, Douglass, Wilde 1988, 
or C Onwubiko 2000. In many cases however, a quick 
answer is preferred instead of a highly efficient method that 
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takes more effort to set up. There are also situations where 
there is very little information regarding the nature of the 
object function, gradients can not be obtained explicitly and 
constraints are implicit. This is true when evaluation of the 
object function relays on simulation of dynamic systems. In 
these situations direct search methods are very attractive, 
and therefore the focus in this paper is on a specific direct 
search method, the COMPLEX-RF, which is a promising 
candidate for direct search optimization, and on optimization 
of such methods 

SIMULATION AND OPTIMIZATION 

Optimization based on simulation puts very high demands 
on the numerical efficiency and robustness of the 
simulation. Since a high number of simulations need to be 
done, typically ranging from a few hundred to tens of 
thousands, low simulation times are of course very 
important.  

Another thing is that in simulation based optimization, 
parameters can vary substantially especially in the initial 
stages of the optimization. Some of these parameter sets can 
result in highly dynamic systems that would drive down the 
time step size of a variable time step method. This could 
result in very long simulation times, which would be wasted 
on solutions that usually are far from the optimum anyway. 
Therefore, it can be concluded that simulation based 
optimization benefits strongly from the deterministic 
simulation times obtained using fixed time steps. The time 
step may, however, be different in different subsystems 
instead. 

Put together, these are strong case for the distributed 
modeling approach using bi-directional delay lines, se 
Auslander 1968 and Krus, Jansson, Palmberg and Weddfelt 
1990, which is highly efficient, robust and normally is used 
with a fixed time step. 
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These requirements have resulted in the following 
strategy that is adopted for the development of the HOPSAN  
simulation package developed at Linköping University. 
 
• Modeling on a detailed equation level using a symbolic 

math package to generate implementation 
• The distributed modeling approach using bi-directional 

delay lines for partitioning of systems 
• Different time step for different parts of the model 

OPTIMIZATION 

If a system model in the form of a simulation model is 
defined, it is possible to use optimization based on 
simulation. Using this method, the system is simulated using 
different sets of system parameters xsp. From each system 
evaluation a set of system characteristics, ysc are obtained 
and using these, an objective function, f, is formulated.  

In general the simulation is used to obtain the 
performance characteristics of the system. 

)( sps XFY =  (1) 

The object function is a function of the system 
characteristics. 

)( scobj YGf =  (2) 

there may also be a violation flag, that indicates if implicit 
constraints are violated, that also is a function of system 
characteristics. 

)( scviol YCc =  (3) 

Another way to deal with constraints is to use a penalty 
function that is included in the objective function instead. 
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Figure 1. Optimization based on simulation. 
In the general case there exist many explicit relations 

between parameters in the system. In fact in manual design, 
great efforts are made to obtain explicit design relations and 
there are many cases where system parameters are coupled 
and cannot be chosen independently from each other. It is 
therefore appropriate to define a layer of explicit design 
relations where relatively few independent optimization 
variables are expanded to the full set of system parameters. 
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Figure 2. Optimization based on simulation with 
layer of explicit design relations. 

The explicit design relations can be written as : 

( )sp dpX R X=  (4) 

Where Xdp is the vector of design parameters. The whole 
optimization problem can then be written as: 

Maximize )))((( dpobj XRFGf =  (5) 

THE COMPLEX ALGORITHM 

There are basically two families of optimization methods 
used in engineering. The gradient methods are widely used 
and are suitable for problems where the gradient of the 
object function can be calculated explicitly at each point. 
This is the case in many structure optimization applications. 
The other group is the non-gradient methods. These methods 
do not rely explicitly on gradient information in each point. 
These methods are, therefore, of more general use since 
gradient information is not generally available, especially if 
parts of the object function are evaluated using simulation of 
non-linear systems. The modified version of the original 
Complex method (by Box 1965) has been found to be one of  
the simplest and most easy to use methods, and has been 
used for system optimization of hydraulic systems See Krus 
et al 1993. The implementation shown here has also been 
described in Krus and Gunnarsson 93. This implementation 
of the Complex method is also used in some major Swedish 
companies.  

The method can be used to maximize the function. 

),...,,( 21 NxxxF  (6) 

subjected to the constraints 

iii hxg <<  (7) 

where i = 1,2,....,M. The implicit variables xN+1,...,xM are 
dependent functions of  x1,....xN. For design, x1,...,xN  are the 
design parameters Xdp and the dependent functions xN+1,...,xM  
are a subset of the vector of system characteristics Yc. The 
constraints gi and hi are either constants or functions of 
x1,....xN. In the implementation used here, an initial complex 
of m points is generated. The variables at each point are 
generated using random numbers. 

)( jiijiij ghrgx −+=  (8) 
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Here j is an index that indicates a point in the Complex and i 
an index that indicates a variable. rij is a random number in 
the interval [0,1]. If the implicit constraints are not fulfilled, 
a new point is generated until the implicit constraints are 
fulfilled. The number of points m in the complex must be, 
such that m >=N + 1, where N is the number of independent 
variables 

The object function is evaluated at each point. The point 
having the lowest value is replaced by a point reflected in 
the centroid of the remaining points by a factor α.  

))(()( oldxxxnewx ijicicij −+= α  (9) 

The centroid is calculated as 

( )1

1 ( ))
1

m
ic ij ijj

x x x old
m =

= −
− ∑  

(10) 

 

x1

x2 

xc 

 
Figure 3. The Complex method. Reflection of the 
worst point through the centroid of the remaining 

points. 

Box (1965) recommends α= 1.3. If a point repeats as the 
lowest value on consecutive trials, it is moved one half the 
distance towards the centroid of the remaining points. In this 
case: 

2/))((´)( newxxxnewx ijicicij −+=  (11) 

The Complex-RF optimization method used here is a 
modified version of the Complex method by Box (1965). It 
is modified by introducing some randomization in the 
search. This avoids premature collapse of the method.  

roldxxxnewx ijicicij +−+= ))(()( α  (12) 

Here r is random noise in an interval, which is a fraction 
of the mean distribution of the parameter sets in the 
complex. Another modification involves what happens if a 
point repeats as the lowest value on consecutive trials. 
Instead of just moved halfway towards the centroid it is also 
mirrored in the centroid. This handles constraints or sharp 
edges in the object function better since it avoids a 
premature collapse on the edge. 
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Convergence rate 

The maximum contraction speed of the Complex 
method in each object function evaluation can be estimated 
to (Krus and Gunnarsson 1993): 

m

k

k

x
x 2

1

1

2






=

∆
∆ + α

 

(14) 

∆xk 

∆xk+2m 

 
Figure 4. Contraction of the complex after 2m 

steps. The optimum is in the middle.  
The number of parameters in the complex m is function 

of the number of independent variables m=κn where 
typically 1.5<κ<2. 

here Dx(k) is the spread of the Complex parameter set at 
a particular evaluation no k. a is the reflection factor in the 
Complex method and this has normally the value 1.3, and n 
is the number of optimization variables (The number of 
parameter sets in the Complex method is set to typically two 
times the number of optimization parameters). Expressed as 
a function of the original spread Dx0 the following 
expression is obtained. 

n
k

k

x
x καε

2

0

1

2






=

∆
∆

= +  

(15) 

This means that the number of calculations needed to 
reduce the spread down to ε of the original spread can be 
estimated by: 

k = -4.64271n logH¶L  (16) 
From this simple relationship follows that the number of 

evaluations to reduce a complex a certain amount is linearly 
dependent on the number of points in the Complex. In 
reality the objective function can be much more complicated 
than assumed here, but this estimate gives a lower bound to 
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the number of evaluations necessary and a fair description of 
the behavior near optimum.  

An interesting aspect is to study the amount of 
information gained in each evaluation. In general the 
amount of information (in bits) to represent a value can be 
expressed as 

S
x

xLogI −=
∆

= 2  
(17) 

where ∆x is the uncertainty of the variable and x its nominal 
value. S is the entropy, and information I represents 
negentropy. Therefore the change in entropy, in each 
iteration, can be written as: 

n
nLogS

κα 2
1

2 2






=∆  

(18) 

the multiplication with n comes from the fact that all n 
variables gain information. This can be simplified to: 

κα 2
1

2 2






=∆ LogS  

(19) 

with a=1.3 and k =2 yields 

155.0
2
3.1 4

1

2 −=





=∆ LogS  

(20) 

This means that the system is gaining 0.155 bits of 
information at each evaluation (which may seem like a very 
small value). Note that this is independent of the number of 
optimization variables. However, for more optimization 
variables it takes longer time to converge since more 
information is needed. This represents an upper theoretical 
limit for the amount of information gained in each function 
evaluation. In reality even a benign object function gives a 
convergence rate several times lower than this.  

It is also possible to include a forgetting factor, which 
ensures that the Complex is made up predominantly with 
recent parameter sets. This is necessary if the objective 
function varies over time. In that case old objective function 
values become increasingly unreliable and should be 
replaced by new ones. This is particularly true if the 
optimization is to be used to optimize parameters in a real 
process. In this case there may be drift in the parameters of 
the physical system. Introducing a forgetting factor has also 
been found to improve the success rate in other situations as 
well.  

If the objective function is stationary but noisy, (that is 
there are local variations in the objective function between 
points close to each other in parameter space) this is 
indistinguishable from time dependent noise since the 
probability of having a parameter set return to exactly the 
same position (and thus the same objective function value) 
is very small. 
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Near the optimum the objective function is assumed to 
be (minimum problem): 

2)( optopt xxCff −−=  (21) 

this can also be written as: 
2)( optopte xxCfff −=−=  (22) 

Consider the objective function with the lowest value. 
2

minminmin, )( xxCfff optopte −=−=  (23) 

Assuming that  

xxxopt ∆=− min  (24) 

which is the spread of the parameter sets of the complex. 
This yields: 

m

ee kfkf
1

min,min, 2
)()1( 






=+
α

 

(25) 

Subtracting a factor γ from the exponent yields 

m

efe kfkf
γ

α
−







=+

1

min,min,, 2
)()1(  

(26) 

This equation is convergent as long as γ<1. This can be 
rewritten as: 




















−






−






=+

−
mm

e

m

efe kfkfkf
γ

ααα
2

1
2

)(
2

)()1(
1

min,

1

min,min,,

 (27) 

This can also be written as 




















−+−+=+

−
m

eee kfkfkf
γ

α
2

1)1()1()1( 0min,,0min,,min,

 (28) 

or 

eefe fkfkf 0min,min,, )1()1( −+=+  (29) 

where 

( )



















−+−+=

−
m

opte kfkff
γ

α
2

1)1()1(min0  

(30) 

which can be approximated as 

( )



















−+−+≈

−
m

e kfkff
γ

α
2

1)1()1( maxmin0  

(31) 

After each object value evaluation all stored object function 
evaluations in the complex are diminished with this value 
f0e. Using this approach, an objective function value is 
gradually diminished, until it is replaced. The value of g can 
then be chosen to yields the desired properties.  The proper 
selection will be discussed later. 
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Performance evaluation 

In order to determine what parameter settings that are 
the best for the optimization algorithm some suitable test 
functions are needed that can test the ability of the 
optimization method to find the right optimum in a 
reasonable amount of function evaluations. One suitable test 
function is the so called “Rosenbrock’s banana”, see 
equation (36). This is a function that exhibit highly different 
gradients in different directions. This means that the search 
algorithm just finds the ridge but fails to detect the gradient 
along the ridge and consequently to proceed to the optimum. 

( ) ( ) ( )
2 22

1 2 1 2 1, 100 1f x x x x x= − + −  (32) 
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Figure 5. The test function Rosenbrock’s banana. 
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Figure 6. A close-up on the Rosenbrock’s banana 

function between -4 and 6.  
In order to investigate the effect on the performance of 

the algorithm depending on the reflection distance α, the 
system was optimized 100 times for each value of α. The 
success rate of the optimization could then be estimated by 
dividing the number of optimization runs that came within 
1% of the true maximum value with the total number of 
optimization runs. The result is almost a step function at 
α=1, see Figure 7. In Figure 8 the required number of 
function evaluations is plotted as a function of the reflection 
factor α. 
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Figure 7. Success rate as a function of the 

reflection factor α. 
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Figure 8. The number of function evaluations need 

for convergence as a function of α. 

The conclusion from this test is that the value for α=1.3 
which is recommended in the literature by Box 1965 seems 
to be a good choice although the behavior is not very 
sensitive to this value. 

With the introduction of the randomization factor, r, and 
the forgetting factor, γ, it is also necessary to study the 
behavior for variations in these. Using α=1.3 the carpet plots 
in Figure 9 and Figure 10 are obtained, by conducting 300 
optimizations (each taking anything from 100-1000 object 
function evaluations, se Figure 11) for each of the points in 
the carpet plot, (which total in a substantial number of object 
function evaluations). The hit rate shows a rather flat 
optimum starting already at small values of both r and γ, 
while the mean number of function evaluations shows a 
minimum for r values around 0.1. It does not seem to be 
much affected by the forgetting factor. 
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Figure 9.The probability of finding the true 
optimum (hit rate), as a function of randomization 

factor and forgetting factor. 
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Figure 10. The mean number of object function 

evaluations needed to converge, as a function of 
randomization factor and forgetting factor. 

For this function it seems rather obvious that a 
reasonable choice of the parameters would be: r=0.15 and 
γ=0.15.  

Optimization of the optimization algorithm 

However, when dealing with optimization it would be 
satisfying if these two functions could be combined into one 
object function. The object function should be a 
performance index of the method. The objective of any 
optimization algorithm is to gather information about the 
optimum solution. This can be expressed as reducing the 
uncertainty a certain amount and thus increasing the amount 
of information as in eq. (17). The cost is simply the amount 
of evaluations, k, needed to converge at the optimum. In this 
case the mean value, km, would be taken. The object function 
could be: 

m
optobj k

f 1
, =′  

(33) 

Randomization 
factor 

Forgetting 
factor 

Randomization 
factor 

Forgetting 
factor 

Number of evals. 

Hit
rate
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In order to take the hit rate into consideration, this can 
be compared to a target probability for finding the right 
optimum. Let the hit rate for the optimization be Popt and 
the target hit rate be P. The risk of not finding the optimum 
is then (1-Popt). However, if the optimization is repeated m 
times the risk of not finding the optimum in any of these is 
reduced and by solving the equation 

m
optPP )1()1( −=−  (34) 

The number of times needed to reduce the risk to 1-P can be 
calculated as: 

)1(
)1(

2

2

opt

t

PLog
PLogm

−
−

=  
(35) 

Therefore the object function could be modified to  

mt

opt

m
optobj kPLog

PLog
mk

f
)1(

)1(1

2

2
, −

−
==′  

(36) 

since Pt is a fixed parameter and can be regarded as 
requirements. The object function could be reduced to: 

m

opt
optobj k

PLog
f

)1(2
,

−
=  

(37) 

Since the Log2 is used (other bases could also be used) this 
represents one over the number of times it is required to 
evaluate the objective function in order to get a 50% 
probability of reaching optimum.  

For some objective functions it is so simple to find the 
optimum that the probability of finding the right optimum is: 
P=1. Consequently m=1 in the previously defined meta-
object function.  For this case it is better to derive the 
information in the system from the uncertainty expressed in 
the entropy S defined in eq. 41. The uncertainty is a 
combination of the uncertainty in finding the correct 
optimum and the uncertainty in tolerance introduced by the 
stop criteria. 

))1((2 x
xPnLogS opt

∆
+−=  

(38) 

The optimization criteria would then be to maximize the 
amount of information gained in average of each function 
evaluation. This can be written as: 

))1((2, x
xPLog

k
n

k
If opt

mm
optobj

∆
+−−==′  

(39) 

For the case where  
 

x
xPopt

∆
>>− )1(  

(40) 
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Eq. (43) transforms into something equivalent to Eq. (40).  
If on the other hand the probability of finding the right 
optimum reached certainty. The equation approaches: 

x
xLog

k
n

k
If

mm
optobj

∆
==′ 2,  

(41) 

Therefore eq. (42) is the function chosen as the meta object 
function for optimizing the optimizer. 

When plotting this function for the same optimization 
runs as before it can be seen that there is ridge at a 
randomization factor r=0.15, see Figure 11. Furthermore, it 
can be seen that the optimal value for the forgetting factor 
lies around 0.2. However, the performance is not as sensitive 
to the value of the forgetting factor as it is to the value of the 
randomization factor.  It is also interesting to compare the 
performance index (bits/function evaluation) with the 
theoretical upper level of 0.15. Here it is less than a tenth of 
that even for the best choice of parameters. 
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Figure 11. The performance metric of the method, 
as a function of the randomization factor and the 
forgetting factor for Rosenbrock´s banana. 

In order to further study the influence of the 
randomization and forgetting factor, another test function is 
applied, see equation (42). This function is the step formed 
function shown Figure 12. This test will show how efficient 
the method is to handle integer problems. 

( ) ( ) ( )1 2 1 2 1, sin sin 0.3f x x x x x n n = ⋅ ⋅ ⋅ +   (42) 

where n=4 and a    denotes the integer part of a. 
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index 

Randomization 
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Figure 12. Test function that represents an integer 
problem. 

This test function has been evaluated by conducting 200 
optimizations each for different setting of the randomization 
and forgetting factors. The result is presented in Figure 13.  
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Figure 13. The performance index of the method, 
as a function of randomization factor and 
forgetting factor for the quantizesed hill function 
 
As can be seen from Figure 13, optimal performance is 
obtained for a randomization factor around 0.2 and a 
forgetting factor as high as 1.0. Since the forgetting factor 
gradually reduces the value of old solutions the points in the 
complex will not have the same values even if they all are 
on the same plateau. Thus the complex will keep on moving 
and is therefore capable of jumping up to the next step. The 
forgetting factor could thus bee seen as an introduction of a 
virtual gradient of the objective function. 
 Finally a very simple test function was used. This is 
simply a continuous version of equation (42), which is 
simply a hill.  

Forgetting 
factor 

Performance 
index 
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 f 

Randomization 
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)sin()sin(),( 2121 xxxxf =  (43) 

 

               

0
0.25

0.5
0.75

1 0

0.25

0.5

0.75

1

0
0.25
0.5

0.75
1

0
0.25

0.5
0.75

1  
Figure 14. The continuous hill function 
The performance index of this function is shown in figure 
15. Evidently, for this simple function there is no use of 
having either the forgetting factor or the randomization 
factor, although it is tolerant to variations in these 
parameters. Interestingly the performance index of 0.2 is 
actually larger than the theoretically derived value of 0.155 
(eq. 20). This can probably be explained by the fact that the 
parameters are evenly distributed within the parameter 
space, while the theoretical derivation assumed they all very 
located along the rim. 
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Figure 15. The performance index of the method as 
a function of randomization factor and the 
forgetting factor for the continuos hill function. 

 

OPTIMIZATION OF THE COMPLEX METHOD 

 The next step is to use the COMPLEX-method for 
optimizing the optimization parameters in the COMPLEX-
method. The chosen object function is the sum of the 
performance indices for the two test functions. Using 
optimization it is possible to optimize both the reflection 

Performance 
index 

Randomization 
factor 

Forgetting 
factor 

  f 
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factor α, the randomization factor r and the forgetting factor 
γ. Using eq. (35) as the test object function, an optimization 
of the optimization yielded the following values. 

 
α =1.55 
r  =0.49 
γ  =0.32 
 
With these values a preformance index of 0.082 was 

achieved for the Rosenbrock´s banana, which should be 
compared with the value for the original version of the 
algorithm was 0.025. The sensitivity in γ is very low for this 
test object function, since different runs gave values from 
0.3 to 0.9.  α and r are, however, more sensitive and 
converge within a few percent each time. It is interesting to 
note that the optimum value of α is much larger than the 
recommended 1.3, when used together with the other 
parameters. This optimization can of course be done for any 
of the above test functions or from a combination of them. 
As a first test, however, the Rosenbrock’s banana seems to 
be a relatively representative function. 

DESIGN EXAMPLE 

A design problem studied is to develop a hydraulic 
actuation system that controls a fighter aircraft. The system 
model, depicted in Figure 16, is a simulation model 
consisting of a six degree of freedom model of a fighter 
aircraft and a model of its hydraulic actuation system. There 
is also a flight control unit. This could either represent an 
actual flight control unit or just a system needed to represent 
a pilot to fly the aircraft through the simulation. Even if the 
focus of this optimisation is not to design a flight control 
system, it needs to be included in the optimisation since 
different controllers may be needed for different actuation 
system parameters. There is also a simple engine model to 
represent the two engines in the aircraft. There is a more 
comprehensive description of this in Krus and Andersson 
2003. 
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Figure 16. The Hopsan simulation model of the 
aircraft actuation system. 

The explicit design relations 

In this example there are many explicit design relations 
that can be used to reduce the number of optimisation 
variables x. the most obvious ones are symmetry relations. 
The symmetry requirement imposed means that there is a 
left-right symmetry in the control system, which means that 
many of the design variables are transformed into two 
system variables. Another useful mechanism for parameter 
reduction that also falls into this category is the use scaling. 
A component such as a servo valve has many design 
parameters but the driving requirements for a servo valve 
are usually only flow capacity and bandwidth (speed). This 
means that it can be assumed that most real valves can be 
described by only two performance parameters and in this 
case only one is used which is size. The pistons are also only 
described by one parameter, which is the piston area.  

The objective function 

The main objective is to produce an actuation system 
that can turn the aircraft as fast as it is possible while having 
as low weight as possible. That means that the components 
should have as small size as possible. In addition the 
pressure variations in the actuators are something that 
should be kept down in order to promote stable systems. In 
this example there are no constraints, except in the explicit 
design relations. The objective function can be written as 











+++−=

s

s
obj m

m
Ip
Ip

Ie
Ie

Ie
Ie

f
0000 θ

θ

ϕ

ϕ  
(44) 

Here Ieϕ is the integrated error in yaw angle, Ieθ is the 
integrated error in tip. Ip is the sum of integrated pressure 
variations in all the actuators (high pass filtered to remove 
nloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms 
the DC component). Finally, ms is the total weight of the 
actuator system. The coefficients in the denominator with 
the indexes 0 are used to normalise the different objectives 
and are obtained from one initial design. The optimisation 
algorithm is set up for finding maximum, hence the negative 
sign in front of the expression.  

The gradients can not be obtained explicitly since a full 
non-linear simulation model is used. Therefore, a non-
gradient method such as the COMPLEX-method seems a 
natural choice. The outcome of the optimization is shown in 
Figure 17 to Figure 19. Figure 17 shows the orientation 
angles for the optimized turn, whereas Figure 18 shows 
pressures in the hydraulic actuators during the turn. In 
Figure 19 the adjustment of the optimization parameters are 
shown as a function of the number of simulation runs. 
 

 
Figure 17. Orientation angles for the optimized 

turn. 
 

 
Figure 18. Pressure variation in the hydraulic 

actuators during manoeuvring. 
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Figure 19. Convergence of the optimization 

parameters. 

CONCLUSIONS 

Optimization techniques are at the core of 
computational engineering design and optimization can be 
used on full-scale simulation models for system 
optimization. In many design problems the underlying 
models are of moderate computational intensity, and simple 
direct search methods with predictable performance are 
attractive to use.  

In order to evaluate an optimization method a 
performance index is needed. In this paper, a simple 
expression, based on information theory, has been derived 
that considers the balance between computational cost, the 
probability of finding the optimal solution, and the tolerance 
of the found optimum. This index can be used both to tune 
parameters within the optimization algorithm, and to 
compare different optimization methods.  

Here, the performance index has then been used for 
optimization of the parameters in the COMPLEX-RF 
algorithm for the optimization of a well known test function. 
The behaviour of the COMPLEX-RF method on other test 
functions where also investigated and give an indication that 
the optimized parameters seems reasonable although not 
strictly optimal for other object functions as well. Finally a 
more realistic complex system, based on a simulation model,  
was optimized using the algorithm with good result. It can 
therefore be concluded that the presented COMPLEX-RF 
method is a strong candidate for direct-search optimization.  
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