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Abstract 
We have been using a phone-based cepstral system with 
polynomial features in NIST evaluations for the past two 
years. This system uses three broad phone classes, three 
states per class, and third-order polynomial features obtained 
from MFCC features. In this paper, we present a complete 
analysis of the system. We start from a simpler system that 
does not use phones or states and show that the addition of 
phones gives a significant improvement. We show that 
adding state information does not provide improvement on 
its own but provides a significant improvement when used 
with phone classes. We complete the system by applying 
nuisance attribute projection (NAP) and score normalization. 
We show that splitting features after a joint NAP over all 
phone classes results in a significant improvement. Overall, 
we obtain about 25% performance improvement with 
polynomial features based on phones and states, and obtain a 
system with performance  comparable to a state-of-the-art 
SVM system. 
Index Terms: Speaker recognition, feature extraction, 
pattern recognition. 

1. Introduction 
The most commonly used statistical modeling approaches for 
audio-based speaker recognition are the Gaussian mixture 
model (GMM) [1] and support vector machine (SVM) [2]. 
The former uses features based on a window of speech. The 
latter uses features estimated from the complete speech file. 
Researchers have explored different ways of estimating 
features from the complete speech file, and some successful 
approaches are based on Gaussian mean supervectors [3] and 
average polynomial vectors [2]. In this paper, we use average 
polynomial vectors and estimate them based on phones (and 
states within phones) obtained from an automatic speech 
recognition (ASR) system. 

We have used polynomial features with SVMs in our 
earlier work [4]. We used two types of polynomial features – 
mean and mean divided by standard deviation. Division by 
standard deviation serves as a preprocessing step so that the 
kernel is redefined as inner product normalized by those 
statistics. Overall, mean divided by standard deviation 
polynomial features performed the best and their scores were 
combined with those from mean polynomial features to 
produce the final score.  

We experimented with conditioning the polynomial 
features based on the spoken phone. The phones were 
grouped into three broad categories – vowels and diphthongs 
(VD), glides and nasals (GN) and obstruents (OB). The 
phone boundaries were obtained from our ASR system. The 
choice of categories was based on our earlier work [5]. 
Results showed that the VD subsystem gave the best 

performance, followed by GN and OB. The linear 
combination of scores from these three systems resulted in a 
significant improvement over individual systems and over a 
system that used all the classes together. 

We also experimented with features based on the states 
within each phone category. Since the ASR system uses three 
states, the number of features increased threefold. These 
features significantly improved performance. However, the 
resulting system became very complex.  

In this paper, we report work in two areas. First, we 
deconstruct the system to understand where the improvement 
is really coming from. This leads to simplification of the 
overall system. Second, we apply a intersession variability 
(ISV) normalization  technique, nuisance attribute projection 
(NAP) [6], and show improvement in performance. 

2. Datasets 
We report results on NIST 2005 and 2006 speaker 
recognition evaluation (SRE) sets. From these sets, we use 
the 1conv4w training condition and the 1conv4w testing 
condition, where 1conv4w refers to approximately 2.5 
minutes of speech from one side of a 5 minute conversation 
from the Mixer corpus [7]. 

The NIST 2005 common condition has 2967 test 
waveforms and 584 models, resulting in 30427 trials. The 
NIST 2006 common condition (from NIST release version 4) 
has 2692 test waveforms and 517 models, resulting in 24013 
trials. The purpose of using two datasets is to show 
generalization of results and to perform score-level 
combination. When combining systems (at the score-level), 
we use a simple weighting of the scores. The weights are 
trained on 2005 data and are applied on 2006 data. 

Results are presented as equal error rate (EER) and 
minimum normalized decision cost function (DCF) as 
defined by NIST. Please refer to NIST evaluation plans for 
more detail [8]. 

3. Baseline systems 
The baseline system is similar to what was described in [4]. 
This system was a score-level combination of four 
subsystems. These systems used SVM for speaker modeling 
and differed in the way features were obtained.  

Figure 1 shows the basic feature extraction algorithm. 
Thirteen cepstral coefficients are estimated from a 25 ms 
window of speech. Cepstral mean subtraction is applied to 
them and they are appended with delta and double delta 
coefficients to get a 39 dimensional feature vector. The mean 
and standard deviation of this vector are computed (per 
element) over the speech utterance and each vector is z-
normed with these statistics. This results in 39 dimensional 
normalized feature vector.  



Figure 1 Feature extraction block diagram (with 
dimensionality shown on the arrows) 

First-, second-, and third- order polynomial coefficients 
are appended to each feature vector. This results in an 11479 
dimensional vector. The mean and standard deviation of this 
vector are computed over the speech utterance. The mean 
polynomial vector is referred to as MP. Each mean value is 
divided by its corresponding the standard deviation. This 
normalizes the linear kernel by the standard deviation of 
each feature. The resulting feature is referred to as the “mean 
divided by standard deviation polynomial” (MSDP) vector. 

In the baseline system [4], MP was used in addition to 
the MSDP vector. Further each feature vector was projected 
onto the eigenvectors obtained from the background (or 
impostor) speakers and onto the eigenvectors obtained from 
the feature space that is orthogonal to the background 
speakers.  

In this paper, we use only MSDP features because they 
performed better than MP features. Although the latter gave 
improvement in combination, we observed that this 
improvement was significantly reduced with phone classes. 
With three broad phone classes, the improvement was almost 
negligible.  

Further, we use the features without any transformation, 
mainly because we want to measure the effect of NAP on 
these features. In our experiments, we observed that NAP 
and our previously proposed transformation technique 
interact with each other. We will explore these interactions 
in another paper. 

Table 1 shows performance of this polynomial feature-
based system. Note that the system does not use any 
information about phones. For the sake of consistency, we 
also refer to the polynomial feature-based system as “one 
state and one class” or “1s1c” system. Also note that NAP is 
not applied to the features here. 

Table 1 Baseline with 1s1c – 1state and 1class – features 

SRE05 SRE06 System %EER DCF %EER DCF 
1state, 1class 8.12 0.300 6.74 0.295 

4. Incorporating Phone-specific 
Information 

We extend the baseline polynomial system using information 
from the ASR system. The ASR system models 40 phones 
with a 3-state hidden Markov model (HMM). If we estimate 
polynomial features for each phone then we will have data 
scarcity issues. We overcome this problem by clustering 

phones. Based on our previous work we group phones into 
three broad classes – vowels and diphthongs, glides and 
nasals, and obstruents. The choice of classes is based on 
similarity in the acoustic space. 

In the following subsections, we extend the basic 
polynomial feature by first modeling states across all phones 
and then by using three broad classes with a single state. 
This will show the importance of states versus classes. 
Finally, we use both the classes and states and show overall 
performance. 

4.1. Three states and one class (3s1c) features 

Table 2 shows results after adding state-based features into 
the system. Comparing the performance with Table 1, it can 
be seen that the states do not add significantly different 
information, and  increasing the features threefold does not 
improve performance. One reason could be that the states are 
specific to the phones and by averaging state information 
across phones we have lost that information. 

Table 2 Results with 3s1c (3 states, 1 class) features 

SRE05 SRE06 System 
%EER DCF %EER DCF 

3 states, 1 class 8.36 0.314 6.53 0.288 

4.2. One state and three classes (1s3c) features 

Table 3 shows performance after adding features based on 
the three broad phone categories. The resulting features have 
the same cardinality as the state-based features. We 
investigate two types of modeling approaches. In the first 
case, the polynomial features based on phone classes are 
modeled independently. The resulting scores are combined 
with equal weight to generate the final output. In the second 
case, the entire feature vector is modeled jointly.  

Results show that joint modeling does not improve the 
features. However, independent modeling of the classes 
followed by score-level combination (first row of Table 3) 
does improve performance in comparison with Table 1. 

Table 3 Results with 1s3c (1 state, 3 classes) features 

SRE05 SRE06 Modeling 
Classes %EER DCF %EER DCF 

Independent 7.72 0.282 6.04 0.283 
Joint  9.65 0.355 6.48 0.295 

4.3. Three states and three classes (3s3c) features 

Table 4 shows performance of polynomial features based on 
three classes and three states. Again, two sets of experiments 
are performed with independent and joint modeling of the 
classes. As with the results from Table 3, independent 
modeling of the phone classes gives significantly better 
performance than joint modeling, and the best performance 
overall. Comparing Table 1 and Table 4, we see that about 
25% improvement is obtained on both 2005 and 2006 SREs 
by incorporating phone and state information in the 
polynomial features. 

Table 4 Results with 3s3c (3 states and 3 classes) 
features 

SRE05 SRE06 Modeling 
Classes %EER DCF %EER DCF 

Independent 6.23 0.251 4.96 0.250 
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Joint  6.83 0.274 5.57 0.261 

5. Intersession Variability Compensation  
The most common approach to  intersession variability 
compensation (ISV) with SVMs is nuisance attribute 
projection (NAP) [6]. The nuisance attributes are the 
directions in the feature space that model within-speaker 
variability. The variability is modeled as within-speaker 
covariance, and eigen decomposition of this matrix is 
performed. The leading N eigenvectors are referred to as 
nuisance attributes because they model variations across 
different sessions of the same speaker that come from 
differences in communication channel, handset, phonetic 
content, and so on. 

We used NIST 2004 speaker recognition evaluation data 
for computing NAP, and N was determined empirically 
based on NIST 2005 evaluation data.  

Table 5 Performance of different systems after NAP 

SRE05 SRE06 System (N) %EER DCF %EER DCF 
1state, 1class (128) 6.91 0.269 5.44 0.268 
3state, 1class (32) 7.16 0.279 5.39 0.265 

1state, 3class – 
Independent (64) 5.95 0.240 5.01 0.246 

1state, 3class – 
Joint (256) 6.43 0.248 5.02 0.248 

3state, 3class – 
Independent (128) 5.67 0.220 4.21 0.218 

3state, 3class – 
Joint (128) 6.27 0.233 4.38 0.227 

Table 5 shows the performance of different systems after 
NAP. Apart from the obvious improvement obtained after 
NAP, there is one interesting result. For three-class systems 
(1s3c and 3s3c), the performance difference between 
independent and joint modeling is much smaller after NAP. 
For example, performance of 1 state and 3 class features with 
independent and joint models differed by about 10% before 
NAP. After NAP, the difference is less than 4%. This 
suggests that NAP is taking advantage of joint modeling of 
phone classes by exploiting the correlations across classes. 

5.1. Splitting phone-based features after joint NAP 

To summarize the results with phone classes, we see that 
independent modeling of phone classes gives improvement 
over joint modeling without NAP. With NAP, independent 
modeling does not offer any advantage over joint modeling. 
We analyze this result in detail with NIST 2006 data. 

Table 6 Detailed analysis of 1s3c system before and 
after NAP 

Before NAP After NAP (N) Classes 
%EER DCF %EER DCF 

1) VD 7.45 0.344 6.53 0.304 
2) GN 8.79 0.392 8.95 0.371 
3) OB 10.68 0.455 9.22 0.443 
1)+2)+3) 
(Independent) 

6.04 0.283 5.01 
(64) 

0.246 

All classes (Joint) 6.48 0.295 5.02 
(256) 

0.248 

Table 6 and Table 7 show two interesting trends with 
NAP. First, glides and nasals (GN) show the least 
improvement in DCF after NAP. In fact, EER for GN is 
slightly worse after NAP. For 1s3c features there is no 
improvement in EER for GN. It is not clear why NAP would 
favor other classes over them.  

Table 7 Detailed analysis of 3s3c system before and 
after NAP 

Before NAP After NAP (N) Classes 
%EER DCF %EER DCF 

1) VD 6.20 0.300 5.45 0.269 
2) GN 6.74 0.333 6.25 0.298 
3) OB 9.66 0.423 8.41 0.408 
1)+2)+3) 
(Independent) 

4.96 0.250 4.21 0.218 

All classes (Joint) 5.57 0.261 4.38 0.227 
Second, NAP gives more improvement with joint 

modeling than with independent modeling. Since 
independent modeling is better before NAP, the performance 
of two models becomes very similar after NAP. One of the 
reasons is that with the independent model, the performance 
of all phone classes improves equally. This leads to a 
hypothesis that joint NAP takes advantage of the across-class 
correlations thus leading to greater improvement across all 
classes. We test this hypothesis by splitting the features after 
NAP.  

Table 8 Splitting 1s3c features after joint NAP  

After NAP  Splitting after 
Joint NAP 

Classes 

%EER DCF  %EER DCF 
1) VD 6.53 0.304  6.15 0.284 
2) GN 8.95 0.371  7.98 0.337 
3) OB 9.22 0.443  8.95 0.386 
1)+2)+3) 
(Independent) 

5.01 
(64) 

0.246 � 4.75 0.230 

All classes 
(Joint)  

5.02 
(256) 

0.248    

Table 9 Splitting 3s3c features after joint NAP  

After NAP 
(128) 

Splitting after 
Joint NAP 

Classes 

%EER DCF  %EER DCF 
1) VD 5.45 0.269  5.06 0.258 
2) GN 6.25 0.298  5.99 0.282 
3) OB 8.41 0.408  7.60 0.367 
1)+2)+3) 
(Independent) 

4.21 0.218 � 4.10 0.209 

All classes  
(Joint)  

4.38 0.227    

We model the features after NAP independently and 
report the results in Table 8 and Table 9. These results show 
that joint NAP does improve per-phone-class performance 
more than independent NAP. It also improves the 
performance of the GN class, which showed the smallest 
improvement from independent NAP (Table 6 and Table 7). 
The performance of the score-level combination is not 
improved as much as the performance of individual phone 



classes, mainly because we used equal weights for the 
combination. The performance might be better if the weights 
were tuned further. 

5.2. Score normalization 

We complete the results by applying score normalization [9] 
after NAP. We look at three techniques – ZNorm, TNorm, 
and ZTNorm (or TZNorm). We use NIST 2004 data for the 
normalization. We select the normalization technique per 
system that gives the best performance. Table 10 shows the 
results. Score normalization gives a small but consistent 
improvement in the performance and does not affect the 
ranking of different approaches. Overall, the performance on 
NIST 2005 SRE improves from 7.03% to 5.71% (19% 
improvement) and the performance on NIST 2006 SRE 
improves from 5.12% to 3.83% (25% improvement). The 
improvement on NIST 2005 SRE is smaller than 2006 SRE 
because the choice of background and score normalization 
data (NIST 2004 SRE) is more matched to 2006 SRE. 

Table 10 Score normalization on all the NAP results

SRE05 SRE06 System (with NAP) 
%EER DCF %EER DCF 

1s1c 7.03 0.247 5.12 0.245 
Independent  5.99 0.219 4.69 0.230 
Joint  6.36 0.236 4.86 0.238 

1s3c 

Joint + separate 
class modeling 

6.35 0.219 4.53 0.219 

3s1c 7.07 0.253 5.29 0.246 
Independent  5.62 0.210 4.05 0.208 
Joint  6.27 0.214 4.04 0.196 

3s3c 

Joint + separate 
class modeling 

5.71 0.185 3.83 0.192 

6. Summary  
We have presented a simplified and improved polynomial 
feature-based SVM system. The baseline system was 
proposed in [4] and has been used in NIST evaluations. We 
investigated the use of state-based and phone-based feature 
extensions where we used three states and three broad phone 
classes – vowels+diphthongs (VD), glides+nasals (GN) and 
obstruents (OB). We observed that state-based features are 
not useful on their own and phone-based features do improve 
performance.  In combination, the joint state- and phone-
based features improve performance relative to obtained with 
single-state phone classes.  

We showed that independent modeling of phone classes 
and score-level combination performs significantly better 
than joint modeling. Comparison of results for phone-based 
features with single- and three-state features shows an 
interesting trend. First, state-based features give the least 
improvement for OBs. Second, these features give the most 
improvement for GNs. Finally, VDs provide the best 
performance among all phone categories. 

Further, we applied NAP on different feature sets. 
Results show that the performance of joint NAP over all 
phone classes is similar to independent NAP per phone class 
with score-level combination, which is interesting for two 
reasons. First, phone-based features performed better when 
modeled independently so we hypothesized that the 
improvement would be consistent after NAP. However, the 
results showed that joint NAP takes advantage of the 
interclass correlations. This can be seen in the improvement 
in performance using GN features after joint NAP. 

Joint NAP simplifies the system. It eliminates the 
computation of a separate NAP per-phone class, and seems 
to be more compact because it uses the same number of NAP 
dimensions as those for independent NAP.  

Finally, we tested our hypothesis about the advantage of 
independent modeling of phone classes. We use the features 
after joint NAP and model them independently (as in the 
system without NAP). The score-level combination of the 
phone-based systems gives the best performance. Overall, we 
obtain about 25% relative improvement in performance by 
incorporating phone and state information. 

7. Future Work 
This work can be expanded in many ways. First, phones can 
be grouped more efficiently and in more than three 
categories. Second, the importance of states within each 
phone class needs to be investigated. In addition, some way 
of selecting important features should simplify the feature set 
and subsequent modeling. Finally, the idea of joint NAP 
followed by separate modeling and score-level combination 
can be applied to different feature sets. 
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