
6 Conclusions 
An indirect method of parameter estimation for 

continuous-time systems from sampled input/output data has 
been described. Firstly, the ARMA model of the system is 
identified from the sampled data. Then the order of the reduc­
ed model is determined by the dispersion analysis. Finally, the 
continuous model is obtained by matching the frequency 
responses of the discrete-time model and the continuous-time 
model. The proposed estimation procedures have been applied 
to a power system stabilizer, and satisfactory results are 
obtained. 
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Constant Turning Force Adaptive Control Via Sliding 
Mode Control Design 

Chih-Lyang Hwang1 and Bor-Sen Chen2 

In the constant turning force adaptive control (CTFAC) 
system, the open-loop gain will vary and the stability cannot 
be assured when a cutting tool cuts a workpiece at various cut­
ting depths or spindle operates in different speeds. In this 
paper, the spirit of sliding mode control is extended into 
discrete-time form to combine with parameter estimation hav­
ing variable forgetting factor to stabilize the turning system 
against the variable gain and unmodeled dynamics, such as 
nonlinear perturbations, inaccurate measurements etc. 

1 Introduction 
The development of cheaper and reliable digital computers 

means that the field of adaptive control has been reactivated. 
The problem of CTFAC has been discussed in the literature 
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[1-3 etc.]. Since in the turning system the cutting variables, 
such as depth-of-cut, spindle speed, workpiece, and tool 
material properties, are also the control variables, these cut­
ting variables vary in an unknown fashion. Masory and Koren 
[1] suggest an integral control with variable gain inversely pro­
portional to the estimation of open-loop gain in every sampl­
ing step to keep open-loop gain of adaptive control system to 
be a constant. The paper discussed by Daneshmend and Pak 
[2] uses a model reference adaptive control scheme to deal 
with the feed force in the turning system. Recently, Chang and 
Chen [3] have successfully developed and implemented a 
variable structure system controller to the constant turning 
force system. 

The objective of sliding mode control is to drive the state 
trajectory to a manifold s = 0, which is generally called a 
sliding surface. By a suitable choice of the sliding surface, the 
system can be stabilized or can track a reference input. After 
determining the sliding surface, we employ a Lyapunov 
stability requirement to the sliding surface to achieve a sliding 
mode control law to force the state trajectory to the sliding 
surface. The parameter estimation with variable forgetting 
factor [4] can estimate the parameters of sudden change due to 
a variable cutting depth or a variable spindle speed. Together 
with the advantageous characteristics of sliding mode control, 
e.g., invariance properties on the sliding mode [5], order 
reduction and fast convergence rate [6], this kind of adaptive 
controller is an easy and effective method [5, 6] to tackle the 
problem of CTFAC. 

2 The Model and Problem Statement 
The turning system is composed of a controller, ser-

vosystem, cutting process, and dynamometer. The ser-
vosystem is a simple structure of servomotor and inertial load 
of the feed screw presented as [1, 3]: 

vf = M(s)u = w2„u/[s2 + 2£wns+w2,], (1) 

where £, wn and u are the damping ratio, the natural frequen­
cy and input signal of the servosystem, respectively, and ty is 
the feedrate of the cutting tool by the servosystem, united by 
mm/s. Before we introduce the cutting force model, the rela­
tion between feedrate vf and feed / (united by mm/rev) is 
given by 

f=60v/N, (2) 

where N is the rotation speed of the spindle in rpm, i.e., 
rev/min. The cutting process is approximately described as [1, 
2,3]: 

y = dckfp = {dckffl~
i)f, (3) 

where kf is the specific cutting force coefficient and g (g< 1) is 
a constant, both depending on the workpiece material and tool 
shape, dc is the cutting depth, and y (united by Nt) is the cut­
ting force. The conversion factor betweeny andyd is kd, i.e. 

yd = kdy, (4) 

where yd is the output of dynamometer. Note that in this 
paper, kd is assumed to be 1. If kd ^ 1, the system can be rear­
ranged as unity feedback system. A reference input yr is a con­
stant cutting force obtained by an off-line optimum analysis 
constrained by machining ability, certain tool material and 
geometrical shape of tool. Two samples are placed after a 
discrete controller C and dynamometer, respectively, and h 
denotes a sampling interval, ZOH represents a zero order hold 
(see Fig. 1). 

Since the parameter g in cutting process is approximately 
equal to 1, the nonlinear feature of cutting process is weak [1, 
2, 3]. Based on a second order servosystem (1), we assume that 
servosystem and cutting process is a discrete-time second-
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Fig. 2 An equivalent system of Fig. 1 

order system (see Astrom and Wittenmark [7]) with variable 
parameters, i.e., 

P(d) = B(d)/A(d), (5) 

where d = z~{ is a backward-time shift operator (i.e., 
z-*y(k)£y(k-l), y(k) is a digital signal), B(.d) = bld+b2d

2 

and A(d) =l+a1d+a2d
2, where a,, a2 are unknown plant 

parameters, and b\ b2 are parameters of sudden change. Our 
problem is to construct an adaptive sliding mode controller to 
handle a second order discrete-time system with variable 
parameters (see Fig. 2). This adaptive controller stabilizes the 
CTFAC system and tracks a constant cutting force for 
bounded initial condition of system without knowing the 
system parameters, such as dc, N, kf, and g etc. 

3 An Introduction of Sliding Mode Control in Discrete-Time 
Form 

In this section, we first introduce the choice of sliding sur­
face by the pole assignment. A sliding mode control law satis­
fying Lyapunov stability requirement to the sliding surface is 
derived subsequently. 

3.1 The Choice of Sliding Surface by the Pole Assign­
ment. At first, a sliding surface using the pole assignment 
technique developed by Utkin and Yang [8] is extended to the 
linear discrete-time system. 

Assume that the controlled plant is a second order discrete-
time system 

A(d)y(k) = B(d)u(k), (6) 

where A(d) = X+a^d+a-id1, B(d) = bld+b2d
2. It is assumed 

that A(d) and B(d) are coprime, and 6 i + d 2 ^ 0 , i.e., the 
polynomial (1 -d) is not a factor of B{d). Equation (6) can 
also be written as 

y(k) = 4>(k-\)T&, 

where QT = {-al-a2blb2\, <t>(k- l)T = \y(k- 1) y(k-
uijc- 1) u{k- 2)], or in an observable-canonical state form 

x(k + 1) = Ax(k) + bu(k), 

y(k) = cTx(k), 

with 

fl, 1 

a2 0 
, b = 

'b, ' 

[b2\ 
and c = 

ri 
0 

(7) 

•2) 

(8) 

(9) 

(10) 

The system (8), (9) is observable no matter what A{d) and B(d) 

are coprime or not, and is controllable as well as if A(d) and 
B(d) are coprime. 

Define the coordinate transformation, 

z(k) = Mx(k), (11) 

such that Mb = [Q q]T, where q-^O and M is a nonsingular 
matrix; e.g., if b2?*0, 

M= 
b2 -bx 

0 1 
(12) 

Of course, this coordinate transformation is not unique. 
Substituting (11) into (8) gives 

z{k+\) = Az(k)+bu(k), (13) 

where 

A = MAM~ 

an di2' 

_ "21 022 

1 _ 

1 

b2 

b1a2-b2a1 b1(bia2-b1al) + b2
l 

-a2 ~a2bx 

b = Mb = [0b2]
T. 

(14) 

(15) 

Rewrite (13) as 

For single-input single-output system, only one sliding sur­
face is defined, i.e., 

s(k) = dTx(k) = diXi(k) + d2x2(k). (17) 

In view of (11), (16), and (17), the motion of sliding surface is 
governed by 

Zi (k+l) = duzx (k) + dl2z2(k), 

s(k) = hlzl(k) + h2z2(k)-=0, 

where hx and h2 are scalars satisfying the relation 

[hlh2] = dTM-1. 

(18) 

(19) 

(20) 

The subsystem (18) may be regarded as an open-loop con­
trol system with state vector Z\ and control vector z2 being 
determined by (19). That is, 

z2(k)=-h{Zl(k)/h2. (21) 

Without loss of generality, we let h2 = \. Substituting (21) into 
(18) gives 

Z\{k+\) = (an-anhl)zl{k). (22) 

The initial controllability assumption on the pair (A, b), 
together with (15), implies that the pair ( a n , «12) is also con­
trollable. Then the eigenvalue of (a u -dl2h{) on the sliding 
mode can be arbitrarily assigned by a suitable choice of the 
scalar hx. With h2 = 1, the coefficients of a sliding surface are 
obtained from (20), i.e., 

dT=[hx\\\M. (23) 

3.2 Sliding Mode Control Law. At present time, one 
realizes that the initial state of the controlled plant on the 
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Fig. 3 Sliding mode control 

sliding surface is always on it and converges to the equilibrium 
point by an appropriate eigenvalue assignment of (22) [5, 6, 
8]. Consequently, if a control u(k) can be found to guarantee 
that any initial state deviation from the sliding surface is even­
tually drived to and then maintained on the sliding surface, the 
system in Fig. 2 is globally asymptotically stable. Therefore, a 
Lyapunov function is defined as follows 

V(k) = s(k)2>0. (24) 

It implies that the initial state of the controlled plant (6) is not 
on the sliding surface. Then the rate of increase of V(k) is 
made out in the following equation 

AV(k) = s{k+\)2-s{k)2. (25) 

A control resulting in A V(k) < 0 can be obtained by assuming 
s(k+ }) = 0; hence, from this requirement one can achieve the 
control law. Since 

s(k+\) = dlxx(k+\) + d1x2(k+\), from (17) 

= - (ditf, + d2a2)x1 (k) + diXjik) + (^fc, + d2b2)u{k), from (8) 

= -(dlal +d2a2)xl(k) + dlx2(k) + b2u(k), from(15), (23), (26) 

the control law is accomplished as follows 

u{k) = [(«*,<!, + d2a2)x^k) - dxx2(kWb2. (27) 

That is, if the control law (27) is employed to the plant (6), the 
state x(k)~0 (or y(k), u(k)-~0) as fc— oo(see Fig. 3, where the 
path of representative point denotes the state trajectory of the 
controlled plant). Substituting (8) and (9) into (27) achieves 

u(k) = ((rf, a, + d2a2)y(k) - dx [ - a2y(k -1) + b2u(k -1) ] ) /b2. 

(28) 

Thus, the control law (28) is in an input-output form, one does 
not need to estimate the state to attain the control law. If we 
want the plant to track a constant reference input yn the con­
trol law (28) is modified as follows 

u(k) =((£?,«!+ d2a2)ye{k) -dx[- a2ye(k - 1) 

+ b2ue(k-l)]}/b2 + u0, 

where 

ye(k)=y(k)-yr, 

«0 = (1 + a , + a2)yr/(bi + b2), 

ue{k) = u(k)-u0. 

(29) 

(30) 

(31) 

(32) 

4 Adaptive Control for a Turning System 
Because the cutting variables (e.g., cutting depth, spindle 

speed etc.) change, we adopt a least-squares parameter estima­
tion with variable forgetting factor [4] to treat this CTFAC 

problem. A smaller value of forgetting factor gives a better 
responsiveness to change but with a larger steady-state 
variance, so that a compromise has to be sought. This is the 
reason for variable forgetting factor. It is assumed that the 
unknown plant is written in (7). The recursive least-squares 
parameter estimation with variable forgetting factor is given 
as 

§(k) = 8(k - 1) + L(k)e(k), k>\, (33) 

and 

P{k) = [I-L{k)4>{k- l)T]P(k- lVf/M, (34) 

where 

L(k) = P(k- \)T<$>(k- \)/[\+4>(k- Y)TP(k- \)4>{k-1)], (35) 

e(k)=y(k)-4>(k- l)TW~ 1), (36) 

fAk) = \-{\-4>{k- l)TL(k)]e(k)2/st> (37) 

Si = ViSa, (38) 

where v2 is the expected measurement noise variance based on 
real knowledge of the controlled plant and sa will control the 
speed of adaptation. A smaller value of sa will give a larger 
covariance matrix P{k) and a more sensitive system; on the 
other hand, a larger value of sa will give a less sensitive 
estimator and slower adaptation [4]. If a very small value of sa 

is chosen, it may result in a very small value or even negative 
value oiff(k) (i.e., covariance matrix will "blow up"); so, we 
set 

/ / W = / m i n . i f / / W < / m i n , (39) 

to prevent an unstable control. The selection of/min is also im­
portant; too high a value reduces the speed of adaptation and 
too low a value may give the stability problem. However, the 
simulations of the next section have indicated that the selec­
tion of s, is not a critical thing. If ff(k)= 1, it reduces to the 
standard least-squares parameter estimation. Note that cir­
cumflex O in this paper denotes estimation or computation 
by estimation. 

4.1 Adaptive Control Algorithm. From the above analysis, 
the adaptive sliding mode control algorithm for a constant 
turning force system is delineated as follows: 
step 1: Update A(d, k) and B(d, k) using (7) and 

(33)-(39). a 

step 2: Calculate A(k) from (14), then compute h^k) 
from (22) for the assigned eigenvalue q, and final­
ly achieve d(k) from (23). 

step 3: Then the adaptive sliding mode control law for 
constant turning force system is attained from 
(29). 

The steps 1-3 are repeated in every adaptive step. 
Remark 1: In step 2, if \b2\ <e, where e is a very small 

positive constant, one can change the coordinate transforma­
tion, such as 

M= 
b2 - * ! 

0 1 

(because b{, b2 can not equal 
zero simultaneously), 

to avoid a singular control law in (27). 
Remark 2: Although the assumption 3(1)^0, i.e., 

^i + 6 2 ^ 0 , is made, the freezing technique [9] can be applied 
to^ keep safe from a very large control input; e.g., if 
\A(l)/B(l)\ >L, where L is a suitable positive constant, then 
u(k) = u(k-\). 

The following two simulation examples are given to il-
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Fig. 4 The responses of Example 1 

lustrate the usefulness of adaptive sliding mode control 
algorithm to the problem of CTFAC. 

5 Simulations and Discussions 

5.1 Simulations. 
Example 1: A turning system described by Fig. 1 is with 

£ = 0.7, w„ = 60 rad/s, N=900 rpm, g = 0.95, Ay =1533.3 Nt 
rev/mm2 and h = 0.01 s. The cutting depth dc= 1 mm before 
A: =40, dc~2 mm between A: = 40 and A = 70, dc = 3 mm after 
A: = 70. The initial values of estimated parameters are 
<2,(0) = - 0 . 5 , a2(0) = 0, 5,(0)= 10, 52(0) = 5, and the initial 
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Fig. 5 The cutting force response for s, = 200 
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Fig. 6 The cutting force response for s ( = 0.5 

Fig. 7 
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The cutting force response for inaccurate measurement 

values of controlled plant are equal to zero, i.e., y(-i) 
=y(-2) = u(- l) = «(-2) = 0. By applying the adaptive con­
trol algorithm in last section with P(0)=1000 /, /m i n=0.1, 
q = 0 and 5, = 10, the simulation results are shown in Fig. 4. 

Example 2: 
Similarly, without changing the above conditions in Exam­

ple 1 except replacing s, = 10 by st = 200 and s, = 0.5, the cut­
ting force responses are presented in Figs. 5 and 6, respective­
ly. Consider the Example 1 subject to one percent random in­
accurate measurement, i.e., (̂A:) in the control law (29) is 
replaced by y(k) [1 +Rn], where Rn is a random number with 
\Rn I < 0.01. With the above conditions in Example 1, the cut­
ting force response is shown in Fig. 7. 

5.2 Discussions 
(i) The simulation results show that the proposed adaptive 

controller can quickly converge the cutting force to the 
reference input, yr = 1000 Nt, after the cutting depth is 
changed. 

(ii) From Example 2, one realizes that a suitable choice of 
s, is not a very difficult task. 

(iii) The cutting force response of the plant subject to inac­
curate measurement has indicated that the first peak after 
Ar = 40 and A = 70 are caused by the change of cutting depth, 
and the higher peak are caused by larger inaccurate measure­
ment of cutting force during the change of cutting depth. 

(iv) In these simulations, the cutting depth is changed 
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abruptly, i.e., only in one step. In reality, the change rate of 
cutting depth may be not as fast as these cases; hence, the per­
formances are assumed to be better than these examples. 

6 Conclusions 
In order to ensure maximum productivity, to eliminate tool 

breakage, and to stabilize the plant, the adaptive sliding mode 
control algorithm is proposed to treat the problem of CTFAC. 
This novel adaptive control algorithm preserves profitable 
features of sliding mode control, e.g., invariance properties on 
the sliding mode, order reduction, and fast convergence rate. 
Because the nonlinear characteristic of cutting process are not 
very strong, the suggested adaptive controller including a 
variable forgetting factor can achieve a satisfied performance. 
The implementation of this constant turning force adaptive 
control is progressing in our next studies. 
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