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ABSTRACT
Among all web search queries there is an important subset of queries
containing entity mentions. In these queries, it is observed that
users are most interested in requesting some attribute of an entity,
such as “Obama age" for the intent of age, which we refer to as
the attribute intent. In this work we address the problem of iden-
tifying synonymous query intent templates for the attribute intent.
For example, “how old is [Person]" and “[Person]’s age" are both
synonymous templates for the age intent. Successful identification
of the synonymous query intent templates not only can improve the
performance of all existing query annotation approaches, but also
could benefit applications such as instant answers and intent-based
query suggestion. In this work we propose a clustering framework
with multiple kernel functions to identify synonymous query intent
templates for a set of canonical templates jointly. Furthermore, sig-
nals from multiple sources of information are integrated into a ker-
nel function between templates, where the weights of these signals
are tuned in an unsupervised manner. We have conducted exten-
sive experiments across multiple domains in FreeBase, and results
demonstrate the effectiveness of our clustering framework for find-
ing synonymous query intent templates for attribute intents.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Query Intent

General Terms
Algorithms, Performance, Experimentation

Keywords
Attribute Intent, Synonymous Query Intent Templates, Clustering
with Multiple Kernels
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1. INTRODUCTION
Accurate understanding of the intent underlying a user query is a

crucial problem in modern information retrieval. The understand-
ing of user’s intent not only can improve the accuracy of the search
results, but also enables new types of applications that help the user
make decision and finish tasks directly. For example, for a query
“Tom Cruise age", an intelligent search engine would trigger the di-
rect answer of “50 years" on top of the result page, which quickly
fulfils the user’s information need for finding this fact about Tom
Cruise. Likewise, for a query “map of Chicago", it is more desir-
able to show a city map of Chicago directly. Another emerging
application is the entity search, which returns the most relevant en-
tities and attributes instead of relevant web pages. The examples
mentioned above all require precise understanding of the intent of
a user query.

In this work we focus on the subset of queries containing en-
tity mentions since they are one of the most important subset of
queries. One previous research reported that 71% of search queries
contained named entities [1], another research found that 57% of
queries have entities or entity categories [2]. We have observed
from the query log of a major web search engine that among the
entity queries, users are most interested in requesting an attribute
of an entity. We refer to such intention as attribute intent, which is
the focus of this work. For example, “Obama age" for the intent of
age, “The Museum of Modern Arts phone number" for the intent
of phone number are attribute intents.

An ultimate goal of the attribute intent understanding is that as-
sume we have a gigantic database of all entities and attributes in
the world, map all possible search queries to the corresponding
attributes. This goal shares similarities with other researches on
query annotation [17, 22], in which they aim at annotating a query
to a structured schema. Note that the query intents in these works
are not necessarily attribute intents. However, these approaches ei-
ther require a lot of labeled data, or rely on a highly developed and
structured domain database. Most recently, unsupervised method
does exist [11], yet it is limited in its ability to merge query pat-
terns conveying same intent.

Not surprisingly, achieving the ultimate goal of attribute intent
understanding automatically across many domains is very chal-
lenging. In some tail domain doing this mapping is not even pos-
sible because of the data sparsity. Thus in this work we aim at
mapping the attribute intent at the template level, where individual
queries are aggregated into query intent templates, partly reduc-
ing the data sparsity issue. For example, for the attribute “age" in
Person domain, “[Person] age" is a query intent template for the
“age" intent, while “Obama age", “Tom Cruise age" are individual
queries conforming to this template. We refer to the query intent
templates conveying same underlying intent as synonymous query
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intent templates. Table 1 shows two attribute intent templates as
well as their synonymous templates. Specifically, in this work we
seek to address the problem of identifying synonymous query intent
templates for attribute intents. Successful identification of query in-
tent templates to their corresponding attribute intents can provide
benefits to several applications. First, it can potentially improve all
exiting query intent annotation approaches by merging the synony-
mous templates. Second, in the application of instant answers, it
enlarges the questions that a system can answer. Third, by know-
ing synonymous query intent templates, a search engine can rec-
ommend more queries based on rules between query templates for
long-tailed queries [29].

Table 1: Synonymous Query Intent Templates
Domain Attribute Intent Synonymous Query

Template Intent Templates
[Person]’s age

Person [Person] age how old is [Person]
age of [Person]
what age is [Person]
[Institution]’s phone

Institution [Institution] phone number for [Institution]
phone number number to [Institution]

[Institution] contact number

To the best of our knowledge, there are no existing methods
that directly address the synonymous query templates identifica-
tion problem. There might be several indirect solutions though.
For example, the above mentioned query annotation methods could
be used to solve the problem. However, due to the structure and
semantic difference between queries and query templates, these
methods might not be feasible. We could also apply approaches for
question paraphrasing in the Question and Answer research com-
munity [30, 31]. However, [30] focuses on finding synonymous
phrases on the question level, not on the template level. And [31]
aims at identifying alternative expression of the answers, while in
this paper we focus on alternative ways people query (ask) attribute
intents. Thus these previous approaches can not be directly applied
to the problem we are addressing.

In addition, we can treat it as a string synonym problem, which
previous researches have addressed with several similarity features
such as distributional similarity [18, 19], coclick similarity [10, 9]
etc. However, from Table 1 we can see that sometimes the synony-
mous templates may be different from the canonical template (the
attribute intent template itself) on small lexical variation and word
orders. Yet sometimes they are very different on lexicon. There-
fore, we can imagine that only relying on single similarity such as
string similarity, it is very hard to discover templates that are syn-
onymous to the canonical template in semantic level.

In fact, the synonymous query intent templates share similari-
ties among several independent, sometime complementary signals.
For example, other than the lexicon similarity, they would mani-
fest high similarity on the distribution of entities that occur in the
templates. In addition, people tend to click on same set of docu-
ments when they issue queries conforming to semantic equivalent
templates. For instance, it’s common that users who issue “Obama
age" and “how old is Obama" will both land on the wikipedia page
of Barack Obama. In this work we attempt to identify synony-
mous query intent templates by integrating multiple information
sources. Among multiple information sources, some are more im-
portant in determining synonym relations than others. Moreover,

the relative importance of these sources also depends on the do-
main: a feature that is crucial in the Person domain might be only
marginal in the Location domain. Therefore automatic determina-
tion of the weights of different information sources is critical. Here
we propose to automatically learn these weights via a novel cluster-
ing procedure with multiple kernel functions that cluster candidate
query intent templates to the canonical templates and effectively
determine the appropriate weights of the signals.

Other than the choice of information sources, there are differ-
ent options for the mode of learning. We could identify the syn-
onymous templates for a single canonical query intent template at
a time, or learn the synonymous templates for all canonical tem-
plates jointly. Handling single template at a time might lead to
the difficulty of differentiating synonymous templates of close re-
lated ones. For example, for template “[Person] height", “[Person]
weight" could be identified as synonym mistakenly because they
share a lot of coclicks. However if we learn synonymous templates
from those two values jointly, this error could be corrected eas-
ily because of the awareness of each other. Joint learning of syn-
onymous templates also provides the must-link and can-not-link
constraints among canonical templates, which could effectively im-
prove the results.

In this work we address the problem of finding synonymous
query intent templates for a set of canonical query intent (attribute
intent) templates jointly. We have proposed a clustering model with
multiple kernel functions to take advantage of multiple heteroge-
neous information sources. Qualitative and quantitative results on
attribute intent templates from a large knowledge demonstrate that
our method can identify synonymous query intent templates accu-
rately.

2. RELATED WORK
Query understanding has long been an important topic of infor-

mation retrieval. In terms of query structural analysis, there are
early and recent research attempts to do query segmentation [7, 14],
part-of-speech tagging [5], shallow linguistic structure parsing [6]
etc. In this work we are interested in entity related queries, where
named entity recognition inside a query is an important task that
has been addressed by previous works [13, 12]. These works are
focused on entities, while the focus of this work is on the attributes,
especially the attribute intent. There are recent attempts for entity
attribute identification based on query logs [32, 33]; and the results
from these works could potentially enlarge the attributes on which
we are looking for synonymous query intent templates.

Finding synonymous query intent templates for attribute intent
is an important task toward the ultimate goal of mapping all entity
queries to the associated attribute intents. This goal shares similar-
ity with the query annotation tasks, which try to annotate a query
to some structured schema based on the query intent. There has
been research attempts to find groups of queries sharing same in-
tents [28, 21], however in these works queries are not explicitly
mapped to structured schema. To do explicit schema discovery
from queries, people have been using a grammar-based approach,
in which domain specific rules are defined and queries are matched
to these predefined rules. However these rules are domain depen-
dent, which preclude them from applying to a large number of do-
mains. Also, defining such rules manually takes a lot of effort. To
reduce the cost of defining rules, supervised and semi-supervised
statistical models are developed [17]. But a fair amount of labeled
data is still required in these approaches. There are recent attempts
to discover a query’s schema information in an unsupervised way.
For example, Sarkas et al. [22] propose an unsupervised method
to annotate queries with a highly developed and structured domain



database. Unfortunately, these resources may not be available to
domains where data is sparse. To overcome this limitation, Che-
ung et al. propose using sequence clustering with a large open
source knowledge graph for query schema annotation [11]. How-
ever, a major limitation of this work is that it is unable to merge
query templates conveying same underlying intent. The main dif-
ference of this paper and these query annotation works is that we
focus on mapping synonymous templates to canonical intent tem-
plate, while these works focus on mapping queries to templates.
Thus the previous works in this line is orthogonal to our work. The
successful identification of synonymous templates can potentially
improve the query annotation quality by merging the synonymous
query templates. Besides, synonymous templates can be also used
to improve query recommendation for long-tail queries [29].

The problem setup in this paper is similar to finding question
paraphrases in Question and Answer [31, 30]. [31] aims at find-
ing alternative expression of the answers, thus their features are
majorly from the documents. However in this paper we focus on
alternative templates people query (ask) attribute intents, not the
answers. In addition, [30] focuses on finding synonymous phrases
on the question level, not on the template level. So it is not obvious
whether the method in [30] can be applied to our problem setup.
What’s more, [30] uses supervised approach to identify question
paraphrase pairs, while we are more interested in unsupervised
methods that can scale to large set of entities and attributes.

Researchers have also employed several similarity metrics to other
tasks such as finding string synonyms from web data. Such simi-
larities include distributional similarity [18, 19], coclick similar-
ity [10, 9], point wise mutual information [25], and co-occurrence
statistics [4]. Differing from these works, our work introduces
novel similarity metrics like entity distribution similarity and query
trend similarity that are tailored for finding synonymous query in-
tent templates.

In our approach we combine the metrics with weights learn the
weights automatically in an unsupervised manner. In this sense
our work is also related to the previous works on semi-supervised
metric learning [27, 23, 3]. We differ from these works in that our
metric learning approach is embedded in a clustering framework.

3. PROBLEM DEFINITION
In this work, we seek to identify synonymous query intent tem-

plates from a set of entity attribute intents of a domain. The precise
representation of the entity attribute intent could be difficult, here
we start from using the attribute names as the representation of an
entity attribute intent. And the definition of a domain can be flex-
ible, we only assume that a domain contain a set of homogeneous
entities with attribute values. Without loss of generality, we fo-
cus on entity attributes from a large open source knowledge graph:
FreeBase where a large amount of the real world entities and at-
tributes are covered. In fact, our technique does not depend on a
specific data source. For example, it is not hard to adapt to other
knowledge graphs such as Wikipedia.

Formally, given a set of M semantically distinct entity attribute
intent templates V = {v1, v2, ..., vM} for a domain, where each
template v ∈ V is represented by its canonical form (here we as-
sume the attribute name), such as “[Person] age" for intent “finding
age of a person", and “[Movie] cast" for the intent “finding cast of
a movie". From a set of N candidate synonymous templates X =
{x1, . . . , xN}, we define an oracle mapping F : X → V ∪ {v0},
which assigns each candidate template x to its unique canonical
synonym query intent template v, or if x is not a synonym of any
value in V, to the special background template v0. Note that we as-
sume each candidate query template maps to at most one canonical

template. Now, we can define the synonymous query intent tem-
plates identification problem as follows:

Definition 1: For each canonical attribute intent templates v ∈ V,
find the subset Xv = {x ∈ X|F(x) = v}, representing the set of
synonymous query intent templates for value v.

For example, for the attribute intent template “[Person] age",
its synonymous templates include “how old is [Person]” and “age
of [Person]", but not include templates like “[Person] birthday" or
“how high is [Person]" though they are related templates.

4. A CLUSTERING FRAMEWORK
Here we propose to identify synonymous query intent templates

by a clustering model that has multiple similarity functions. In this
model, query templates X = {x1, x2, ..., xN} are modeled as data
points. Points are connected to each other by similarity functions
f (also called kernels). Data points form clusters such that points
in the same cluster are considered synonyms. The canonical query
(attribute) intent templates v1, v2, ..., vM also belong to X, but they
have hard assignments to their respective clusters.

We tackle the problem with a clustering framework in order to
take advantage of modeling a set of canonical templates jointly. We
further consider transitivity and compactness in our model, which
means we choose a cluster assignment by considering a committee
of points in a cluster rather than a single medoid. In addition, pre-
vious researches measure similarity with single or only a few sim-
ilarity features, while we want to support arbitrary features. Thus,
manual tuning of parameters is not sufficient. Though there are ex-
isting works in metric learning with supervision, we are also inter-
ested in unsupervised techniques. Hence, we employ the regular-
ized metric learning approach to guide our parameter optimization.
In this section we first describe the center initialization and how to
obtain candidate templates. After that, we define the similarity ker-
nel functions according to different information sources. Then we
introduce a basic clustering model for finding synonymous tem-
plates. Further, by addressing its limitations, we propose several
extensions that lead to the refined model. To facilitate the readabil-
ity of the paper, we summarize the major notations in Table 2.

Table 2: Major Notations in this Paper
Symbols Descriptions

V canonical attribute intent templates
M number of distinct canonical attribute intent templates
X candidate query intent templates
Xv synonyms of a target canonical template v

ft(., .) similarity kernels
d(., .) distance between two attribute intent templates
W kernel weights
R partition matrix of the templates to clusters
Z medoids of the clusters
γ distance between a clusters to background
L size of the pseudo-medoid
µ proportion of random templates selected from background

S,U should-link and should-not-link constraints

4.1 Cluster Center Initialization
Cluster center initialization includes two major steps: (1) allo-

cate initial values to the centers; (2) choose the number of clusters.
For step 1, we first assign each attribute names as the initial value of
the cluster centers. This approach is generally effective; however,
there is a limitation when the attribute names are long or written in



a way that is uncommon in the query log where we look for can-
didates. For example, in the Person domain, the attribute names
“date of the birth" and “country of nationality" are written in such
forms. We employ an automatic reformulation method to handle
the initial center allocations as follows: first, we check whether a
canonical attribute name is above a threshold of query counts in the
query log. If not, we use a state-of-the-art query log-based string
synonym finder [9] to obtain a synonym that is most popular in the
query log, and then replace it with this string synonym as the ini-
tial cluster center. For instance, in the above example, after proper
reformulation, the initial value of these two centers are “[Person]
date of birth" and “[Person] nationality". Finally, if we couldn’t
find any valid synonyms for an attribute name, we drop this cluster
from the cluster list.

In step 2, we can set the number of clusters as the number of
valid canonical attribute intent templates after reformulation in step
1. But we can do better by adding more clusters due to the reasons
as follows: we observe that usually the current knowledge graph
does not cover all attribute intents in a domain, and some of these
uncovered intents will affect the clustering results. For example,
for intent templates “[Person] age" and “[Person] height", we find
that intents “[Person] wiki" and “[Person] biography" are ranked
high in both clusters, which is not desirable. However, they are
not covered by attribute names in Person domain in FreeBase, pre-
cluding us from assigning them as canonical templates. Hence, the
final results can be improved by adding a few auxiliary clusters ini-
tialized by these popular intent templates. We identify these intent
templates by two criteria: (1) they are most popular intents among
all intents about the entities in a given domain; (2) they are not
string synonyms of the valid canonical templates after processing
in step 1. Furthermore, in addition to the auxiliary clusters, we add
a background cluster to attract random templates. And the back-
ground cluster is initialized by a set of random candidate templates
whose generation process is described in the following section.

After these steps, finally we obtain K + 1 clusters (the back-
ground cluster being the 0th cluster) in total, among which M ′

(M ′ ≤ M ) clusters correspond to the valid canonical attribute in-
tent templates. There are also K − M ′ auxiliary clusters, and 1
background cluster.

4.2 Candidate Query Intent Templates
Our clustering framework assumes we have a set of candidate

query intent templates {x1, x2, ..., xN} as input. Here we describe
how we obtain them efficiently. The search space of potential can-
didate templates is huge: any template in the query log that con-
tains the target entities could potentially be a synonymous template.
Therefore reducing the template search space is critical. Specifi-
cally, for a set of valid attribute intent templates V = {v1, v2, ..., vK},
we identify candidate templates as follows:

1. For each v ∈ V, we first get the set of entities under intent
templates v from FreeBase. And for each of these entities, we in-
stantiate the template to a query by the entity mention. For exam-
ple, “[Person] age" can be instantiated into “Obama age" or “Tom
Cruise age". Then, for each of instantiated query, we obtain a set of
most related queries by a query similarity function. For instance,
“how old is Obama", “how old is Tom Cruise" are within the most
related queries. By iteration all entities, we can get a set of related
queries for v.

2. From the set of most related queries, we only keep queries that
contain at least one entity in the entity set of v. Then, we generate
candidate templates from such queries. In the above example, a
candidate template “how old is [Person]" is generated accordingly.

3. In order to cover most of the candidates, other than a similar-
ity function, we also employ other similarities to select template
candidates. Particularly, for each similarity, we keep only top 50
candidates, and merge them and remove duplicates to form the set
of candidate templates.

4.3 Freebase as a Knowledge Graph
Before diving into the similarity kernel definitions we briefly de-

scribe the knowledge graph we use to facilitate the query intent
template initialization and kernel function computation. Freebase
is a large knowledge graph that consists of over 20 million enti-
ties across over 10,000 concepts. There are multiple entities under
a concept such as “People" or “Location", and each entity is con-
sist of multiple attributes. We use the attribute name of the enti-
ties under a concept to nominate the query intent template, such as
“[People] age" or “Phone number of [Institution]". In addition, we
utilize the entities under a concept to compute the similarity kernel
functions between two query intent templates.

4.4 Similarity Kernels
Defining proper similarity measures between data points is an

essential part of a clustering framework. In our problem setup, we
can measure the similarity between two query intent templates in
different aspects. For example, two similar templates may share
similar lexicon, with only minor difference in word order. Like-
wise, two templates are similar if people click on same set of docu-
ments after issuing queries conforming to these templates. Multiple
heterogeneous information sources, in the forms of query log, an-
chor text, query document pairs, temporal and spatial query trends,
can be used to calculate the similarity between query intent tem-
plates. In this section we describe 4 similarity functions, which are
also called similarity kernels, in detail. Our clustering framework
is not limited to these kernels; in fact our framework can accom-
modate arbitrary number of similarity kernels, whose weights are
automatically tuned.

1. Entity distribution similarity. This similarity measures the
entity frequencies under different query intent templates. Our hy-
pothesis is that the distribution of entities for which user query
about a particular intent should be similar among synonymous tem-
plates of that intent, while should be very different from templates
conveying different intents. Fig. 1 illustrates an example of en-
tity distribution similarity. We can see from Fig. 1 that query
templates that follow the same underlying intent manifest similar
query counts correlation across entities (color comparison in the
same row). On the other hand, templates from different intents
show very different entity distribution (row comparison). Formally,
for a query intent template xi, let its entity distribution be:

Ωi = { ω1, ω2, ..., ωne} , (1)

where ωt, 1 ≤ t ≤ ne is the normalized query counts of a query
intent template instantiated with an entity. And ne is the number of
entities in consideration. In the example shown in Fig. 1, ωt could
be the query counts of “Obama age", normalized by the total query
counts of queries containing “Obama". And the similarity between
templates xi, xj is the cosine similarity of Ωi and Ωj :

f1(xi, xj) =
Ωi · Ωj

||Ωi|| · ||Ωj ||
(2)

2. Coclick similarity. This similarity measures how similar the
set of documents users click on when they issue queries conform-
ing to the query intent templates in consideration. We refer to such



Figure 1: Entity distribution similarity

queries as proxy queries. A proxy query is generated by injecting
an entity into the intent template. For example, “The Museum of
Modern Art phone number" is a proxy query for template “[Insti-
tution] phone number". Given an intent template xi, let the set of
proxy queries of xi be Qi = {qi1, qi2, ..., qini

}. For each query qil ,
assume that the users have clicks (≥ 0) on a set of documents rep-
resented by vector: ∆l = {δl1, δl2, ..., δlnd

}, where nd is the total
number of documents. And let the accumulation of these clicks be:

∆ =
∑
l

δl =

{∑
l

δl1,
∑
l

δl2, ...,
∑
l

δlnd

}
(3)

Under this assumption, for templates xi and xj , we define their
coclick similarity as the cosine similarity of ∆i and ∆j :

f2(xi, xj) =
∆i ·∆j

||∆i|| · ||∆j ||
(4)

3. Pseudo-document similarity. This similarity is related to the
coclick similarity, and it is a more robust measure on sparse data
such as clicked documents. This similarity has been successfully
applied to finding entity synonyms [9]. For a document D, the
document title and body are not always easy to get; and they are
usually long, thus might not be the best representation of D. In-
stead, the queries which have user clicks on D (referring queries)
provide a succinct representation of D. We define the document
augmented by all referring queries as the pseudo-document of D:
PD . We then define the one-way similarity of two proxy queries
given the pseudo-document. For proxy queries qa, qb, let Db be the
set of documents users click after issuing qb. The one-way pseudo-
document similarity from qa to qb is:

φ(qa → qb) =
Count

{
qa ∈ PDj |Dj ∈ Db

}
Count {Dj |Dj ∈ Db}

, (5)

That is, the percentage of pseudo-documents that contain query qa.
Likewise, the symmetric, two-way pseudo-document similarity be-
tween qa and qb is:

φ′(qa, qb) =
φ(qa → qb) + φ(qb → qa)

2
. (6)

Finally, for two query intent templates xi, xj , and given a set of en-
tities E under the templates, we generate proxy queries qie and qje
for xi and xj according to e ∈ E. We define the pseudo-document
similarity between xi and xj as the average pseudo-document sim-
ilarity of their corresponding proxy queries:

f3(xi, xj) =
1

|E|
∑
e∈E

φ′(qie, q
j
e) (7)

4. Query trend similarity. Query templates with same intent
should share similar query volume patterns over time. To illus-
trate this, we show 4 queries on GoogleTrend to display their query
volumes from the year of 2005 to 2011 in Fig. 2. These 4 queries
are of 2 distinct intents, one is “[Location] map", the other is “[Lo-
cation] time zone". The temporal trends of these queries demon-
strate that query patterns from same underlying intents are more
correlated than from different intents. To measure it quantitatively,
we collect a large query log with temporal query volumes. This
query trend log contains about 80 millions unique queries. For
each query, we record the monthly query volume from June 2008
to June 2011. Given a query q, let its monthly query volumes be
Φ = {ϕ1, ϕ2, ..., ϕnt}, where nt is the total number of months
in the records. Then for two proxy queries, we define their query
trend similarity as the cosine similarity of Φi and Φj :

ς(qa, qb) =
Φa · Φb

||Φa|| · ||Φb||
(8)

And for two query intent templates xi, xj , and given a set of entities
E under the templates, we generate proxy queries qie and qje for xi

and xj according to e. Finally the query trend similarity between
xi and xj is the average query trend similarity of the proxy queries:

f4(xi, xj) =
1

|E|
∑
e∈E

ς(qie, q
j
e) (9)

Figure 2: Query trend similarity

4.5 Integrating Multiple Kernels
The similarity kernels defined above have these properties: (1)

symmetric; (2) ft(xi, xj) ∈ [0, 1], for 1 ≤ t ≤ T . We seek
to integrate multiple kernels into a new function that the weights of
individual kernel can be automatically learned. Since our model re-
sembles the K-medoids clustering [15], here we follow the nomen-
clature in the clustering literature and define the distance between
query intent templates xi and xj as a convex combination of the
similarity kernels:

d(xi, xj) =

T∑
t=1

wt · dt(xi, xj) (10)

=
T∑

t=1

wt · (1− ft(xi, xj))

where ft(xi, xj) ∈ [0, 1] is the similarity kernel of xi and xj cal-
culated based on evidence from information source t ∈ {1, ..., T}.
Likewise dt(xi, xj) = 1 − ft(xi, xj) ∈ [0, 1] is the distance be-
tween xi and xj . And wt are the weights needed to be learned,
following non-negative constraints:

wt ≥ 0, 1 ≤ t ≤ T (11)



In the following, we describe our clustering model that identifies
synonymous query intent templates and learns the appropriate ker-
nel weights iteratively.

4.6 Initial Model
We first define an objective function for our model and refine it

by overcoming its limitations. Overall, we aim at minimizing the
following objective function:

g0(R,Z,W ) (12)

=

K∑
k=1

N∑
i=1

ri,k · d(xi, zk) +

N∑
i=1

ri,0 · d(xi, z0)

=

K∑
k=1

N∑
i=1

T∑
t=1

ri,k · wt · dt(xi, zk) +

N∑
i=1

ri,0 · γ

subject to: 

K∑
k=0

ri,k = 1, 1 ≤ i ≤ N

ri,k ∈ {0, 1}, 1 ≤ i ≤ N, 0 ≤ k ≤ K

wt ≥ 0, 1 ≤ t ≤ T

(13)

The above objective function minimizes the sum of with-cluster
dispersions. In this formulation, the first term is the overall within-
cluster distances of the normal clusters, and the second term is the
within-cluster distances in the background cluster. Such formula-
tion is to make the resulting clusters compact. Note that in our
model there is no need to represent data points with explicit feature
vectors or coordinates, instead, we only require that d(xi, xj) ≥ 0
. The notations of variables are listed below:

• d(xi, zk) is the overall distance function between xi and zk,
as defined in Eq. (10);

• Z = {z0, z2, ..., zK} are the medoids of the clusters. The
first K medoids are fixed to the valid canonical intent tem-
plates {v1, v2, ..., vK} for which we look for synonymous
templates;

• R is an N × (K + 1) partition matrix, where N is the total
number of points and K+1 is the number of clusters; ri,k ∈
{0, 1} is a binary variable; ri,k = 1 indicates object xi is in
kth cluster;

• W = {w1, w2, ..., wT }′ are the weights of different distance
kernels;

• γ is a constant measuring the distance of x ∈ X to the back-
ground cluster.

The objective function of the initial model is similar to the for-
mulation of K-medoids[15]. The advantage of employing the K-
medoids framework rather than K-means is that we only need to
define distance functions (kernels) between data points, while ex-
plicit feature vectors are not needed. This is desirable because fea-
ture vectors are sometime hard to represent explicitly. In addition,
there are important differences between our initial model and the
K-medoids model: firstly, the first K medoids in our model are
fixed to the canonical templates, assuming they are best represen-
tatives of these clusters. This also implies that there is no need to
update the medoids. Secondly, in our model the distance between

points is a weighted kernel function, which is very different from
the standard K-medoids model. Such weights measure the relative
contribution of the kernels, and they are estimated in an unsuper-
vised manner. Thirdly, in our model we add a background cluster
in order to attract the random points. Here we assume that the dis-
tance of any point to the background cluster is a constant.

Although this initial model can partition the data points into clus-
ters efficiently, it suffers from the following limitations: (1) Using a
single fixed representative for a cluster may be problematic. First,
the canonical template is not always the most representative one.
It may have idiosyncrasies that are not shared by other members
of the cluster. Second, because the similarity features are noisy,
if we only compare a candidate against the canonical template, a
noisy feature may bias it towards an incorrect cluster. (2) Manu-
ally setting the constant γ is very difficult. Nominating a good γ at
the beginning is hard, and further, since the distance between data
points depends on the weights, it makes it even harder to choose
the appropriate γ inside the algorithm. Therefore an automatic es-
timation of this constant is necessary. (3) Not enough guidance for
learning the kernel weights. The initial model doesn’t make use of
the constraints in the forms of must-link and can-not link, to learn
the optimal weights.

4.7 Refined Model
We propose to address Limitation 1 by introducing pseudo-medoids

instead of fixed centers; and we address Limitation 2 by estimat-
ing γ with random points. In addition, we tackle Limitation 3 by
adding constraints that regularize the value of kernel weights. Now
we look for cluster assignments and kernel weights that minimize
the new objective function:

g1(R,Z′,W ) (14)

=
K∑

k=1

N∑
i=1

ri,k · d(xi, z
′
k) +

N∑
i=1

ri,0 · d(xi, z0) + ||W ||

+ β1

∑
Sk∈S

∑
(xi,xj)∈Sk

d(xi, xj)− β2

∑
Uk∈U

∑
(xi,xj)∈Uk

d(xi, xj)

subject to: Eq. (13), where z′k is the pseudo-medoid, A is the
subset of random points in the background cluster. β1 ≥ 0, β2 ≥ 0
are the weights for regularization terms. And

d(xi, z
′
k) =

∑
xj∈z′

k

1

|z′k|
d(xi, xj), (15)

d(xi, z0) =
∑
xj∈A

1

|A|d(xi, xj), (16)

||W || =

√√√√ T∑
t=1

w2
t (17)

This new formulation addresses all limitations of the initial model.
First, limitation 1 can be addressed by having a flexible represen-
tative or a small set of representatives for each cluster. However
it’s not desirable to have flexible medoids since in our problem
setup the canonical values are good representatives and it is more
robust to include them into the medoids. Thus we propose to use
a small subset of points, including the canonical value, to form a
new pseudo-medoid z′k. This subset is viewed as a committee that
determines the distance from a point to the cluster. By carefully
choosing pseudo-medoid members, it will reduce the risk of having



unpopular canonical values and noisy features, making the clusters
more compact. In fact a similar idea of clustering with committees
of points has been successfully applied to the document cluster-
ing problem [20]. As the optimal solution for K-medoids cluster is
NP-hard, we can only find the local optimum of medoids by algo-
rithms such as PAM [16]. However, this algorithm takes O(m2)
time to update a medoid where m is the number of points in a
cluster, which is inefficient. Also it doesn’t take the advantage of
the canonical templates. In our new formulation, we form the new
pseudo-medoid by including the top L − 1 most similar templates
to the canonical template as well as the canonical template itself.
The advantage of this nearest neighbors approach is that it forms
a compact pseudo-medoid around the canonical value efficiently,
which takes only O(m) time.

Second, by assuming random points follow similar properties as
the background, we address the limitation 2 by to randomly select-
ing µ proportion of points to form the set A from the background
cluster. Thus γ can be estimated by taking the average of the dis-
tance to this random subset. Results show that the final synonyms
are stable with respect to different setting of µ.

Third, we propose to guide the search of optimal kernel weights
in a regularization framework. The first regularization term ||W ||
is to prevent the weights from becoming too large. The second reg-
ularization term acts as a must-link constraint in which each set Sk

contains templates that should be close to each other. In this work
we include templates of each pseudo-medoid z′k to Sk, which tries
to make the pseudo-medoid more compact. On the contrary, the
third regularization term acts as a can-not-link constraint in which
Uk contains templates that should be far away from each other. Ac-
tually for each cluster, the canonical intent template should be away
from the other clusters. In that way, we include K pairs of points
in each Uk, resulting in K·(K−1)

2
such pairs in total.

4.8 Solving the Model
In the refined model there are three set of unknown variables:

R, Z′ and W , which are dependent on each other. There is no
exact solution to solve all of them at the same time. Instead we
solve this optimization problem by iteratively solving the following
minimization problem:

1. Fix Z′ = Ẑ′ and W = Ŵ ; find the best R that minimizes
g1(R, Ẑ′, Ŵ )

2. Fix W = Ŵ and R = R̂; find the best medoids Z′ that
minimizes g1(R̂, Z′, Ŵ )

3. Fix Z′ = Ẑ′ and R = R̂; solve the best parameters W that
minimizes g1(R̂, Ẑ′,W )

Sub-problem 1 can be solved by:{
ri,k = 1 if d(xi, z

′
k) ≤ d(xi, z

′
l), 0 ≤ k, l ≤ K

ri,k = 0 otherwise (18)

For sub-problem 2, we update the pseudo-medoids of first K clus-
ters by including up to the top L − 1 most similar values to the
canonical value as well as the canonical template itself:

z′k ← vk ∪ {L− 1 nearest neighbors of vk in cluster k} (19)

For the background cluster, there is no need to calculate the updated
medoid. For sub-problem 3, we follow the basic ideas for solving
the regularized metric learning problem [23]. Note that after fixing
R and Z, solving Eq. (14) becomes a Semi-Definite Programming

(SDP) problem. To see this, we rewrite Eq. (14) as:

g1(R,Z′,W ) (20)

=

K∑
k=1

N∑
i=1

ri,k · d(xi, z
′
k) +

N∑
i=1

ri,0 · d(xi, z0) + y

+ β1

∑
Sk∈S

∑
(xi,xj)∈Sk

d(xi, xj)− β2

∑
Uk∈U

∑
(xi,xj)∈Uk

d(xi, xj)

subject to: 

√√√√ T∑
t=1

w2
t ≤ y

wt ≥ 0, 1 ≤ t ≤ T

(21)

Now the objective function is linear in both y and W . It has two
convex constraints: the first is a second order cone constraint, while
the second is a positive semi-definite constraint. There exist effi-
cient solutions that guarantee to solve this problem in a polynomial
time. In this work we use the method implemented in SeDuMi [24]
to solve W efficiently.

4.9 Algorithm Procedure
The optimal allocation of points to clusters and the best kernel

weights can be found by iteratively solving the above sub-problems.
These iterative updates are summarized in Algorithm 1. Algorithm

Algorithm 1: Clustering with Multiple Kernels
input : A set of canonical attribute values {v1, v2, ...vK}

and a set of candidate strings {x1, x2, ..., xN}
output: Optimal membership matrix R, pseudo-medoids Z′

and distance kernel weights W

1 Init: init Z′0 = {v1, v2, ..., vk} and choose uniform
W 0 = { 1

T
, ..., 1

T
}.

2 for q ← 0 to qmax do
3 Let Ẑ′ = Z′q and Ŵ = W q , find the best Rq+1 in

sub-problem g1(R, Ẑ′, Ŵ ) according to Eq. (18). If
Rq+1 = Rq , output Rq, Ẑ′q, Ŵ q and stop.

4 Let R̂ = Rq+1 and Ŵ = W q , update Z′q+1 in
sub-problem g1(R̂, Z′, Ŵ ) according to Eq. (19).

5 Let R̂ = Rq+1 and Ẑ′ = Z′q+1, find the best W q+1 in
sub-problem g1(R̂, Ẑ′,W ) according to Eq. (20) and Eq.
(21)

1 is guaranteed to converge to a local minimum after several itera-
tions. The time complexity of Algorithm 1 is O(P · (N ·L · (K +
1) · T + T 3)), where P is the number of iterations, N is the num-
ber of candidate templates, L is the number of nearest neighbors,
K + 1 is the number of clusters, and T is the number of similarity
kernels. The SDP solver for W takes T 3 time complexity.

5. EXPERIMENTS AND RESULTS
To test the effectiveness of our proposed model, in this section

we have carried out a set of experiments on datasets across mul-
tiple domains from a large knowledge graph. We first present the
qualitative results obtained by all methods in comparison. Then
we make direct comparison of our model to the baselines quanti-
tatively. After that we investigate the model performance at top K̄



results. Finally we analyze the model sensitivity subject to different
parameter settings.

5.1 Datasets
For evaluation purpose, we have collected a large set of canoni-

cal templates from Freebase. These templates are formed by com-
bining the entity type and attribute names, such as “[Person] place
of birth", “[Educational Institution] phone number". They are col-
lected from three major domains: People, Location, and Organiza-
tion, which have many sub-relations. We have selected 113 canoni-
cal templates from People domain, 102 from Location domain, and
93 from Organization domain respectively. Because it’s very diffi-
cult to come up with all true synonymous templates of the selected
canonical templates, we employ the TREC style pooling strategy to
obtain the initial pool of candidate ground-truths. That is, for each
canonical template, we use all competing methods to produce up
to 50 best synonyms. And then these results are pooled, producing
another list of top 50 templates by a simple ensemble method. Fi-
nally domain experts are asked to label these candidate templates
into true synonyms or not (1/0 labeling), resulting in 15450 labels
in total. All of the labeled data as well as our experiment results
will be freely available to the public.

We also describe the data sources from which the similarity func-
tions are computed. Firstly, all of the similarity kernels are com-
puted on a large query log and a query-click log from a major com-
mercial search engine. There are more than 100 millions unique
queries in the query log and about 600 millions query-clicked doc-
ument pairs in the query-click log. Part of the queries has monthly
query volume records from June 2008 to June 2011, which are used
to compute the query trend similarity. All these query and click logs
are preprocessed and indexed in a compression trie data structure
so that the similarities can be computed efficiently.

5.2 Baselines
To the best of our knowledge, there is no existing work directly

addressing the problem of finding synonymous query intent tem-
plates for attribute intents. Thus we choose a set of baselines that
are based on individual features. We also add another baseline by
string synonym induction.

1. Individual feature. Individual feature can identify synony-
mous query intent templates effectively. Here we include baselines
using individual feature we defined in section 4.4. Synonymous
templates are identified by single input canonical template at a time.

2. Clustering with Fixed Weights. In order to reveal the effective-
ness of the kernel weights learning in our model, we add a baseline
that uses the same clustering model, with fixed and equal kernel
weights (0.25).

3. String Synonym Induction. Synonymous query templates can
be also identified by inducing the string synonyms of proxy queries.
Specifically, for a canonical query intent template, we first obtain a
set of proxy queries by instantiating the associated entities. Next,
string synonyms of these proxy queries are found by a start-of-the-
art synonym finding approach [9]. After that, the resulting string
synonyms are induced back to query templates. Finally synony-
mous templates are found by keeping the most popular induced
templates.

5.3 Evaluation Metrics
We evaluate our system using metrics of Mean Average Precision

(MAP) and Precision @ K̄, which are based on the precision and
recall measures. Specifically, for an canonical query intent tem-
plate, v ∈ V , O(v) = {o1, o2, ..., oKv} is the set of synonym

outputs in ranked order (decreasing). Let S(v) denote the set of
true synonymous templates annotated by the human experts for v.
Precision for a particular input template v is computed as:

precision =
1

|O(v)|
∑

o∈O(v)

Ip(o, v)

where Ip(o, v) = 1 if o ∈ S(v), and 0 otherwise. When eval-
uating methods with ranked synonyms, MAP is a good measure
to distinguish the approaches across different recall levels. MAP
is the mean of the average precision for multiple templates. Sup-
pose for canonical template vj , the set of true synonyms of vj is
S(vj) = {s1, s2, ..., smj}, and Rjk is the set of ranked synony-
mous templates obtained by taking the top results until we reach
true synonym sk, then

MAP(V ) =
1

|V |

|V |∑
j=1

1

mj

mj∑
k=1

precision(Rjk)

Note that when a true synonymous template is not found in the
ranked list, the corresponding precision in the above equation is set
to 0. Besides MAP, we also use the Precision @ K̄ measure to
assess the quality of top ranked results down to position K̄, which
has practical significance.

5.4 Parameter Settings
The performance of our models will vary with respect to differ-

ent parameter setting. Table 3 lists the optimal parameter setting
we use to report results.

Table 3: Parameter Setting
Parameter Setting Meaning
L− 1 2 number of nearest neighbors

µ 0.05 proportion of random points from the background

β1, β2 1 coefficients of the regularization terms

5.5 Qualitative Analysis of Results
In order to demonstrate what the results really look like and re-

veal the strength and weakness of the methods in comparison, we
conduct a qualitative analysis in a concrete example. Table 5 shows
the results of an input template “[Person] place of birth". Due to
space limitation, for individual features we only present the results
of Pseudo-document Similarity and Query Trend Similarity, which
represent a strong feature and a weak feature. Based on the exam-
ple, we have the following observations: First, among all individ-
ual features, the results computed by Pseudo-document Similarity
is good. However there are noisy templates such as “autobiography
[Person]" and “wiki [Person]" which affect the results. On the other
hand, the results obtained by Query Trend Similarity is poor; there
are several related, but not true synonymous, templates at the top
results. Second, although String Synonym Induction demonstrates
effectiveness in producing good results, it is unable to identify other
true synonyms like “where was [Person] born", which might due
to the limitation of its focus on finding string synonyms. Thirdly,
results produced by Clustering with Fixed Weights are very good
though it is still inferior to our clustering model that produces most
clean results.

5.6 Overall Effectiveness
In this experiment we investigate the overall effectiveness of our

clustering model. We present the results measured in Mean Av-
erage Precision (MAP) from all three domains in Table 4. The



results indicate that (1) among all individual features, the Pseudo-
document Similarity is the most effective feature, achieving MAP
of 0.588; while the weakest one is Query Trend Similarity, only
getting MAP of 0.332. (2) finding synonymous templates by String
Synonym Induction is effective, achieving intermediate performance.
(3) learning synonymous query templates jointly clearly demon-
strates advantages: it achieves a competitive MAP of 0.608 even
by simply fixing the weights to be all equal. And by learning the
weight with regularization, our clustering model achieves 0.670 in
MAP, which is significantly better than all other methods. We have
conducted the statistical significance test (T-Test) and it is shown
that there is statistically significant difference between our model
and two baselines (Clustering with Fixed Weights and String Syn-
onym Induction) at confidence level p = 0.01. The quantitative
results in Table 4 are also consistent with our findings in the quali-
tative analysis.

Table 4: Synonymous Templates in All Domains
Domain Method MAP

Entity Dist. Similarity 0.469
Coclick Similarity 0.490
Pseudo-doc. Similarity 0.588

All Query Trend Similarity 0.332
Clustering with Fixed Weights 0.608
String Syn. Induction 0.543
Our Model 0.670

5.7 Analysis of Top Ranked Results
Previous experiment measures the average precision across all

levels of recall. In this experiment we zoom in the results at top
ranked positions since high precision at top positions is highly de-
manded in several applications. We summarize the Precision @ K̄
results at Fig. 3. Results in Fig. 3 clearly show the superior perfor-
mance of our model, especially at top positions. For example, our
model achieves precision of 0.899 at position 1 and 0.778 at posi-
tion 2, which is much better than the baselines. These results are
consistent with the MAP results reported in previous experiment,
suggesting that methods that perform well in top ranked positions
are generally superior to the methods that do poorly in top posi-
tions.

Figure 3: Precision @ K̄ Results

5.8 Result Breakdown by Domains
Further, we break down the results by domains to investigate how

well our model does in different domains. The breakdown results
are shown in Fig. 4. We have two observations on the breakdown

results: First, baselines powered by individual features achieve con-
sistent results across domains, suggesting that the features we used
are stable across different categories. Second, our model achieves
best performance in all three domains, indicating that our clustering
framework with multiple kernels may be applied a large number of
domains without relying on domain specific labels that are expen-
sive to collect in large scale.

Figure 4: Result Breakdown by Domains

5.9 Contribution of the Kernels
Our proposed model is able to learn the weights of similarity

kernels. In this experiment we look into the learnt weights to see
whether they reflect the relative importance of the similarity ker-
nels. For this purpose, we have conducted the ablation test, in
which we remove one similarity kernel at a time and run the model.
We also report the weights learnt without removing any kernels.
Results on a subset of data in each domain are shown in Table 6.
These results indicate that Pseudo-document Similarity seems to
play relatively higher importance than other kernels. For example,
in all three domains, it carries the highest weights; and the F1 mea-
sures drop to the lowest when removing this kernel (the lowest F1
is marked in bold). On the contrary, the Query Trend Similarity
seems to play a marginal role in the model, reflected by the low
weights in all domains. And removing Query Trend Similarity has
a negligible effect on the MAP.

Table 6: Relative Importance of Similarity Kernels
Domain W/ Entity Dist. Coclick Pseudo Qry Trend

MAP Sim. Sim. -doc. Sim. Sim.
People W 0.23 0.26 0.35 0.16

MAP 0.640 0.633 0.625 0.659
Location W 0.20 0.28 0.37 0.15

MAP 0.621 0.637 0.620 0.671
Organization W 0.25 0.30 0.32 0.13

MAP 0.625 0.622 0.606 0.668

5.10 Model Sensitivity Analysis
Furthermore, we discuss the sensitivity of our model’s perfor-

mance according to the change of parameters. We focus on two
parameters: one is L − 1, the number of nearest neighbors; the
other is µ, the proportion of random points drawn from the back-
ground. According to Fig. 5, the Mean Average Precision of our
model does change with respect to different L − 1. The MAP in-
creases when L− 1 increases with a small step, while it decreases
when the L − 1 becomes relatively big. This suggests that while



Table 5: Qualitative Results of the Synonymous Query Intent Templates
Canonical Our Model Pseudo-doc Similarity Query Trend Similarity Clustering with String Syn. Induction
Template Fixed Weights

[Person] birth place [Person] birth place [Person] birth date [Person] birth place [Person] birth place
birth place of [Person] where was [Person] born birthplace of [Person] birth place of [Person] [Person] birthplace
birthplace of [Person] [Person] birth [Person] birth [Person] birth birth place of [Person]
where was [Person] born birth place of [Person] [Person] born where was [Person] born birthplace of [Person]
[Person]’s birth place autobiography [Person] [Person] bibliography fun facts about [Person] birthplace [Person]

[Person] where did [Person] live the birth of [Person] autobiography of [Person] birthplace of [Person] [Person]’s birth place
place of birth where was [Person] really born birthplace of [Person] wiki [Person] [Person]’s birth place birthplace [Person]

the birth of [Person] wiki [Person] birth place of [Person] where was [Person] really born [Person] born place
[Person] birth [Person] death date interesting facts about [Person] the birth of [Person] [Person] birth
[Person] born [Person] date of birth birth place of [Person] info on [Person] [Person] s birth date

the pseudo-medoid is effective, if it becomes too large, the inclu-
sion of noisy data will hurt the result. Thus, a small size of L− 1,
like 1 or 2, is a good choice. On the other hand, Fig. 6 indicates

Figure 5: Results according to different L− 1.

that results are most stable with different values of µ. It suggests
that using a small µ is reliable, which makes our clustering model
running faster.

Figure 6: Results according to different µ.

6. CONCLUSION AND FUTURE WORKS
In this work we address the problem of finding synonymous

query intent templates for a set of canonical query intent templates
simultaneously. To solve this problem, we propose a clustering
model that enables the integration of multiple heterogeneous in-
formation sources. The weights of these signals are tuned by a
regularized metric learning strategy. We have conducted extensive
experiments on a large set of attribute intent templates from Free-
Base. Qualitative and quantitative results both demonstrate that the
performance of our model is superior to the baselines. There are
some interesting problems remained as future works. For example,
given a small amount of labeled data, how to integrate the labeled
data into our model to further improve the accuracy is an interest-
ing problem to investigate. Another interesting problem is how to
take advantage of the synonymous query templates to improve the
query annotation quality.
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