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This paper investigates the performance of a queueing model with multiple finite queues and a single server. Departures from
the queues are synchronised or coupled which means that a service completion leads to a departure in every queue and that
service is temporarily interrupted whenever any of the queues is empty. We focus on the numerical analysis of this queueing model
in a Markovian setting: the arrivals in the different queues constitute Poisson processes and the service times are exponentially
distributed. Taking into account the state space explosion problem associated with multidimensional Markov processes, we calculate
the terms in the series expansion in the service rate of the stationary distribution of the Markov chain as well as various performance
measures when the system is (i) overloaded and (ii) under intermediate load. Our numerical results reveal that, by calculating the
series expansions of performance measures around a few service rates, we get accurate estimates of various performance measures

once the load is above 40% to 50%.

1. Introduction

Numerical methods for queueing systems involving multiple
queues like queueing networks [1], polling systems [2], prior-
ity queues [3], and fork-join queues [4] often suffer from the
state space explosion problem. State space explosion refers to
the problem that multidimensionality of Markov processes
leads to processes with a very large state space. Indeed,
the size of the state space of a multidimensional Markov
process is the product of the number of states in each of its
dimensions. Once a few dimensions are involved, the state
space becomes very large and direct solution techniques for
Markov processes fail. For some particular types of Markov
processes, a solution can be readily found, but this depends
on structural properties of the Markov chain at hand. We
mention Markov chains with product form solutions (like
Jackson networks) [5] and M/G/1-type and G/M/1-type
Markov processes [6] as particular examples. However many
queueing problems do not possess these structural properties,
thereby requiring nonstandard solution techniques.

This is the case for the queueing system investigated in
this paper. We consider a queueing system with K queues

in parallel as depicted in Figure 1. Customers in all queues
receive service simultaneously and there is a departure from
every queue upon service completion. Moreover, whenever
one of the queues is empty, the server remains idle. That is, an
empty queue completely blocks service for all other queues.
This queueing system is a natural abstraction for an assembly
operation with in-house production. The queues represent
inventories for semifinished products which are replenished
by in-house production facilities. The final assembly requires
all semifinished products and therefore the assembly oper-
ation is halted once any of the inventories is completely
depleted. Finally, the service time of the coupled queueing
system represents the assembly time.

We study the service-coupled queueing system under
Markovian assumptions. That is, we assume independent
Poisson arrivals to all queues with arrival rates A,,..., Ak,
respectively, and independent exponentially distributed ser-
vice times with rate y. Even for these simplified assumptions,
the analysis of the coupled queueing system is challenging.
First, one cannot impose the often simplifying assumption
that queues have infinite capacity as the resulting Markov
process is either null recurrent if all arrival rates are equal
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Service

FIGURE 1: Service-coupled queueing system.

or transient if this is not the case; see [7] for the coupled
queueing system with only two queues. Secondly, the state
space of the Markov process for the system with K queues
of capacity C is (C + DX such that a direct solution of the
Markov chain is not numerically feasible for moderate C and
K. Finally, matrix-analytic methods for neither M/G/1-type
nor G/M/1-type queueing systems apply, and there is no
product form solution.

To overcome these challenges, literature proposes two
alternative approaches, both focusing on approximations
for various performance measures of the coupled queueing
system. The first approach aims at decomposing the queueing
system into a number of independent queueing systems
which can be analysed in isolation [8]. Such an analysis
approximates the interaction between the different queues by
a simpler process which in turn facilitates the analysis. The
interaction process is parametrised such that the simplified
interaction process corresponds to the expected interaction
by the queue in isolation. Alternatively, the system can be
studied approximately by means of series expansion tech-
niques if one limits the study to a subset of the parameter
space. This is the case in [9, 10] where the coupled queueing
system was studied in overload. In these papers it was shown
that the terms of the Maclaurin series expansion of the
steady-state distribution in the service rate can be obtained
at low computational cost. The series expansion of the
performance measures can then be easily obtained from the
calculated steady-state distribution. However, the numerical
approach advocated there only leads to good results when the
service rate is close to 0 or, equivalently, when the system is
considerably overloaded.

Series expansion techniques for Markov chains go by dif-
ferent names in literature, including perturbation techniques,
the power series algorithm, and light-traffic approximations.
While the naming is not absolute, perturbation methods are
mainly motivated by sensitivity analysis of the results with
respect to some system parameter. In particular singular
perturbations where the perturbation does not preserve
the class-structure of the nonperturbed chain have received
considerable attention in literature [11-13]. The power series
algorithm transforms a Markov chain of interest in a set of
Markov chains parametrised by a variable p. For p = 0,
not only is the chain easily solved, but one can also obtain
the series expansion in p. For p = 1 one gets the original
Markov chain such that the series expansion can be used
to approximate the solution of the original Markov chain,
provided the convergence region of the series expansion
includes p = 1 [14-17]. Finally, light-traffic approximation
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often corresponds to a series expansion in the arrival rate at a
queue. For an overview on the technique of series expansions
in stochastic systems, we further refer the reader to the
surveys in [18, 19].

The present contribution builds on the results of [9, 10]
but considers the service-coupled queueing system when
the load of the system is lower. In the context of assembly
systems, the overload situation is only natural if assembly is
the bottleneck in the production/assembly system. In case
production is the actual bottleneck, the assembly queues
are not overloaded and the results of [9, 10] do not apply.
However, it is still worth investigating the assembly system
in this case as assembly will be interrupted more often due to
a lack of semifinished products.

Balancing computational cost and accuracy, we inves-
tigate the use of Taylor series expansions to calculate the
performance measures for a wider range of the service rate.
In contrast to the Maclaurin series expansions in [9, 10], the
terms in the Taylor series expansion around some service
rate 4 = y, # 0 cannot be obtained directly. Therefore
we rely on iterative solution methods to solve for the terms
in the Taylor series expansion. So, in contrast to the power
series algorithm, our approach does not primarily aim for
simplifying the solution of the Markov chain but aims for
obtaining the solution in a wide subset of the parameter space
at once and relies on iterative procedures to do so.

For any iterative method, a good initial guess of the
solution can reduce the number of required iterations consid-
erably. In the present setting, such an initial guess is available
if one considers a sequence of Taylor series expansions
around increasing values of the service rate starting at 4 = 0.
As shown in [9, 10], the initial series expansion around y =
0 can be calculated efficiently. For higher y, the expansion
around the preceding p-value can be used to get an initial
guess.

The remainder of this paper is organised as follows. The
model at hand and the numerical evaluation method are
described in the next section. We then illustrate our approach
by numerical examples in Section 3, prior to drawing conclu-
sions in Section 4.

2. Performance Analysis

We consider a queueing system with K finite capacity queues
as depicted in Figure 1. We denote the capacity of the kth
queue by C,. The arrival process to the kth queue is assumed
to be a Poisson process with a fixed rate A, the arrival pro-
cesses to the different queues being mutually independent. As
mentioned above, service is coupled. This means that there
are simultaneous departures from all queues with rate y as
long as all queues are nonempty, while there are no departures
when any of the queues is empty.

In view of the Markovian assumptions on both arrival
and service processes, the state (in the Markovian sense) of
the queueing system is completely described by the numbers
of customers in the different queues. That is, the state of the
system is described by a vector i = (i, i,,...,ix) € G, where
i, denotes the number of customers in the kth queue and
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where € = {0,...,C;} x -+ x {0,...,Cg} is the state space.
We have the following state transitions from state i € 6:

(i) Arrival in queue k (for k = 1,...,K): when i, < Cy,
the arrival rate in queue k is A4, the new state being
i+ e;. Here e is a vector of zeroes, apart from its kth
element which is one. There are no arrivals in queue

k when i, = C;.
(ii) Departure: when all queues are nonempty (i, >
0,...,ig > 0) thereisadeparture from all queues with

rate p. The new state is i—e, where e is a vector of ones.

Given the summary of the possible transitions above, the
balance equations of the Markov process are readily retrieved.
Fori € @, let (i) be the steady-state probability vector of
the queueing system. Equating the total probability flow out
of and into state i, we then have the following set of balance
equations,

K K
7 (i) (Mnl{ik>o} + z l{ik<ck}/\k>

k=1 k=1

K
=n(i+e)u+ Zn(i—ek)/\k,
k=1

for i € €, where 14, denotes the indicator function of the
event X and where we have assumed n(i) = 0 fori ¢ € to
simplify notation. Since already for a moderate number of
queues the state space is prohibitively large to compute the
stationary distribution directly, we rely on a series expansion
approach in the remainder.

As the system of (1) is finite, we find by Cramer’s rule that
the stationary probabilities (i) can be expressed as rational
functions of y with at most M distinct poles and no other
singularities. Here M = Hszl(Ck + 1) is the size of the
state space €. Denoting the set of singularities by .#, this
observation implies that, for any y, € R \ ./, the Taylor
series expansion in y of 71(i) around p = y, converges to the
correct value in a neighbourhood of . For further reference,
let ﬂf{‘“)(i) be the nth term in the Taylor series expansion in y
of 72(i) around p, € R™ \ /. Hence, in a neighbourhood of
Ho> we have

(@) = Y e (i) (- o) )
n=0

First, when p is close to 0, we approximate the stationary
probabilities by their Maclaurin series expansion in y as
investigated in [9]. Plugging the expansion (2) for y, = 0
in the balance equations (1) and comparing terms in equal
powers of y, we obtain

K K
0) (. 0) /. ©) ;.
m, (i) Zl{ik<ck}kk = -, (i) Hl{ik>0} +,- (i+e)
k=1 k=1

3)
+ Znﬁo) (i—e) A

forn>1landi# c=[C,,...
normalisation condition

m)©== 3 m' @, )

i€@\(c}

,Ckl. For i = ¢, we find by the

forn > 1. Forn = 0andi # ¢, we further find
O ) S0
. 0 .
1y (1) ) Vo = ) o (- e) Apo (5)
k=1 k=1

which shows that n(()o) (i) = 0fori € €\ {c} (by evaluation of
the expression in lexicographical order). The normalisation

condition then further yields n(()o) (c) = 1, such that

”(()0) (1) = L (6)

for i € . The Oth-order terms are trivial and the higher
order terms can be calculated one by one in lexicographical
order of i by expressions (3) and (4) above. The numerical
complexity of finding the terms of a single order for all
i € € is O(MK) at most. However, one easily verifies that
71510) (i) = 0 for allilexicographically smaller than c—ne, which
further reduces the computational complexity of finding the
nth order terms to O(min(#*, M)K). Note that, for large Cy,
n is considerably smaller than M.

While the terms in the Maclaurin series expansion can be
calculated efficiently, the resulting expansion only converges
to the exact solution in a neighbourhood of 0 as, in general,
the region of convergence of the series expansion will be
finite. Therefore, we now consider Taylor series expansions
around y = p, # 0 to get results for a wider range of the
service rate.

Plugging the series expansion (2) in the balance equations
(1) and isolating terms in (u — y)", we get, for i # ¢,

K K
(o) 3
(1) (l/‘onl{ik>0} + Zl{ik<ck}kk>

k=1 k=1

K
= 71(()”") (i+e)yy+ Zn(()”") (i-ep)Ap
k=1
K K
7.[51."‘0) (i) <|u01_[1{ik>0} + Zl{ik<ck}Ak> (7)
k=1 k=1

n—-1

K
. (o) 7+ .
= —n,(ﬁ’l) (i) Hl{ik>0} + ) (i+e)+ 7151”0) (i+e)u
k=1

K
+ an‘o) (i - ek) A’k’
k=1

for n > 1, whereas the normalisation condition yields

Z”;(qﬂ(’) (1) = 1zq}- (8)

i€

In contrast to the Maclaurin expansion above, the system
of equations (7)-(8) cannot be solved easily. Therefore, we



rely on iterative solution methods to find the solution of this
system of equations. More specifically, we use weighted Jacobi
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iteration which calculates the terms in the series expansion by
iteratively evaluating

2 (@) = (1 - w) 7% (i) +

nr+1

Here w < 1 denotes the weight of the weighted Jacobi
iteration. For eachterm» = 0,1, ...andi € €, we evaluate for
r =0, 1,... and approximate 7, (i) by 7, (i) for r sufficiently
large. In practice, we stop iterating when the corresponding
terms in the series expansion of the mean and second-order
moment of the queue content (cf. infra) converge (up to 6 to
8 significant digits).

This iterative approach is computationally feasible as the
number of possible transitions from a state is far less than
the number of states (the generator matrix is sparse). More
precisely, the number of transitions is related to the number
of queues such that the numerical complexity of a single
iteration for finding the nth order terms for alli € € is
O(MK).

If u, is within the radius of convergence of the preceding
expansion, say around g, we use the preceding expansion to

get a first approximation for nff“))(i) as to reduce the number
of iterations till convergence. That is, we choose

1 4"
nl dy

mie) (i)

<§n“°)(l)(u to)" )

H=Hto (10)

an(l) o (=)

If y, is not within the radius of convergence of the preceding
expansion, we set

K(1-p) p
my @ = [ [ =& ()
k=1 1—pp
with p, = A/ (4(1 — )) and with
K 1-1,/
oc:l—]_[<1——’<“gk+1 . (12)
k=1 )

That is, we approximate the coupled queueing system, by a
queueing system with independent M/M/1/C, queues with
service rate (1 — «), where « is a crude approximation for
the probability that at least one queue is empty. In addition,

wesetﬂ (1) =0forn>0.
Once the terms in the series expansion are found, we can
find approximations for various performance measures. For

) (i) [T 1Lisop + ) i+ e) + ) (i e) g + Yoo, 1 (i - ) Ay

Vonzl {ik>0}+Zk:1 {ik<Ck}Ak

)

instance, the Nth order expansion of the rth moment of the
queue content is calculated as

E[Q]=E[QIQy QK]

N
= 3 Nl ) (4 - )

n=0ic% (13)

= Z ZT[(MO () (1 — )" Hlk ,

n=0ie¥

where Q. denotes the queue content of the kth queue and
with r = [ry,7,,...,7g]. In particular, the mean E[Q,] and
variance var [Q] of Q; can be approximated as

N
¥y @) (- )" o

n=0ie®

E[Qd =
(14)

var [Q;] =

ZZﬂ“‘“ @) (1 - )" ii” — E[Qi]”.

n=0ie®

Note that the above approximation for the variance is not
the Nth order series expansion of the variance as the
approximation of the square of the mean also contains terms
in (u — py)" for n > N. By numerical experimentation,
we found that these higher order terms hardly influence the
results.

Analogously, let the system content Q be defined as
the total number of customers in all queues; then we can
approximate the mean E[Q] and variance var [Q] of the
system content as

K
22 2 0= pa) i
k=1i€®

K 2
)”<Zik) ~E[QF.
k=1

Again the same remark applies to the approximation of the
variance.

The effective load is defined as the fraction of time that the
server is serving. As the server is serving whenever all queues
are nonempty, we find the following Nth order expansion of
the effective load p,g,

||MZ

(15)

N
var [Q] = Z Zﬂf,ﬂo) (@) (4~ 1o

n=0ie®

Pest Z A () (4 - ) HI{M (16)

n=0ie®
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FIGURE 2: Nth order approximations for heavy and intermediate traffic for the mean queue content of the coupled queueing system with
K = 5 queues, each having capacity C = 15 and arrival rate A = 1 for each queue.

Finally, let the blocking probability be the fraction of
customers that cannot be accepted upon arrival in the
queueing system. The effective load allows for calculating the
blocking probability b in the kth queue. Indeed, noting that
all accepted customers must be served, we have

A (1=b) = = pegs (17)

1
IS
or, equivalently,

b =1 —peﬂ%k. (18)

Notice that b, only depends on the queue capacity through
Pes- The latter is influenced by the capacities of all the
different queues, which particularly implies that the capacity
of one queue influences the blocking probabilities of the other
queues.

3. Numerical Results

We now evaluate our numerical approximation approach
by some numerical examples. We focus on the mean and
standard deviation of the queue content as well as the
blocking probability. Noting that, in a coupled queueing
system with nonequal arrival loads, the performance is
mainly determined by the queues with the lowest loads (the
queues with higher load can be neglected when studying the
overall performance), we first focus on a coupled queueing
system with an equal arrival rate A in all queues. Without loss
of generality, we set A = 1 (as we can scale y to investigate a

different A). We consider K = 5 queues, each having capacity
C=15.

Figures 2, 3, and 4 depict the mean queue content
versus the service rate p, the blocking probability versus
the service rate y, and the standard deviation of the queue
content versus y, respectively. Note that we have the same
blocking probability and the same mean and variance of the
queue content for every queue due to symmetry and that
we approximate the standard deviation of the queue content
by +/var[Q,] with var[Q,] given in (14). Each figure shows
the 5th-, 15th-, and 30th-order approximation on a separate
subfigure, and we combine the Maclaurin expansion around
0 with the approximation around g, = 1.5 for all performance
measures. For visual reference, the point 4, is marked on all
the figures with a cross. The order N of the expansion refers
to both the order of the expansion around 0 and the order
of the expansion around y,. In addition, we show simulation
results for the performance measures at hand, which allows
for evaluating the accuracy of the approximations. We used
uniformization to simulate the queueing system (based on
the balance equations) and generated 10° samples, for each
simulation point. We calculated the confidence interval by
means of the batch means method but omitted the confidence
intervals from the plots as the obtained upper and lower
bounds are visually indiscernible.

For the coupled queueing system under study with K = 5
queues of capacity C = 15, the Markov chain has M =
1.048.576 states. The figures show that the approximations
of the mean queue content and the blocking probability are
already fairly accurate for the 5th-order expansion (N =
5), whereas the standard deviation of the queue content
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FIGURE 3: Nth order approximations for heavy and intermediate traffic for the blocking probability of the coupled queueing system with
K = 5 queues, each having capacity C = 15 and arrival rate A = 1 for each queue.
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FIGURE 4: N'th order approximations for heavy and intermediate traffic for the standard deviation of the queue content of the coupled queueing
system with K = 5 queues, each having capacity C = 15 and arrival rate A = 1 for each queue.

requires some more terms (N = 15). As the order N of the  to very large values outside this region. This is not unexpected
expansions further increases, the approximations even more  as the region of convergence is finite for sure (7(i) is a rational
closely approximate the performance measures at hand. The  function of y, cf. supra). While the sharp deterioration of the
figures further reveal that the match is very good in a limited =~ approximation prevents one to extend the results outside the
region (of 0 or of 1), while the approximations quickly grow  region of convergence of the series expansion, it does give a
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FIGURE 5: Nth order approximations for heavy and intermediate traffic for the mean queue content for two asymmetric queues of the coupled
queueing system with K = 6 queues, each having capacity C = 10 and arrival rates A, = 1 for half of the queues and A, = 2 for the rest.

clear indication where the approximation is accurate. Overall,
we find that the 30th-order approximations for the mean
queue content, the blocking probability, and the standard
deviation are accurate for loads above 45% (¢ below 2.25).

The effect of increasing p on the mean queue content
and on the blocking probability confirms intuition. If the
service speed increases, the mean content decreases and as it
is less likely that the queues are full, the blocking probability
decreases as well. The decrease is fast for low y and slower
for larger u, the change of the decay rate being around y = 1
(oraload of 100%) for the blocking probability and just above
p = 1 for the mean queue content. For the standard deviation,
we observe that it increases with .

Next, we study an example with nonequal arrival rates at
the different queues. In particular, we consider a system with
K = 6 queues, each having capacity C = 10, which results
in a Markov chain with M = 1.771.561 states. In order to
investigate the impact of nonequal arrival loads, we consider
a system with two arrival rates: arrival rate A; = 1 for half of
the queues and arrival rate A, = 2 for the remaining queues.

Figures 5, 6, and 7 depict the mean queue content, the
blocking probability, and the standard deviation of the queue
content versus the service rate y, respectively, for queues with
arrival rate A, as well as queues with arrival rate 1,. We again
depict approximations of order N = 5, 15, and 30 on different
subfigures. For every order N, we consider the expansion
around 0 and the expansion around y, = 1.5, the point
U, being marked with a cross on all plots. The plots again
reveal that the approximations are quite accurate, especially
the 30th-order approximation which is again accurate for
@ up to 2.25. An increase of y leads to a decrease of the

mean queue content and of the blocking probability as for the
symmetric case, while it leads to an increase of the standard
deviation of the queue content. Also, the queues with the
highest arrival rate (1,) have higher mean queue content and
blocking probability as there are more arrivals, which also
leads to a reduction of the standard deviation of the queue
content, as the more heavily loaded queue is close to full most
of the time.

As a final example, we assess the impact of the number of
queues involved. To this end, we compare the performance
of the queueing system with K = 2, K = 4,and K = 6
queues. All queues have capacity C = 10 and equal arrival
rate A = 1. Figure 8 shows the 30th-order approximations
(in 0 and 1.5) for the mean queue content and the blocking
probability as a function of the service rate y. We can
readily observe that adding queues lead to performance
degradation (higher mean queue content and higher blocking
probability), especially when the system is not in overload.
This is not unexpected as it is more likely that one of the
queues is empty in systems with more queues. For coupled
queueing systems in overload, the number of queues involved
has hardly any impact on performance though. In overload,
it is unlikely that queues are empty, so the number of queues
does not matter.

4. Conclusions

In this paper we presented a numerical approach for the per-
formance evaluation of coupled queueing systems. The study
was motivated by an assembly-like system, where inventory
replenishments can be modelled by Poisson processes. The
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FIGURE 6: Nth order approximations for heavy and intermediate traffic for the blocking probability for two asymmetric queues of the coupled
queueing system with K = 6 queues, each having capacity C = 10 and arrival rates A, = 1 for half of the queues and A, = 2 for the rest.
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A, = 2 for the rest.
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FIGURE 8: 30th-order approximations for heavy and intermediate traffic for the mean queue content and blocking probability of three queueing
systems with 2, 4, and 6 queues; for each system queue capacity C = 10, arrival rates A = 1.

presented method focuses on coupled queueing systems
working under intermediate load and builds on a previously
designed method for such systems in overload. We showed
that the region where an accurate estimation is obtained can
be extended to lower loads by iteratively calculating the terms
of the Taylor series expansion of the steady-state probability
vector.

An important contribution of the study is that the prob-
lem is tackled numerically, while existing analysis methods
for large-scale queueing systems mainly rely on simulation.
We showed that our analysis method allows for performance
evaluation under intermediate load, although the specific
region of accuracy may vary depending on the system size
and structure.
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