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Abstract
We propose a distributed first-order augmented

Lagrangian (DFAL) algorithm to minimize the

sum of composite convex functions, where each

term in the sum is a private cost function be-

longing to a node, and only nodes connected

by an edge can directly communicate with each

other. This optimization model abstracts a num-

ber of applications in distributed sensing and ma-

chine learning. We show that any limit point

of DFAL iterates is optimal; and for any ǫ >
0, an ǫ-optimal and ǫ-feasible solution can be

computed within O(log(ǫ−1)) DFAL iterations,

which require O(
ψ1.5

max

dmin
ǫ−1) proximal gradient

computations and communications per node in

total, where ψmax denotes the largest eigenvalue

of the graph Laplacian, and dmin is the mini-

mum degree of the graph. We also propose an

asynchronous version of DFAL by incorporating

randomized block coordinate descent methods;

and demonstrate the efficiency of DFAL on large

scale sparse-group LASSO problems.

1. Introduction

Let G = (N , E) denote a connected undirected graph of

N computing nodes where nodes i and j can communi-

cate information only if (i, j) ∈ E . Each node i ∈ N :=
{1, . . . , N} has a private (local) cost function

Fi(x) := ρi(x) + γi(x), (1)

where ρi : R
n → R is a possibly non-smooth convex func-

tion, and γi : R
n → R is a smooth convex function. We

assume that the proximal map

proxρi(x) := argmin
y∈Rn

{

ρi(y) +
1
2‖y − x‖22

}

(2)

is efficiently computable for i ∈ N .
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We propose a distributed augmented Lagrangian algorithm

for efficiently computing a solution for the convex problem:

F ∗ := min
x∈Rn

F (x) :=

N
∑

i=1

Fi(x). (3)

Clearly, (3) can be solved in a “centralized” fashion by

communicating all the private functions Fi to a central

node, and solving the overall problem at this node. How-

ever, such an approach can be very expensive both from

communication and computation perspectives. Suppose

(Ai, bi) ∈ R
m×(n+1) and Fi(x) = ‖Aix−bi‖22+λ‖x‖1 for

i ∈ N such that m ≪ n and N ≫ 1. Hence, (3) is a very

large scale LASSO problem distributed data. To solve (3)

in a centralized fashion the data {(Ai, bi) : i ∈ N} needs

to be communicated to the central node. This can be pro-

hibitively expensive, and may also violate privacy con-

straints. Furthermore, it requires that the central node have

large enough memory to be able to accommodate all the

data. On the other hand, at the expense of slower conver-

gence, one can completely do away with a central node,

and seek for consensus among all the nodes on an opti-

mal decision using “local” decisions communicated by the

neighboring nodes. In addition, for certain cases, com-

puting partial gradients locally in an asynchronous manner

can be even more computationally efficient when compared

to computing the entire gradient at a central node. With

these considerations in mind, we propose decentralized al-

gorithms that can compute solutions to (3) using only local

computations; thereby, circumventing all privacy, commu-

nication and memory issues. To facilitate the design of de-

centralized algorithms, we take advantage of the fact that

graph G is connected, and reformulate (3) as

min
xi∈Rn, i∈N

{

N
∑

i=1

Fi(xi) : xi = xj , ∀ (i, j) ∈ E
}

. (4)

Optimization problems of form (4) model a vari-

ety of very important applications, e.g., distributed

linear regression (Mateos et al., 2010), distributed

control (Necoara & Suykens, 2008), machine learn-

ing (McDonald et al., 2010), and estimation using sensor

networks (Lesser et al., 2003).
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Reference assumption on Fi operation / iter.
iter # for iter # for comm. steps

asnych.
Can handle

ǫ-feas. ǫ-opt. ǫ-opt. constraints?

Duchi et al. (2012) convex, Lipschitz cont. subgrad., projection unknown O(1/ǫ2) O(1/ǫ2) no no

Nedic & Ozdaglar (2009) convex subgrad. O(1) O(1/ǫ2) O(1/ǫ2) no no

Wei & Ozdaglar (2012) strictly convex proxFi
unknown O(1/ǫ) O(1/ǫ) no no

Makhdoumi & Ozdaglar (2014) convex proxFi
O(1/ǫ) O(1/ǫ) O(1/ǫ) no no

Wei & Ozdaglar (2013) convex proxFi
O(1/ǫ) O(1/ǫ) O(1/ǫ) yes no

Jakovetic et al. (2011)
smooth convex ∇Fi O(1/

√
ǫ) O(1/

√
ǫ) O(1/

√
ǫ) no no

bounded ∇Fi

Chen & Ozdaglar (2012)
composite convex Fi = ρ+ γi proxρ, ∇γi O(1/

√
ǫ) O(1/

√
ǫ) O(1/ǫ) no no

bounded ∇γi
Our work composite convex Fi = ρi + γi proxρi

, ∇γi O(1/ǫ) O(1/ǫ) O(1/ǫ) yes yes

Table 1. Comparison of our method with the previous work

We call a solution x̄ = (x̄i)i∈N ǫ-feasible if the consen-

sus violation max(i,j)∈E
{

‖x̄i − x̄j‖2
}

≤ ǫ and ǫ-optimal

if
∣

∣

∑

i∈N Fi(x̄i) − F ∗∣
∣ ≤ ǫ. In this work, we propose

a distributed first-order augmented Lagrangian (DFAL) al-

gorithm, establish the following main result for the syn-

chronous case in Section 2.2.3, and extend it to an asyn-

chronous setting in Section 2.2.4.

Main Result. Let {x(k)}k∈Z+ denote the sequence of

DFAL iterates. Then F ∗ = limk∈Z+

∑

i∈N Fi(x
(k)
i ).

Furthermore, x(k) is ǫ-optimal and ǫ-feasible within

O(log(ǫ−1)) DFAL iterations, requiring O
(ψ1.5

max

dmin
ǫ−1

)

communications per node, and O(ǫ−1) gradient and prox-

imal map computations for γi and ρi, respectively, where

ψmax denotes the largest eigenvalue of the Laplacian of G,

and dmin denotes the minimum degree over all nodes.

1.1. Previous work

Given the importance of (4), a number of different dis-

tributed optimization algorithms have been proposed to

solve (4). Duchi et al. (2012) proposed a dual averag-

ing algorithm to solve (3) in a distributed fashion over

G when each Fi is convex. This algorithm computes

ǫ-optimal solution in O(1/ǫ2) iterations; however, they

do not provide any guarantees on the consensus violation

max{‖x̄i − x̄j‖2 : (i, j) ∈ E}. Nedic & Ozdaglar (2009)

developed a subgradient method with constant step size

α > 0 for distributed minimization of (3) where the net-

work topology is time-varying. Setting α = O(ǫ) in their

method guarantees that consensus violation and subopti-

mality is O(ǫ) in O(1/ǫ2) iterations; however, since the

step size is constant none of the errors are not guaranteed

to decrease further. Wei and Ozdaglar (2012; 2013), and

recently Makhdoumi & Ozdaglar (2014) proposed an al-

ternating direction method of multipliers (ADMM) algo-

rithm that computes an ǫ-optimal and ǫ-feasible solution in

O(1/ǫ) proximal map evaluations for Fi. There are sev-

eral problems where one can compute the proximal map

for ρi efficiently; however, computing the proximal map

for Fi = ρi+γi is hard -see Section 3 for an example. One

can overcome this limitation of ADMM by locally splitting

variables, i.e., setting Fi(xi, yi) := ρi(xi) + γi(yi), and

adding a constraint xi = yi in (4). This approach dou-

bles local memory requirement; in addition, in order for

ADMM to be efficient, proximal maps for both ρi and γi
must be efficiently computable. When each Fi is smooth

and has bounded gradients, Jakovetic et al. (2011) devel-

oped a fast distributed gradient methods with O(1/
√
ǫ)

convergence rate. Note that for the quadratic loss, which is

one of the most commonly used loss functions, the gradient

is not bounded. Chen & Ozdaglar (2012) proposed an inex-

act proximal-gradient method for distributed minimization

of (3) that is able to compute ǫ-feasible and ǫ-optimal so-

lution in O(ǫ−1/2) iterations which require O(ǫ−1) com-

munications per node over a time-varying network topol-

ogy when Fi = ρ + γi, assuming that the non-smooth

term ρ is the same at all nodes, and ∇γi is bounded for all

i ∈ N . In contrast, DFAL proposed in this paper is able to

asynchronously compute an ǫ-optimal ǫ-feasible solution in

O(ǫ−1) communications per node, allowing node specific

non-smooth functions ρi, and without assuming bounded

∇γi for any i ∈ N .

Aybat & Iyengar (2012) proposed an efficient first-order

augmented Lagrangian (FAL) algorithm for the basis pur-

suit problem minx∈Rn {‖x‖1 : Ax = b} to compute an

ǫ-optimal and ǫ-feasible solution to within O(κ2(A)/ǫ)
matrix-vector multiplications, where A ∈ R

m×n such that

rank(A) = m, and κ(A) := σmax(A)/σmin(A) denotes

the condition number of A. In this work, we extend their

FAL algorithm to solve a more general version of (4) in

Section 2.2.1 and 2.2.2, and establish the Main Result for

(4) in Section 2.2.3. In Section 2.2.4, we propose an asyn-

chronous version of DFAL. It is important to emphasize

that DFAL can be easily extended to solve (4) when there

are global constraints on network resources of the form

Ex − q ∈ K, where K is a proper cone, and none of the

algorithms discussed above can accommodate such global

conic constraints efficiently. Due to space limitations, we

do not discuss this extension here; however, the analysis

would be similar to (Aybat & Iyengar, 2013; 2014).

2. Methodology

Definition 1. (a) Let Γ be the set of convex functions

γ : R
n → R such that ∇γ is Lipschitz continuous with

constant Lγ , and γ(x) ≥ γ for all x ∈ R
n for some γ ∈ R.
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(b) Let R be the set of convex functions ρ : Rn → R such

that subdifferential of ρ is uniformly bounded on R
n, i.e.,

there exists B > 0 such that ‖q‖2 ≤ B for all q ∈ ∂ρ(x),
x ∈ R

n; and τ‖x‖2 ≤ ρ(x) for all x ∈ R
n for some τ > 0.

Assumption 1. For all i ∈ N , we assume that γi ∈ Γ and

ρi ∈ R with corresponding constants Lγi , γi, Bi and τi.

Most of the important regularizers and loss functions used

in machine learning and statistics literature lie in R and Γ,

respectively. In particular, any norm, e.g., ‖ · ‖α with α ∈
{1, 2,∞}, group norm (see Section 3), nuclear norm, etc.,

weighted sum of these norms, e.g., sparse group norm (see

Section 3), all belong to R. GivenA ∈ R
m×n and b ∈ R

m,

quadratic-loss ‖Ax − b‖22, Huber-loss
∑m
i=1 h(a

T

i x − bi)

(see Section 3), logistic-loss
∑m
i=1 log

(

1 + e−bia
T

i x
)

, or

fair-loss (Blatt et al., 2007) functions all belong to Γ.

Throughout the paper, we adopt the notation x = (xi;x−i)
with x−i = (xj)j 6=i to denote a vector where xi and x−i
are treated as variable and parameter sub-vectors of x, re-

spectively. Given f : RnN → R, ∇xi
f(x) ∈ R

n denotes

the sub-vector of ∇f(x) ∈ R
nN corresponding to compo-

nents of xi ∈ R
n.

2.1. APG Algorithm for the Centralized Model

Consider the centralized version (3) where all the func-

tions Fi are available at a central node, and all computa-

tions are carried out at this node. Suppose {ρi}i∈N and

{γi}i∈N satisfy Assumption 1. Let ρ(x) :=
∑N
i=1 ρi(x)

and γ(x) :=
∑N
i=1 γi(x). Lipschitz continuity of each ∇γi

with constant Lγi implies that ∇γ is also Lipschitz contin-

uous with constant Lγ =
∑N
i=1 Lγi . When proxρ/Lγ

can

be computed efficiently, the accelerated proximal gradi-

ent (APG) algorithm proposed in (Beck & Teboulle, 2009;

Tseng, 2008) guarantees that

0 ≤ F (x(ℓ))− F ∗ ≤ 2Lγ
(ℓ+ 1)2

‖x(0) − x∗‖22, (5)

where x(0) is the initial iterate and x∗ ∈ argminx∈Rn F (x)
–see Corollary 3 in (Tseng, 2008), and Theorem 4.4

in (Beck & Teboulle, 2009). Thus, APG can compute an

ǫ-optimal solution to (3) within O(
√

Lγǫ
− 1

2 ) iterations.

As discussed above, the centralized APG algorithm can-

not be applied when the nodes are unwilling or unable to

communicate the privately known functions {Fi}i∈N to a

central node. There are many other setting where one may

want to solve (3) as a “distributed” problem. For instance,

although proxtρi can be computed efficiently for all t > 0
and i ∈ N , proxρ/Lγ

may be hard to compute. As an ex-

ample, consider a problem with ρ1(X) =
∑

i,j |Xij | and

ρ2 =
∑rank(X)
i=1 σi(X), where σ(X) denotes the vector

of singular values for X ∈ R
n1×n2 . Here, proxtρi is

easy to compute for all t > 0 and i ∈ {1, 2}; however,

proxt(ρ1+ρ2) is hard to compute. Thus, the “centralized”

APG algorithm cannot be applied. In the rest of this paper,

we focus on decentralized algorithms.

2.2. DFAL Algorithm for the Decentralized Model

Let x =
(

x⊤1 , . . . , x
⊤
N )⊤ ∈ R

nN denotes a vector formed

by concatenating {xi}i∈N ⊂ R
n as a long column vector.

Consider the following optimization problem of the form:

F̄ ∗ := min
x∈RnN

{

F̄ (x) := ρ̄(x) + γ̄(x) s.t. Ax = b
}

, (6)

where ρ̄(x) :=
∑N
i=1 ρi(xi), γ̄(x) :=

∑N
i=1 γi(xi), and

A ∈ R
m×nN has rank(A) = m, i.e., the linear map is

surjective. In Section 2.2.3, we show that the distributed

optimization problem in (4) is a special case of (6), i.e., for

all connected G1, there exists a surjective A such that (4) is

equivalent to (6). In the rest of the section, we will use the

following notation: Let {Ai}i∈N ⊂ R
m×n such that A =

[A1, A2, . . . , AN ]; L̄ := maxi∈N Lγi , τ̄ := mini∈N τi.

We propose to solve (6) by inexactly solving the following

sequence of subproblems in a distributed manner:

x
(k)
∗ ∈ argmin

x∈RnN

P (k)(x) := λ(k)ρ̄(x) + f (k)(x), (7)

f (k)(x) := λ(k)γ̄(x) + 1
2‖Ax− b− λ(k)θ(k)‖22, (8)

for appropriately chosen sequences of penalty parameters

{λ(k)} and dual variables {θ(k)} such that λ(k) ց 0.

In particular, given {α(k), ξ(k)} satisfying α(k) ց 0 and

ξ(k) ց 0, the iterate sequence {x(k)} is constructed such

that every x(k) satisfies one of the following conditions:

(a) P (k)(x(k))− P (k)(x
(k)
∗ ) ≤ α(k),

(b) ∃g(k)i ∈ ∂xi
P (k)(x)|x=x(k)

s.t. maxi∈N ‖g(k)i ‖2 ≤ ξ(k)

√
N
,

(9)

∂xi
P (k)(x)|x=x̄ := λ(k)∂ρi(xi)|xi=x̄i

+ ∇xi
f (k)(x̄).

Note that ∇f (k)(x) is Lipschitz continuous in

x ∈ R
nN with constant λ(k)L̄ + σ2

max(A). Given

{x(0), λ(0), α(0), ξ(0)} and c ∈ (0, 1), we choose the

sequence {λ(k), α(k), ξ(k), θ(k)} as shown in Fig. 1.

Algorithm DFAL
(

λ(1), α(1), ξ(1)
)

Step 0: Set θ(1) = 0, k = 1
Step k: (k ≥ 1)

1. Compute x(k) such that (9)(a) or (9)(b) holds

2. θ(k+1) = θ(k) − Ax
(k)−b

λ(k)

3. λ(k+1) = cλ(k), α(k+1) = c2 α(k), ξ(k+1) = c2 ξ(k)

Figure 1. First-order Augmented Lagrangian algorithm

In Section 2.2.1, we show that DFAL can compute an ǫ-
optimal and ǫ-feasible xǫ to (6), i.e., ‖Axǫ − b‖2 ≤ ǫ and

|F̄ (xǫ)− F ∗| ≤ ǫ, in at most O(log(1/ǫ)) iterations.

1G can contain cycles.
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Next, in Section 2.2.2, we show that computing

an ǫ-optimal, ǫ-feasible solution xǫ requires at most

O
(

σ3
max(A)

mini∈N σ2
min(Ai)

ǫ−1
)

floating point operations. Using

this result, in Section 2.2.3 we establish that DFAL can

compute xǫ in a distributed manner within O(ǫ−1) com-

munication steps, i.e., the Main Result stated in Section 1.

Finally, in Section 2.2.4 we show how to modify DFAL for

an asynchronous computation setting.

2.2.1. DFAL ITERATION COMPLEXITY

We first show that {x(k)} is a bounded sequence, and then

argue that this also implies boundedness of {θ(k)}. First,

we start with a technical lemma that will be used in estab-

lishing the main results of this section.

Lemma 1. Let ρ̄ : R
nN → R be defined as ρ̄(x) =

∑

i∈N ρi(xi), where ρi ∈ R with uniform bound Bi on

its subdifferential for all x ∈ R
n and for all i ∈ N . Let

f : RnN → R denote a convex function such that there

exist constants {Li}Ni=1 ⊂ R++ that satisfy

f(y) ≤ f(ȳ) +∇f(ȳ)T(y − ȳ) +
N
∑

i=1

Li‖yi − ȳi‖22
2

for all y, ȳ ∈ R
nN . Given α, λ ≥ 0, and x̄ ∈ R

nN such

that λρ(x̄) + f(x̄) − minx∈RnN {λρ(x) + f(x)} ≤ α, it

follows that ‖∇xi
f(x̄)‖2 ≤ √

2Liα+ λBi for all i ∈ N .

In Lemma 2 we show that function f (k) defined in (8) sat-

isfies the condition given in Lemma 1.

Lemma 2. The function f (k) in (7) satisfies the condition

in Lemma 1 with the constants Li = L
(k)
i , where L

(k)
i :=

λ(k)Lγi + σ2
max(A) for all i ∈ N .

Lemma 1 and Lemma 2 allow us to bound ‖θ(k+1)‖2 in

terms of {‖∇xi
γ(x

(k)
i )‖2}i∈N . We later use this bound in

an inductive argument to establish that the sequence {x(k)}
is bounded.

Lemma 3. Let {x(k)} be the DFAL iterate sequence, i.e.,

at least one of the conditions in (9) hold for all k ≥ 1.

Define Θ
(k)
i := max

{√

2L
(k)
i

α(k)

(λ(k))2
, 1√

N

ξ(k)

λ(k)

}

+ Bi +

‖∇γi(x(k)i )‖2. Then for all k ≥ 1, we have

‖θ(k+1)‖2 ≤ min
i∈N

{

Θ
(k)
i

σmin(Ai)

}

.

Theorem 1 establishes that the DFAL iterate sequence

{x(k)} is bounded whenever {ρi, γi}i∈N satisfy Assump-

tion 1; therefore, the sequence of dual variables {θ(k)} is

bounded according to Lemma 3.

Theorem 1. Suppose Assumption 1 holds. Then

there exist constants Bx, Bθ, λ̄ > 0 such that

max{‖x(k)
∗ ‖2, ‖x(k)‖2} ≤ Bx and ‖θ(k)‖2 ≤ Bθ for

all k ≥ 1, whenever λ(1) and ξ(1) are chosen such that

0 < λ(1) ≤ λ̄ and ξ(1)

λ(1) < τ̄ .

We are now ready to state a key result that will imply the

iteration complexity of DFAL.

Theorem 2. Suppose Assumption 1 holds and λ(1) and ξ(1)

are chosen according to Theorem 1. Then the primal-dual

iterate sequence {x(k), θ(k)} generated by DFAL satisfy

(a) ‖Ax(k) − b‖2 ≤ 2Bθλ
(k),

(b) F̄ (x(k))− F̄ ∗ ≥ −λ(k) (‖θ
∗‖2+Bθ)

2

2

(c) F̄ (x(k))− F̄ ∗ ≤ λ(k)
(

B2
θ

2 +
max{α(1), ξ(1)Bx}

(λ(1))
2

)

,

where θ∗ denotes any optimal dual solution to (6).

Corollary 1. The DFAL iterates x(k) are ǫ-feasible, i.e.,

‖Ax(k)− b‖2 ≤ ǫ, and ǫ-optimal, i.e., |F̄ (x(k))− F̄ ∗| ≤ ǫ,

for all k ≥ N(ǫ) and N(ǫ) = log 1
c
( C̄ǫ ) for some C̄ > 0.

2.2.2. OVERALL COMPUTATIONAL COMPLEXITY FOR

THE SYNCHRONOUS ALGORITHM

Efficiency of DFAL depends on the complexity of the or-

acle for Step 1 in Fig. 1. In this section, we construct

an oracle MS-APG that computes an x(k) satisfying (9)

within O(1/λ(k)) gradient and prox computations. This

result together with Theorem 2 guarantees that for any

ǫ > 0, DFAL can compute an ǫ-optimal and ǫ-feasible

iterate within O
(

ǫ−1
)

floating point operations. Follow-

ing lemma gives the iteration complexity of the oracle MS-

APG displayed in Fig. 2.

Lemma 4. Let ρ̄ : R
nN → R such that ρ̄(x) =

∑

i∈N ρi(xi), where ρi : R
n → R is a convex function

for all i ∈ N , and f : R
nN → R be a convex func-

tion such that it satisfies the condition in Lemma 1 for

some constants {Li}Ni=1 ⊂ R++. Suppose that y∗ ∈
argminΦ(y) := ρ̄(y) + f(y). Then the MS-APG iter-

ate sequence {y(ℓ)}ℓ∈Z+ , computed as in Fig. 2, satisfies

0 ≤ Φ(y(ℓ))− min
y∈RnN

Φ(y) ≤
∑N
i=1 2Li‖y

(0)
i − y∗i ‖22

(ℓ+ 1)2
.

(10)

Proof. (10) follows from adapting the proof of Theo-

rem 4.4 in Beck & Teboulle (2009) for the case here.

Algorithm MS-APG ( ρ̄, f,y(0) )

Step 0: Take ȳ(1) = y(0), t(1) = 1
Step ℓ: (ℓ ≥ 1)

1. y
(ℓ)
i = proxρi/Li

(

ȳ
(ℓ)
i −∇yif(ȳ

(ℓ))/Li

)

∀i ∈ N

2. t(ℓ+1) = (1 +

√

1 + 4 (t(ℓ))
2
)/2

3. ȳ(ℓ+1) = y(ℓ) + t(ℓ)−1

t(ℓ+1)

(

y(ℓ) − y(ℓ−1)
)

Figure 2. Multi Step - Accelerated Prox. Gradient (MS-APG) alg.
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Consider the problem Φ∗ = minΦ(y) := ρ̄(y) + f(y)
defined in Lemma 4. Note that ∇f is Lipschitz contin-

uous with constant L = maxi∈N Li. In MS-APG al-

gorithm, the step length 1/Li ≥ 1/L is different for

each i ∈ N . Instead, if one were to use the APG algo-

rithm (Beck & Teboulle, 2009; Tseng, 2008), then the step

length would have been 1/L for all i ∈ N . When {Li}i∈N
are close to each other, the performances of MS-APG and

APG are on par; however, when
maxi∈N Li

mini∈N Li
≫ 1, APG can

only take very tiny steps for all i ∈ N ; hence, MS-APG is

likely to converge much faster in practice.

Since the subproblem (7) is in the form given in Lemma 4,

the following result immediately follows.

Lemma 5. The iterate sequence {y(ℓ)}ℓ∈Z+ gener-

ated when we call MS-APG
(

λ(k)ρ̄, f (k),x(k−1)
)

satis-

fies P (k)(y(ℓ)) − P (k)(x
(k)
∗ ) ≤ α(k), for all ℓ ≥

√∑
N
i=1 2L

(k)
i ‖x(k−1)

i −x(k)
∗i ‖2

2

α(k) − 1, where L
(k)
i is defined in

Lemma 2 and x
(k)
∗i represents the i-th block of x

(k)
∗ . Hence,

one can compute x(k) satisfying (9) within O(1/λ(k)) MS-

APG iterations.

Theorem 2 and Lemma 5 together imply that DFAL can

compute an ǫ-feasible, and ǫ-optimal solution to (6) within

O(1/ǫ) MS-APG iterations. Due to space considerations,

we will only state and prove this result for the case where

∇γ̄ is bounded in R
nN since the bounds Bθ and Bx are

more simple for this case. Note that Huber-loss, logistic-

loss, and fair-loss functions indeed have bounded gradients.

Theorem 3. Suppose that ∃Gi > 0 such that ‖∇γi(x)‖2 ≤
Gi for all x ∈ R

n and for all i ∈ N . Let No
DFAL

(ǫ) and

Nf
DFAL

(ǫ) denote the number of DFAL-iterations to com-

pute an ǫ-optimal, and an ǫ-feasible solutions to (6), re-

spectively. Let N (k) denote MS-APG iteration number re-

quired to compute x(k) satisfying at least one of the condi-

tions in (9). Then
∑No

DFAL
(ǫ)

k=1 N (k) = O
(

Θ2σmax(A)ǫ
−1

)

,

∑Nf
DFAL

(ǫ)

k=1 N (k) = O
(

Θσmax(A)ǫ
−1

)

,

where Θ = σmax(A)
mini∈N σmin(Ai)

.

2.2.3. SYNCHRONOUS ALGORITHM FOR DISTRIBUTED

OPTIMIZATION

In this section, we show that the decentralized optimization

problem (4) is a special case of (6); therefore, Theorem 3

establishes the Main Result stated in the Introduction. We

also show that the steps in DFAL can be further simplified

in this context.

Construct a directed graph by introducing an arc (i, j)
where i < j for every edge (i, j) in the undirected graph

G = (N , E). Then the constraints xi − xj = 0 for all

(i, j) ∈ E in the distributed optimization problem (4) can

be reformulated as Cx = 0, where C ∈ R
n|E|×nN is a

block matrix such that the block C(i,j),l ∈ R
n×n corre-

sponding to the edge (i, j) ∈ E and node l ∈ N , i.e.,

C(i,j),l is equal to In if l = i, −In if l = j, and 0n oth-

erwise, where In and 0n denote n × n identity and zero

matrices, respectively. Let Ω ∈ R
N×N be the Laplacian of

G, i.e., for all i ∈ N , Ωii = di, and for all (i, j) ∈ N ×N
such that i 6= j, Ωij = −1 if either (i, j) ∈ E or (j, i) ∈ E ,

where di denotes the degree of i ∈ N . Then it follows that

Ψ := CTC = Ω⊗ In,

where ⊗ denotes the Kronecker product. Let ψmax :=
ψ1 ≥ ψ2 ≥ . . . ≥ ψN be the eigenvalues of Ω. Since

G is connected, rank(Ω) = N − 1, i.e., ψN−1 > 0 and

ψN = 0. From the structure of Ψ it follows that that

{ψi}Ni=1 are also the eigenvalues of Ψ, each with algebraic

multiplicity n. Hence, rank(C) = n(N − 1).

Let C = UΣV T denote the reduced singular value decom-

position (SVD) of C, where U ∈ R
n|E|×n(N−1), Σ =

diag(σ), σ ∈ R
n(N−1)
++ , and V ∈ R

nN×n(N−1). Note

that σ2
max(C) = ψmax, and σ2

min(C) = ψN−1. Define

A := ΣV T. A ∈ R
n(N−1)×nN has linearly indepen-

dent rows; more importantly, ATA = CTC = Ψ; hence,

σ2
max(A) = ψmax, and σ2

min(A) = ψN−1. We also have

{x ∈ R
nN : Ax = 0} = {x ∈ R

nN : Cx = 0}. Hence,

the general problem in (6) with A := ΣV T and b = 0 ∈
R
n(N−1) is equivalent to (4). Let Ai ∈ R

n(N−1)×n and

Ci ∈ R
n|E|×n be the submatrices of A and C, respec-

tively, corresponding to xi, i.e., A = [A1, A2, . . . , AN ],
and C = [C1, C2, . . . , CN ]. Clearly, it follows from the

definition of C that σmax(Ci) = σmin(Ci) =
√
di for all

i ∈ N . Using the property of SVD, it can also be shown

for A = ΣV T that σmax(Ai) = σmin(Ai) =
√
di for all

i ∈ N . Thus, Theorem 3 establishes the Main Result.

We now show that we do not have to compute the SVD of

C, or A, or even the dual multipliers θ(k) when DFAL is

used to solve (4). In DFAL the matrix A is used in Step 1

(i.e. within the oracle MS-APG) to compute ∇f (k), and

in Step 2 to compute θ(k+1). Since θ(1) = 0, Step 2

in DFAL and (8) imply that θ(k+1) = −∑k
t=1

Ax(t)

λ(t) ,

and ∇f (k)(x) = λ(k)∇γ̄(x) + AT(Ax − λ(k)θ(k)) =

λ(k)∇γ̄(x) + Ψ
(

x+ λ(k)
∑k−1
t=1

1
λ(t)x

(t)
)

. Moreover,

from the definition of Ψ, it follows that

∇xi
f (k)(x) =

λ(k)∇γi(xi) + di

(

xi + x̄
(k)
i

)

−
∑

j∈Oi

(

xj + x̄
(k)
j

)

,

where x̄(k) :=
∑k−1
t=1

λ(k)

λ(t) x
(t), and Oi denotes the set of

nodes adjacent to i ∈ N . Thus, it follows that Step 1 of

MS-APG can be computed in a distributed manner by only

communicating with the adjacent nodes without explicitly

computing θ(k) in Step 2 of DFAL.
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In particular, for the k-th DFAL iteration, each node i ∈ N
stores x̄

(k)
i and {x̄(k)j }j∈Oi

, which can be easily computed

locally if {x(t)j }j∈Oi
is transmitted to i at the end of Step 1

of the previous DFAL iterations 1 ≤ t ≤ k − 1. Hence,

during the ℓ-th iteration of MS-APG
(

λ(k)ρ̄, f (k),x(k−1)
)

call, each node i ∈ N can compute ∇yif
(k)(ȳℓ) locally

if {ȳ(t)j }j∈Oi
is transmitted to i at the end of Step 3 in

MS-APG. It is important to note that every node can in-

dependently check (9)(b), i.e., ∃g(k)i ∈ ∂ρi(xi)|xi=x
(k)
i

+

∇xi
f (k)(x(k)) for all i ∈ N such that maxi∈N ‖g(k)i ‖2 ≤

ξ(k)

√
N

. Hence, nodes can reach a consensus to move to

the next DFAL iteration without communicating their pri-

vate information. If (9)(b) does not hold for ℓ
(k)
max :=

Bx

√

2
∑

i∈N
L

(k)
i

α(k) MS-APG iterations, then Lemma 5 im-

plies that (9)(a) must be true. Hence, all the nodes move

to next DFAL iteration after ℓ
(k)
max many MS-APG updates.

For implementable version of DFAL, see Figure 3, where

Bx is the bound in Theorem 1, and Ni := Oi ∪ {i}.

Algorithm DFAL (x(0), λ(1), α(1), ξ(1), Bx, ψmax)

1: k ← 1, x̄
(1)
i ← 0, ∀i ∈ N

2: while k ≥ 1 do
3: ℓ← 1, t(1) ← 1, STOP← false

4: y
(0)
i ← x

(k−1)
i , ȳ

(1)
i ← x

(k−1)
i , ∀i ∈ N

5: L
(k)
i ← λ(k)Lγi + ψmax, ∀i ∈ N

6: ℓ
(k)
max ← Bx

√

2
∑

i∈N L
(k)
i

αk

7: while STOP = false do
8: for i ∈ N do

9: q
(ℓ)
i ← λ(k)∇γi

(

ȳ
(ℓ)
i

)

+
∑

j∈Ni
Ωij

(

ȳ
(ℓ)
j + x̄

(k)
j

)

10: y
(ℓ)
i ← prox

λ(k)ρi/L
(k)
i

(

ȳ
(ℓ)
i − q(ℓ)i /L

(k)
i

)

11: end for

12: if ∃gi ∈ q
(ℓ)
i + λ(k)∂ρi

(

ȳ
(ℓ)
i

)

s.t. max
i∈N

‖gi‖2 ≤
ξ(k)
√
N

then
13: STOP← true, x

(k)
i ← ȳ

(ℓ)
i , ∀i ∈ N

14: else if ℓ = ℓ
(k)
max then

15: STOP← true, x
(k)
i ← y

(ℓ)
i , ∀i ∈ N

16: end if

17: t(ℓ+1) ← (1 +

√

1 + 4 (t(ℓ))
2
)/2

18: ȳ
(ℓ+1)
i ← y

(ℓ)
i + t(ℓ)−1

t(ℓ+1)

(

y
(ℓ)
i − y(ℓ−1)

i

)

, ∀i ∈ N

19: ℓ← ℓ+ 1
20: end while
21: λ(k+1) ← cλ(k), α(k+1) ← c2α(k), ξ(k+1) ← c2ξ(k)

22: x̄
(k+1)
i ← λ(k+1)

λ(k)

(

x̄
(k)
i + x

(k)
i

)

, ∀i ∈ N

23: k ← k + 1
24: end while

Figure 3. Dist. First-order Aug. Lagrangian (DFAL) alg.

2.2.4. ASYNCHRONOUS IMPLEMENTATION

Here we propose an asynchronous version of DFAL. Due

to limited space, and for the sake of simplicity of the expo-

sition, we only consider a simple randomized block coordi-

nate descent (RBCD) method, which will lead to an asyn-

chronous implementation of DFAL that can compute an ǫ-
optimal and ǫ-feasible solution to (4) with probability 1−p
within O

(

1
ǫ2 log

(

1
p

))

RBCD iterations. In Section 4.9 of

the supplementary file, we discuss how to improve this rate

to O
(

1
ǫ log

(

1
p

))

using an accelerated RBCD.

Algorithm RBCD ( ρ̄, f,y(0) )

Step ℓ: (ℓ ≥ 0)
1. i ∈ N is realized with probability 1

N

2. y
(ℓ+1)
i = proxρi/Li

(

y
(ℓ)
i −∇yif(y

(ℓ))/Li

)

3. y
(ℓ+1)
−i = y

(ℓ)
−i

Figure 4. Randomized Block Coordinate Descent (RBCD) alg.

Nesterov (2012) proposed an RBCD method for solv-

ing miny∈RnN f(y), where f is convex with block Lip-

schitz continuous gradient, i.e., ∇yif(yi;y−i) is Lips-

chitz continuous in yi with constant Li for all i. Later,

Richtárik & Takác̆ (2012) extended the convergence rate

results to miny∈RnN Φ(y) :=
∑N
i=1 ρi(yi) + f(y), such

that proxtρi can be computed efficiently for all t > 0 and

i ∈ N , and established that given α > 0, and p ∈ (0, 1), for

ℓ ≥ 2NC
α

(

1 + log 1
p

)

, the iterate sequence {y(ℓ)} com-

puted by RBCD displayed in Fig. 4 satisfies

P(Φ(y(ℓ))− Φ∗ ≤ α) ≥ 1− p, (11)

where C := max{R2
L(y

(0)),Φ(y(0))−Φ∗}, R2
L(y

(0)) :=

max
y,y∗

{
∑N
i=1 Li‖yi− y∗i ‖22 : Φ(y) ≤ Φ(y(0)), y∗ ∈ Y∗},

and Y∗ denotes the set of optimal solutions. RBCD is

significantly faster in practice for very large scale prob-

lems, particularly when the partial gradient ∇yif(y) can

be computed more efficiently as compared to the full gradi-

ent ∇f(y). The RBCD algorithm can be implemented for

the distributed minimization problem when the nodes in G
work asynchronously. Assume that for any y = (yi)i∈N ∈
R
nN , each node i is equally likely to be the first to com-

plete computing proxρi/Li
(yi −∇yif(y)/Li), i.e., each

node has an exponential clock with equal rates. Suppose

node i ∈ N is the first node to complete Step 2 of RBCD.

Then, instead of waiting for the other nodes to finish, node

i sends a message to its neighbors j ∈ Oi to terminate

their computations, and shares y
(ℓ+1)
i with them. Note that

RBCD can be easily incorporated into DFAL as an oracle

to solve subproblems in (7) by replacing (9)(a) with

P

(

P (k)
(

x(k)
)

− P (k)
(

x
(k)
∗

)

≤ α(k)
)

≥
(

1− p
)

1
N(ǫ) ,

(12)
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where N(ǫ) = log 1
c

(

C̄
ǫ

)

defined in Corollary 1. Since

(

1 − p
)

1
N(ǫ) ≤ 1 − p

N(ǫ) for p ∈ (0, 1), the total number

of RBCD iterarions for the k-th subproblem is bounded:

N (k) ≤ O
(

1
α(k) log

(N(ǫ)
p

))

= O
(

1
α(k)

(

log
(

1
p

)

+

log log
(

1
ǫ

)))

. Hence, Corollary 1 and (11) imply that

asynchronous DFAL, i.e., (9)(a) replaced with (12), can

compute an ǫ-optimal and ǫ-feasible solution to (4) with

probability 1−p within O
(

1
ǫ2 log

(

1
p

))

RBCD iterations.

These results can be extended to the case where each node

has different clock rates using (Qu & Richtárik, 2014).

3. Numerical results

In this section, we compared DFAL with an ADMM

method proposed in (Makhdoumi & Ozdaglar, 2014) on

the sparse group LASSO problem with Huber loss:

min
x∈Rn

N
∑

i=1

β1‖x‖1+β2‖x‖Gi
+

mi
∑

j=1

hδ
(

aTi (j)x− bi
)

, (13)

where β1, β2 > 0, Ai ∈ R
mi×n, bi ∈ R

mi , aTi (j)
denotes the j-th row of Ai, the Huber loss function

hδ(x) := max{tx − t2/2 : t ∈ [−δ, δ]}, and ‖x‖Gi
:=

∑K
k=1 ‖xgi(k)‖2 denotes the group norm with respect to

the partition Gi of [1, n] := {1, · · · , n} for all i ∈ N ,

i.e., Gi = {gi(k)}Kk=1 such that
⋃K
k=1 gi(k) = [1, n],

and gi(j) ∩ gi(k) = ∅ for all j 6= k. In this case,

γi(x) :=
∑mi

j=1 hδ
(

aTi (j)x− bi
)

and ρi(x) := β1‖x‖1 +
β2‖x‖Gi

. Next, we briefly describe the ADMM algorithm

in (Makhdoumi & Ozdaglar, 2014), and propose a more ef-

ficent variant, SADMM, for (13).

Algorithm SADMM ( c,x(0) )

Initialization: y(0) = x(0), p
(k)
i = p̃

(k)
i = 0, i ∈ N

Step ℓ: (ℓ ≥ 0) For i ∈ N compute

1. x
(k+1)
i = prox 1

c(d2
i
+di+1)

ρi

(

x̃
(k)
i

)

2. y
(k+1)
i = prox 1

c(d2
i
+di+1)

γi

(

ỹ
(k)
i

)

3. s
(k+1)
i =

∑

j∈Ni
Ωijx

(k+1)
j /(di + 1)

4. p
(k+1)
i = p

(k)
i + s

(k+1)
i

5. s̃
(k+1)
i =

∑

j∈Ni
Ωijy

(k+1)
j /(di + 1)

6. p̃
(k+1)
i = p̃

(k)
i + s̃

(k+1)
i

Figure 5. Split ADMM algorithm

3.1. A distributed ADMM Algorithm

Let Ω ∈ R
N×N denote the Laplacian of the graph G =

(N , E), Oi denote the set of neighboring nodes of i ∈ N ,

and define Ni := Oi ∪ {i}. Let Zi := {zi ∈ R
di+1 :

∑

j∈Ni
zij = 0}. Makhdoumi & Ozdaglar (2014) show

that (4) can be equivalently written as

min
xi∈Rn,zi∈Zi

∑N
i=1 Fi(xi) := ρi(xi) + γi(xi)

s.t. Ωijxj = zij , i ∈ N , j ∈ Ni. (14)

Only (14) is penalized when forming the augmented La-

grangian, which is alternatingly minimized in x ∈ R
nN ,

zT = [zT1 , . . . , z
T

N ], where Zi ∋ zi = [zij ]j∈Ni
∈ R

di+1.

Makhdoumi & Ozdaglar (2014) establish that suboptimal-

ity and consensus violation converge to 0 with a rate

O(1/k), and in each iteration every node communicates

3n scalars. From now on, we refer to this algorithm that

directly works with Fi as ADMM. Computing proxFi
for

each i ∈ N is the computational bottleneck in each iter-

ation of ADMM. Note that computing proxFi
for (13) is

almost as hard as solving the problem. To deal with this

issue, we considered the following reformulation:

min
xi,yi∈R

n,
zi,z̃i∈Zi

∑

i∈N ρi(xi) + γi(yi)

s.t. Ωijxj = zij , i ∈ N , j ∈ Ni

Ωijyj = z̃ij , i ∈ N , j ∈ Ni

xi = qi, yi = qi, i ∈ N .

ADMM algorithm for this formulation is displayed in

Fig. 5, where c > 0 denotes the penalty parameter. Steps of

SADMM can be derived by minimizing the augmented La-

grangian alternatingly in (x,y), and in (z, z̃,q) while fix-

ing the other. As in (Makhdoumi & Ozdaglar, 2014), com-

puting (z, z̃,q) can be avoided by exploiting the structure

of optimality conditions. Prox centers in SADMM are

x̃
(k)
i = x

(k)
i −

∑
j∈Ni

Ωji(s
(k)
j +p

(k)
j )+r

(k)
i +(x

(k)
i −y(k)

i )/2

d2i+di+1
,

ỹ
(k)
i = y

(k)
i −

∑
j∈Ni

Ωji(s̃
(k)
j +p̃

(k)
j )−r(k)

i −(x
(k)
i −y(k)

i )/2

d2i+di+1
,

respectively; and r
(k+1)
i = r

(k)
i + (x

(k+1)
i − y

(k+1)
i )/2.

3.2. Implementation details and numerical results

The following lemma shows that in DFAL implementation,

each node i ∈ N can check (9)(b) very efficiently. For

x ∈ R, define sgn(x) as -1, 0 and 1 when x < 0, x = 0,

and x > 0, respectively; and for x ∈ R
n, define sgn(x) =

[sgn(x1), sgn(x2), . . . , sgn(xn)]
T.

Lemma 6. Let f : Rn → R be a differentiable function,

G = {g(k)}Kk=1 be a partition of [1, n]. For β1, β2 > 0, de-

fine P = λρ+ f , where ρ(x) := β1‖x‖1 + β2‖x‖G. Then,

for all x̄ ∈ R
n and ξ > 0, there exists ν ∈ ∂P (x)|x=x̄

such that ‖ν‖2 ≤ ξ if and only if ‖π∗ + ω∗ +∇f(x̄)‖2 ≤
ξ for π∗, ω∗ such that for each k, if x̄g(k) 6= 0, then

π∗
g(k) = λβ1 sgn(x̄g(k)) +

(

1− sgn(|x̄g(k)|)
)

⊙ ηg(k), and

ω∗
g(k) = λβ2

x̄g(k)

‖x̄g(k)‖2
; otherwise, if x̄g(k) = 0, then

π∗
g(k) = ηg(k), and ω∗

g(k) equals

−
(

π∗
g(k) +∇xg(k)

f(x̄)
)

min

{

1,
λβ2

‖π∗
g(k) +∇xg(k)

f(x̄)‖2

}

,

where ⊙ denotes componentwise multiplication, and

ηg(k) = − sgn
(

∇xg(k)
f(x̄)

)

⊙min
{

|∇xg(k)
f(x̄)|, λβ1

}

.
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Table 2. Comparison of DFAL, AFAL (Asynchronous DFAL), ADMM, and SADMM. (Termination time T=1800 sec.)

Size Alg. Rel. Suboptimality Consensus Violation (CV) CPU Time (sec.) Iterations

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

SDPT3 (C) 0 0 0 0 28 85 24 22

APG (C) 1E-3 N/A 0 N/A 10 N/A 2173 N/A

ng = 100 DFAL (D) 6E-4, 7E-4 4E-4, 6E-4 5E-5, 2E-5 5E-5, 3E-5 5, 5 5, 5 1103, 1022 1105, 1108

N = 5 AFAL (D) 3E-4, 8E-4 3E-4, 6E-4 3E-6, 5E-6 2E-6, 5E-6 16, 11 17, 11 9232, 9083 9676, 9844

ADMM (D) 6E-5, 5E-5 7E-5, 7E-5 1E-4, 1E-4 1E-4, 1E-4 1125, 808 1090, 771 353, 253 363, 261

SADMM (D) 1E-4, 3E-4 1E-4, 3E-4 1E-4, 1E-4 1E-4, 1E-4 771, 784 772, 804 592, 606 593, 623

SDPT3 (C) 0 0 0 0 28 89 24 22

APG (C) 1E-3 N/A 0 N/A 10 N/A 2173 N/A

ng = 100 DFAL (D) 4E-4, 7E-4 4E-4, 3E-4 6E-5, 1E-5 6E-5, 2E-5 14, 12 14, 13 1794, 1439 1812, 1560

N = 10 AFAL (D) 4E-4, 8E-4 2E-4, 8E-4 7E-6, 2E-6 8E-6, 2E-6 48, 65 49, 62 20711, 41125 21519, 41494

ADMM (D) 9E-3, 2E-2 8E-3, 2E-2 9E-4, 5E-4 8E-4, 4E-4 T, T T, T 354, 353 373, 372

SADMM (D) 3E-4, 9E-3 4E-4, 1E-2 2E-4, 1E-3 2E-4, 1E-3 T, T T, T 867, 883 865, 879

SDPT3 (C) 0 0 0 0 806 1653 26 29

APG (C) 1E-3 N/A 0 N/A 253 N/A 8663 N/A

ng = 300 DFAL (D) 2E-4, 5E-4 2E-4, 4E-4 6E-5, 4E-5 5E-5, 5E-5 77, 64 80, 65 1818, 1511 1897, 1535

N = 5 AFAL (D) 1E-4, 6E-4 2E-5, 6E-4 5E-7, 2E-5 6E-8, 2E-5 164, 99 273, 99 21747, 8760 37212, 8736

ADMM (D) 5E-2, 1E-3 5E-2, 1E-3 5E-3, 1E-3 5E-3, 1E-3 T, T T, T 109, 118 109, 118

SADMM (D) 2E-2, 7E-2 2E-2, 8E-2 2E-3, 3E-3 2E-3, 3E-3 T, T T, T 269, 274 268, 273

SDPT3 (C) 0 0 0 0 806 1641 26 29

APG (C) 1E-3 N/A 0 N/A 253 N/A 8663 N/A

ng = 300 DFAL (D) 1E-4, 6E-4 6E-4, 1E-3 7E-5, 4E-5 9E-5, 5E-5 130, 80 122, 82 2942, 1721 2794, 1769

N = 10 AFAL (D) 2E-4, 7E-4 6E-4, 1E-3 8E-7, 1E-5 3E-7, 1E-5 350, 294 437, 288 48214, 29946 63110, 30371

ADMM (D) 5E-2, 8E-2 5E-2, 8E-2 7E-3, 9E-3 7E-3, 9E-3 T, T T, T 114, 124 113, 123

SADMM (D) 3E-1, 3E+0 3E-1, 3E+0 4E-3, 2E-2 4E-3, 2E-2 T, T T, T 255, 269 256, 268

Both DFAL and SADMM call for proxρi . In Lemma 7,

we show that it can be computed in closed form. On the

other hand, when ADMM, and SADMM are implemented

on (13), one needs to compute proxFi
and proxγi , re-

spectively; however, these proximal operations do not as-

sume closed form solutions. Therefore, in order to be fair,

we computed them using an efficient interior point solver

MOSEK (ver. 7.1.0.12).

Lemma 7. Let ρ(x) = β1‖x‖1 + β2‖x‖G. For t > 0
and x̄ ∈ R

n, xp = proxtρ(x̄) is given by xpg(k) =

η′g(k) max
{

1− tβ2

‖ηg(k)‖2
, 0

}

, for 1 ≤ k ≤ K, where

η′ = sgn(x̄)⊙max{|x̄| − tβ1, 0}.

In our experiments, the network was either a star tree or

a clique with either 5 or 10 nodes. The remaining prob-

lem parameters defining {ρi, γi}i∈N were set as follows.

We set β1 = β2 = 1
N , δ = 1, and K = 10. Let

n = Kng for ng ∈ {100, 300}, i.e., n ∈ {1000, 3000}.

We generated partitions {Gi}i∈N in two different ways.

For test problems in CASE 1, we created a single partition

G = {g(k)}Kk=1 by generating K groups uniformly at ran-

dom such that |g(k)| = ng for all k; and set Gi = G for

all i ∈ N , i.e., ρi(x) = ρ(x) := β1‖x‖1 + β2‖x‖G for

all i ∈ N . For the test problems in CASE 2, we created a

different partition Gi for each node i, in the same manner

as in Case 1. For all i ∈ N , mi =
n
2N , and the elements of

Ai ∈ R
mi×n are i.i.d. with standard Gaussian, and we set

bi = Aix̄ for x̄j = (−1)je−(j−1)/ng for j ∈ [1, n].

We solved the distributed optimization problem (4) using

DFAL, AFAL (asynchronous version of DFAL with ac-

celerated RBCD -see the supplementary file for details),

ADMM, and SADMM for both cases, on both star trees,

and cliques, and for N ∈ {5, 10} and ng ∈ {100, 300}.

For each problem setting, we randomly generated 5 in-

stances. For benchmarking, we solved the centralized prob-

lem (3) using SDPT3 for both cases. Note that for Case 1,
∑

i∈N ρi(x) = ‖x‖1 + ‖x‖G and its prox mapping can

be computed efficiently, while for Case 2,
∑

i∈N ρi(x)
does not assume a simple prox map. Therefore, for

the first case we were also able to use APG, described

in Section 2.1, to solve (3) by exploiting the result of

Lemma 7. All the algorithms are terminated when the rel-

ative suboptimality, |F (k) − F ∗|/|F ∗|, is less then 10−3,

and consensus violation, CV(k), is less than 10−4, where

F (k) equals to
∑

i∈N Fi(x
(k)
i ) for DFAL and ADMM,

and to
∑

i∈N
Fi

(

x
(k)
i +y

(k)
i

2

)

for SADMM; CV(k) equals

to max(ij)∈E ‖x(k)i − x
(k)
j ‖2/

√
n for DFAL, and ADMM,

and to max{max(ij)∈E ‖x(k)i − x
(k)
j ‖2, maxi∈N ‖x(k)i −

y
(k)
i ‖2}/

√
n for SADMM. If the stopping criteria are not

satisfied in 30min., we terminated the algorithm and report

the statistics corresponding to the iterate at the termination.

In Table 2, ’xxx (C)’ stands for “algorithm xxx is used to

solve the centralized problem”. Similarly, ’xxx (D)’ for the

decentralized one. For the results separated by comma, the

left and right ones are for the star tree and clique, resp. Ta-

ble 2 displays the means over 5 replications for each case.

The number of iterations in each case clearly illustrates the

topology of the network plays an important role in the con-

vergence speed of DFAL, which coincides to our analysis

in Section 2.2.2.
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