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We consider the stability of negative solitary waves to a generalized Camassa-Holm equation with quartic nonlinearity. We obtain
the existence of negative solitary waves for any wave speed 𝑐 > 0 and some of their qualitative properties and then prove that they
are orbitally stable by using a method proposed by Grillakis et al.

1. Introduction

The Camassa-Holm equation (CH for short)

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ 3𝑢𝑢
𝑥
= 2𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

(1)

was first derived by the method of recursion operators by
Fokas and Fuchssteiner for studying completely integrable
generalization of the KdV equation with bi-Hamiltonian
structure in [1] and later proposed physically by Camassa and
Holm as a model for unidirectional propagation of shallow
water waves over a flat bottom in [2], and it was shown that
the CH equation is completely integrable and possesses an
infinite number of conservation laws. It is very different from
the KdV equation that the CH equation has peakon solution
and breaking waves (see [2–4]). As mentioned in [5], it is
interesting to find that both phenomena of soliton interaction
and wave breaking can be exhibited in one mathematical
model of shallow water waves. The CH equation was well
studied in view ofmathematical point and a lot of results were
established. For example, the Cauchy problem for CH and
periodic CH equation were studied in [6–8], the global weak
solutions and global conservative and dissipative solutions
were obtained in [9–13], and the peakon and smooth solitary
wave solutions were proved to be orbitally stable and interact

like solitons [14–17] on the wave breaking; we refer to [3, 18–
21].

Furthermore, considerable researches have studied the
following generalized CH equation [22–27]:

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ 𝑎𝑢
𝑛
𝑢
𝑥
= 2𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

; (2)

they have focused on the stronger nonlinear convection;
that is, the nonlinear convection term 𝑢𝑢

𝑥
in (1) has been

changed to 𝑢
𝑛
𝑢
𝑥
in (2), which makes the structure of their

solutions change significantly.There are many new nonlinear
phenomena arising from (2), such as compacton solitons
with compact support, solitons with cusps, or peakons (cf.
[28–36]). Four simple ansätze were proposed to obtain
abundant solutions: compactons, solitary patterns solutions
having infinite slopes or cusps, and solitary waves in [28].
By using bifurcation method, peakons and periodic cusp
waves were studied in [32–34]; the explicit expressions of
peakons for (2) are given in some special cases. In [35] some
new exact peaked solitary waves were derived. By employing
polynomial ansätze the periodic wave and peaked solitary
waves of (2) were investigated in [36]. The Cauchy problem
of (2) was studied in [37, 38] and the local existence was
established. For 𝑎 = 3 and 𝑛 = 2, the negative solitary wave
to (2) was obtained and proved to be orbitally stable for any
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speed in [22].Moreover, the stability problem of solitary wave
to (2) was investigated as 𝑛 = 3 and 𝑎 > 0 in [39].

Our study is closely related to the results in [39]. For
convenience, we write (2) when 𝑛 = 3 in the following form:

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ 𝑎𝑢
3
𝑢
𝑥
= 2𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

. (3)

In [39], when the parameter 𝑎 > 0, (3) was shown to be
Painlevé nonintegrable and to have positive solitary waves as
wave speed 𝑐 > √10/𝑎. The solitary waves were proved to
be unstable when the wave speed 𝑐 tends to the critical value
√10/𝑎 and stable while the wave speed is a little bigger than
the critical value.

However, when 𝑎 < 0 in (3), the stability problem of
the solitary waves has not been solved yet. In this paper, we
consider this stability problem. Unlike the results for positive
solitary waves in [39], we show that there exist negative
solitary waves for any wave speed 𝑐 > 0. The point lying in
our results is that we can actually determine that the scalar
function𝑑(𝑐) (see below) is convexwith respect towave speed
𝑐; that is, all the negative solitary waves are orbitally stable.

2. Preliminaries

2.1. Hamiltonian System and Conservation Laws. Equation
(3) can be rewritten in the following Hamiltonian form:

𝑢
𝑡
= 𝐽𝐹
󸀠
(𝑢) , (4)

where 𝐽 = −𝜕
𝑥
(1 − 𝜕

2

𝑥
)
−1 is a Hamiltonian operator, 𝐹󸀠(𝑢)

and𝐸
󸀠
(𝑢) (see below) denote Riesz representations of Fréchet

derivatives of 𝐹(𝑢) and 𝐸(𝑢), and

𝐹 (𝑢) =

1

2

∫

𝑅

(

𝑎𝑢
5

10

+ 𝑢𝑢
2

𝑥
) d𝑥 (5)

is a functional of 𝑢.
Another functional of 𝑢 is given by

𝐸 (𝑢) =

1

2

∫

𝑅

(𝑢
2
+ 𝑢
2

𝑥
) d𝑥, (6)

which can be treated as the kinetic energy of the waves. Both
quantities 𝐸(𝑢) and 𝐹(𝑢) are critically important to the proof
of solitary waves, which are shown to be conserved by the
following lemma.

Lemma 1. The functionals 𝐸(𝑢) and 𝐹(𝑢) defined above are
conserved quantities under (3).

Proof. Multiplying (3) by 𝑢 and integrating over 𝑅 we have

d
d𝑡

(

1

2

∫

𝑅

(𝑢
2
+ 𝑢
2

𝑥
) d𝑥) =

d
d𝑡

𝐸 (𝑢) = 0. (7)

To show that 𝐹(𝑢) is invariant with respect to 𝑡, we need to
use the Hamiltonian structure of (3). It follows from (4) that

d
d𝑡

𝐹 (𝑢 (𝑡)) = (𝐹
󸀠
(𝑢) , 𝑢

𝑡
) = (𝐹

󸀠
(𝑢) , 𝐽𝐹

󸀠
(𝑢))

= − (𝐽𝐹
󸀠
(𝑢) , 𝐹

󸀠
(𝑢)) .

(8)

Using the skew symmetry of Hamiltonian operator 𝐽 we
obtain that

d
d𝑡

𝐹 (𝑢 (𝑡)) = 0. (9)

2.2. Definition of Orbital Stability. As already observed by
Benjamin and coworkers [40, 41], a solitary wave cannot be
stable in the strictest sense of the word. To understand this,
consider two solitary waves with different height, centered
initially at the same point. Since the two waves have different
amplitude and they have different velocity, as time passes
the two waves will apart, no matter how small the initial
difference was. However, in the situation just described, it
is evident that two solitary waves with slightly differing
height will stay similar in shape during the time evolution.
An acceptable notion of stability is given by measuring
the difference in shape. This sense of orbital stability was
introduced by Benjamin [40]. We say a solitary wave is
orbitally stable if a solution 𝑢 of (3) that is initially sufficiently
close to a solitary wave will always stay close to a translation
of the solitary wave during the time of evolution. A more
mathematically precise definition is given as follows.

Definition 2. The solitary wave 𝜑 is stable if, for every 𝜖 > 0,
there exists a 𝛿 > 0, such that if ‖𝑢(0) − 𝜑‖

𝐻
2 ≤ 𝛿 and 𝑢 ∈

𝐶([0, 𝑇);𝐻
2
) is a solution of (3) for some 𝑇 ∈ (0, +∞] with

the initial value 𝑢(0), then for all 𝑡 ∈ [0, 𝑇) one has

inf
𝑠

󵄩
󵄩
󵄩
󵄩
𝑢 − 𝜏
𝑠
𝜑
󵄩
󵄩
󵄩
󵄩𝐻
2 < 𝜖, (10)

where 𝜏
𝑠
𝑓(𝑥) = 𝑓(𝑥 − 𝑠) is a translation of 𝑓. The solitary 𝜑

is unstable if 𝜑 is not stable.

3. Negative Solitary Waves and Well-Posedness

3.1. Negative Solitary Waves and Their Properties. Letting
𝑢(𝑥, 𝑡) = 𝜑(𝜉), 𝜉 = 𝑥−𝑐𝑡, and substituting it into (3), it follows
that

−𝑐𝜑
󸀠
+ 𝑐𝜑
󸀠󸀠󸀠

+ 𝑎𝜑
3
𝜑
󸀠
= 2𝜑
󸀠
𝜑
󸀠󸀠
+ 𝜑𝜑
󸀠󸀠󸀠
; (11)

the prime denotes derivative with respect to 𝜉. Integrating the
above equation once we have

𝑐𝜑 − 𝑐𝜑
󸀠󸀠
−

𝑎

4

𝜑
4
+ 𝜑𝜑
󸀠󸀠
+

(𝜑
󸀠
)

2

2

= 0,
(12)

where the integral constant takes zero due to the solitary
waves vanish at infinity.

Lemma 3. When the parameter 𝑎 < 0 in (3), for any wave
speed 𝑐 > 0, there exist negative solitary waves 𝜑(𝑥−𝑐𝑡) for (3).
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Figure 1: Homoclinic orbit and negative solitary wave.

Proof. In fact, we only need to show the existence of homo-
clinic orbit corresponding to the negative solitary wave.
Equation (12) can be rewritten as the following planar system:

d𝜑
d𝜉

= 𝑦,

d𝑦
d𝜉

=

−𝑐𝜑 + (𝑎/4) 𝜑
4
− 𝑦
2
/2

𝜑 − 𝑐

.

(13)

By using the transform d𝜉 = (𝜑 − 𝑐)d𝜏, system (13) can be
rewritten as

d𝜑
d𝜏

= (𝜑 − 𝑐) 𝑦,

d𝑦
d𝜏

= −𝑐𝜑 +

𝑎

4

𝜑
4
−

𝑦
2

2

,

(14)

which is equivalent to system (13) except the singular line
𝜑 = 𝑐; it is more convenient to study (14) than (13). The first
integral of (14) is

𝐻(𝜑, 𝑦) =

𝑎

10

𝜑
5
− 𝑐𝜑
2
+ (𝑐 − 𝜑) 𝑦

2
= 2ℎ. (15)

System (13) has two equilibrium points: one at the origin
𝑂(0, 0) and another given by 𝑃

1
(
3
√4𝑐/𝑎, 0). By the same

bifurcation method used in [32–34], it is easy to determine
that 𝑂(0, 0) is a saddle point, 𝑃

1
(
3
√4𝑐/𝑎, 0) is a center point,

and there is a homoclinic orbit which corresponds to the
negative solitary wave (see Figure 1). The homoclinic orbit
proceeds from the saddle point 𝑂, encircles the center
𝑃
1
, and returns to the origin. It passes through the point

𝑃
2
(
3
√10𝑐/𝑎, 0) on 𝜑-axis.

In spite of the fact that we are not able to obtain explicit
expression of solitary wave solution of (3), we can deduce
some features of its solitary traveling wave solution for 𝑐 > 0

along the lines of ideas in [15], for describing the wave profile
qualitatively. Let 𝜑 be a solitary traveling wave solution of (3).
We claim that 𝜑 has a single minimum; here the minimum
of 𝜑 is used because the solitary wave is negative. For this
purpose, based on (15) and the homoclinic orbit starting from
the origin, we know that the corresponding negative solitary
wave satisfies

𝑎

10

𝜑
5
− 𝑐𝜑
2
+ (𝑐 − 𝜑) 𝑦

2
= 0. (16)

Since 𝑦 = d𝜑/(𝜑 − 𝑐)d𝜏 = d𝜑/d𝜉, it follows from (16) that

𝜑
2

𝜉
= 𝜑
2 𝑐 − 𝑎𝜑

3
/10

𝑐 − 𝜑

. (17)

It is easy to determine that 𝑐−𝑎𝜑
3
/10 in (17) has only one real

root− 3√10𝑐/(−𝑎)which is negative due to the parameter 𝑎 < 0

and wave speed 𝑐 > 0. It follows that 𝜑
𝜉
vanishes precisely

at this negative real root, so 𝜑 has a unique minimum wave
lowness. We also notice that the minimum of the negative
wave 𝜑 is a decreasing function of the wave speed, since the
derivative of wave height − 3√10𝑐/(−𝑎) with respect to wave
speed 𝑐 is less than zero, which means that negative waves 𝜑
with smaller lowness travel faster.

We claim that the wave profile is symmetric about the
vertical axis; that is, we have to prove that 𝜑(𝜉) is an even
function of 𝜉. In order to show this statement, recall (17) and
regard 𝑐 − 𝑎𝜑

3
/10 as a function of 𝜑. This expression makes

sure that for each height of the profile 𝜑 there exist two values
for the steepness of the wave at that point which only differ
by sign. Therefore the wave cannot be steeper on one side of
the crest than on the other at the same height below the bed.

We claim the negative solitary wave whose inverted
profile |𝜑| decays exponentially at infinity; here the absolute
is taken because the solitary wave is negative. This can be
explained by performing aTaylor expansion of the right-hand
side of (17) in 𝜑 around zero. It follows that 𝜑2

𝜉
= 𝜑
2
+ 𝑂(𝜑

3
)

as |𝜉| → ∞ and we have

󵄨
󵄨
󵄨
󵄨
𝜑 (𝜉)

󵄨
󵄨
󵄨
󵄨
= 𝑂 (exp (−

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
)) , for 󵄨

󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
󳨀→ ∞. (18)

3.2. Local Well-Posedness of (3). To prove the stability of
solitary waves, the well-posedness for (3) is firstly required.
For the Cauchy problem of (3) we refer to [37, 38].

Lemma 4 (see [37, 38]). Assume that 𝑢
0

∈ 𝐻
𝑠
(𝑠 > 3/2).

Then (3) has a unique solution 𝑢(𝑡) in 𝐶([0, 𝑇],𝐻
𝑠
) ∩ 𝐶
1
([0,

𝑇],𝐻
𝑠−1

(𝑅)) such that 𝑢(0) = 𝑢
0
for a certain𝑇 > 0. Moreover,

the map 𝑢
0

→ 𝑢(⋅, 𝑢
0
) is continuous from 𝐻

𝑠 to 𝐶([0, 𝑇],

𝐻
𝑠
) ∩ 𝐶
1
([0, 𝑇],𝐻

𝑠−1
(𝑅)).

4. Stability

The method used to verify orbital stability is attributed to
Grillakis et al. [42], and we essentially apply a theorem pre-
sented therein. To this aim, we list the following assumptions:

(A1) For every 𝑢
0

∈ 𝐻
𝑠
(𝑅), 𝑠 > 3/2, there exists a solu-

tion 𝑢 of (3) in [0, 𝑇) such that 𝑢(0) = 𝑢
0
, where 𝑢 ∈

𝐶([0, 𝑇);𝐻
𝑠
(𝑅)) ∪ 𝐶

1
([0, 𝑇);𝐻

𝑠−1
(𝑅)). Furthermore,

there exist functionals 𝐸(𝑢) and 𝐹(𝑢) which are
conserved for solutions of (3).

(A2) For every 𝑐 ∈ (0,∞), there exists a traveling wave
solution 𝜑 ∈ 𝐻

2 of (3), where 𝜑 < 0 and 𝜑
𝜉

̸≡ 0. The
mapping 𝑐 → 𝜑(𝑥 − 𝑐𝑡) is 𝐶1((0,∞);𝐻

2
). Moreover

𝑐𝐸
󸀠
(𝜑)−𝐹

󸀠
(𝜑) = 0, where𝐸󸀠 and𝐹

󸀠 are the variational
derivatives of 𝐸 and 𝐹, respectively.
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(A3) For every 𝑐 ∈ (0,∞), the linearized Hamiltonian
operator around 𝜑 defined by

𝐻
𝑐
: 𝐻
1
(𝑅) 󳨀→ 𝐻

−1
(𝑅) ,

𝐻
𝑐
= 𝑐𝐸
󸀠󸀠
(𝜑) − 𝐹

󸀠󸀠
(𝜑)

(19)

has exactly one negative simple eigenvalue; its kernel
is spanned by𝜑

𝜉
and the rest of its spectrum is positive

and bounded away from zero.

Theorem 5 (see [42]). Under the assumptions (A1), (A2), and
(A3), a solitary wave solution 𝜑(𝑥 − 𝑐𝑡) of (3) is stable if and
only if the scalar function 𝑑(𝑐) = 𝑐𝐸(𝜑) − 𝐹(𝜑) is convex in a
neighborhood of 𝑐.

Firstly we verify that (3) satisfies the assumptions (A1)–
(A3). The assumption (A1) is guaranteed by Lemmas 1 and 4.

To prove that assumptions (A2) and (A3) hold, we
calculate the variational derivative of functionals 𝐸(𝑢) and
𝐹(𝑢):

𝐸
󸀠
(𝑢) = (1 − 𝜕

2

𝑥
) 𝑢,

𝐸
󸀠󸀠
(𝑢) = 1 − 𝜕

2

𝑥
,

𝐹
󸀠
(𝑢) =

𝑎

4

𝑢
4
−

1

2

𝑢
2

𝑥
− 𝑢𝑢
𝑥𝑥

,

𝐹
󸀠󸀠
(𝑢) = 𝑎𝑢

3
− 𝑢
𝑥𝑥

+ 𝑢
𝑥
𝜕
𝑥
− 𝑢𝜕
2

𝑥
.

(20)

Therefore (12) can be rewritten as

𝑐𝐸
󸀠
(𝜑) − 𝐹

󸀠
(𝜑) = 0. (21)

Combining (21) with Lemma 3, assumption (A2) is ensured.
The linearized Hamiltonian operator 𝐻

𝑐
is given by direct

calculation:

𝐻
𝑐
= 𝑐𝐸
󸀠󸀠
(𝜑) − 𝐹

󸀠󸀠
(𝜑)

= −𝜕
𝑥
((𝑐 − 𝜑) 𝜕

𝑥
) − 𝑎𝜑

3
+ 𝜑
𝑥𝑥

+ 𝑐.

(22)

Thus, the corresponding spectrum equation𝐻
𝑐
V = 𝜆V can be

written as Sturm-Liouville problem:

− (𝑝V
𝑥
)
𝑥
+ (𝑞 − 𝜆) V = 0, (23)

where 𝑝 = (𝑐 − 𝜑) and 𝑞 = 𝑐 − 𝑎𝜑
3
+ 𝜑
𝑥𝑥
.

Review that a regular Sturm-Liouville system has an
infinite many real eigenvalues 𝜆

0
< 𝜆
1

< 𝜆
2

< ⋅ ⋅ ⋅ with
lim
𝑛→∞

𝜆
𝑛

= ∞ (see [43]). The eigenfunction V
𝑛
(𝑥) corre-

sponding to the eigenvalue 𝜆
𝑛
is uniquely determined apart

from the different constant factor andhas exactly 𝑛 zeros. Fur-
thermore, via observation, we know that 𝐻

𝑐
is a self-adjoint,

second-order differential operator. Hence its eigenvalues 𝜆

are real and simple, and its essential spectrum is expressed
as [𝑐,∞) owing to the fact that lim

𝑥→∞
𝑞(𝑥) = 𝑐 (see [44]). It

can be directly checked that (12) is equivalent to 𝐻
𝑐
(𝜑
𝑥
) = 0.

From the properties of the negative solitary waves, we know
that 𝜑

𝑥
has exactly one zero on 𝑅. The above analysis leads us

to the conclusion that there is exactly one negative eigenvalue,
and the rest of the spectrum is positive and bounded away
from zero, which shows that the assumptions are satisfied.

Secondly, we prove that the scalar function 𝑑(𝑐) is convex
on a neighborhood of 𝑐.

For differential 𝑑(𝑐) with respect to 𝑐 it follows that

𝑑
󸀠
(𝑐) = (𝑐𝐸

󸀠
(𝜑) − 𝐹

󸀠
(𝜑) , 𝜑

𝑐
) + 𝐸 (𝜑) = 𝐸 (𝜑) . (24)

Since 𝜑 < 0 and 𝜑
𝑥
= 𝜑
𝜉
> 0 in [0, +∞), it is easy to obtain

from (17) that

𝜑 = −𝜑
𝑥
√

𝑐 − 𝜑

𝑐 − 𝑎𝜑
3
/10

, for 𝑥 ∈ (0, +∞) . (25)

Then we calculate the second derivative of 𝑑(𝑐):

𝑑
󸀠󸀠
(𝑐) =

d
d𝑐

∫

𝑅

1

2

(𝜑
2
+ 𝜑
2

𝑥
) d𝑥

=

d
d𝑐

∫

∞

0

𝜑
2
(1 +

𝑐 − 𝑎𝜑
3
/10

𝑐 − 𝜑

) d𝑥

= −

d
d𝑐

∫

∞

0

𝜑𝜑
𝑥
√

𝑐 − 𝜑

𝑐 − 𝑎𝜑
3
/10

(1 +

𝑐 − 𝑎𝜑
3
/10

𝑐 − 𝜑

) d𝑥.

(26)

Letting 𝜑
𝑥
d𝑥 = d𝑦 and 𝑦 =

3
√10𝑐/𝑎𝑧 we have

𝑑
󸀠󸀠
(𝑐) = −

d
d𝑐

⋅ ∫

0

3
√10𝑐/𝑎

𝑦√

𝑐 − 𝑦

𝑐 − 𝑎𝑦
3
/10

(1 +

𝑐 − 𝑎𝑦
3
/10

𝑐 − 𝑦

) d𝑦

=

d
d𝑐

∫

1

0

(
3
√10𝑐/𝑎)

2

⋅ 𝑧
√

𝑐 −
3
√10𝑐/𝑎𝑧

𝑐 − 𝑐𝑧
3

(1 +

𝑐 − 𝑐𝑧
3

𝑐 −
3
√10𝑐/𝑎𝑧

) d𝑧 = 2

⋅

d
d𝑐

∫

1

0

(
3
√10𝑐/𝑎)

2

𝑧 (2𝑐 −
3
√10𝑐/𝑎𝑧 − 𝑐𝑧

3
)

√(𝑐 −
3
√10𝑐/𝑎𝑧) (𝑐 − 𝑐𝑧

3
)

d𝑧

= 2∫

1

0

𝑓 (𝑧)

𝑔 (𝑧)

d𝑧,

(27)

where 𝑓(𝑧) =
3
√𝑐
2
/𝑎
2
𝑧(5

3
√𝑐
2
/𝑎
2
𝑧
2
−
3
√100𝑐

2
(−2 + 𝑧

2
) +

15𝑐
3
√𝑐/𝑎𝑧(−2 + 𝑧

3
)) and 𝑔(𝑧) = 3𝑐(√𝑐 −

3
√10𝑐/𝑎𝑧)

3
√𝑐 − 𝑐𝑧

3.
The last step in the above equation is established since

d
d𝑐

(

(
3
√10𝑐/𝑎)

2

𝑧 (2𝑐 −
3
√10𝑐/𝑎𝑧 − 𝑐𝑧

3
)

√(𝑐 −
3
√10𝑐/𝑎𝑧) (𝑐 − 𝑐𝑧

3
)

) =

𝑓 (𝑧)

𝑔 (𝑧)

≤ 𝐾

1

√1 − 𝑧

∈ Ł1 (0, 1) ,

(28)

where𝐾 is a constant involving parameters 𝑎 and 𝑐.
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Since 𝑐 > 0, 𝑎 < 0, and 𝑧 ∈ (0, 1), it can be certified
that 𝑓(𝑧) > 0, 𝑔(𝑧) > 0. Therefore, 𝑑󸀠󸀠(𝑐) > 0; we come to
the conclusion that the negative solitary waves are orbitally
stable.
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