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SOME SPECIFICATION TESTS FOR THE LINEAR REGRESSION MODEL

If the assumptions of the regression model are correct, ordinary least squares (OLS) is an

efficient and unbiased estimator of the model's parameters.  If the assumptions of the model are incorrect,

bias or inefficiency may result.  Given the costs of applying OLS when the assumptions are violated, a

great deal of recent work in econometrics has focused on the development of tests to detect violations of

the assumptions (see Godfrey 1988 for a review of this literature).  These tests are referred to collectively

as specification tests.  If these tests are passed, interpretation of the OLS estimates and application of

standard statistical tests are justified.  If one or more of the tests fails, modification of the model or

alternative methods of estimation and testing may be required.  Despite their potential, substantive

researchers have been slow to apply specification tests.  In part this is due to the absence of these tests

from statistical packages.  The development of simple computational formulas is overcoming this

obstacle.  A second problem is uncertainty regarding the small-sample performance of these tests and

consequently of an appropriate strategy for applying specification tests.

The objective of this paper is to evaluate some important and computationally convenient

specification tests for the normal regression model as applied to cross-sectional data and in the process to

propose a strategy for applying specification tests.  Since these tests achieve their optimal properties in

large samples, their size and power in finite samples are of great interest and will be evaluated with

Monte Carlo simulations.  Our strategy for applying specification tests is to start with tests of the mean or

first moment of the regression function.  These include White's test of functional form and Ramsey's

RESET test.  If tests of the first moment are passed, tests of homoscedasticity, skewness and kurtosis of

the errors (i.e., second, third and fourth moments) should be performed.  Such tests are based on a

decomposition of White's information matrix test.

A specification test for the full covariance structure model has recently been developed by

Arminger and Schoenberg (1989).  This test is designed to detect misspecifications caused by errors that

are correlated with the independent variables, such as is the case with omitted variable bias.  Standard

test statistics used in covariance structure models, such as LR tests and modification indices, will not

detect such misspecifications.  While our paper focuses on specification tests dealing with the simpler

case where there is no measurement model, in the conclusions we consider the implications of our results

for the development of specification tests for the full model.

We begin with an overview of specification testing.  This is followed by formal presentation of



January 13, 1992 - Some Specification Tests - Page 2

the normal regression model and of each test of specification.  The last part of the paper presents Monte

Carlo results.

OVERVIEW

In 1978 J.A. Hausman (1978) published the influential paper "Specification Tests in

Econometrics" that presented a general method of testing for specification error.  The idea behind this

test is simple.  Consider a model with a set of parameters .  Let the null hypothesis H0 be that the model

is correctly specified, with the alternative hypothesis H1 that the model is misspecified.  Consider two

estimators  and .   is consistent, asymptotically normal, and efficient under H0.   is consistent

under both H0 and H1, but is inefficient under H0.  If the model is correctly specified, then  and 

should have similar values.  If the model is misspecified, then  and  should differ.  In effect, a

Hausman test assesses whether the difference between  and  is likely to have occurred by chance if

the model were correctly specified.

H. White developed a pair of specification tests that are based on the Hausman principle (White

1980a, 1980b, 1981, 1982).  The first test is called the information matrix test or simply the IM test. 

Rather than comparing two estimates of the structural coefficients , the IM test compares two estimates

of the information matrix .  With maximum likelihood estimation  can be estimated with

either minus the expected value of the Hessian of the likelihood function or the expected value of the

outer product of the gradients (OPG) of the likelihood function.  If the model is correctly specified, then

minus the expected value of the Hessian and the expected value of the OPG will be equal (cf. Judge, Hill,

et al. 1985:179).  The IM test is based on the idea that if two estimates of  are far apart, then

misspecification is indicated.  Significant values of this test indicate heteroscedasticity or non-normality

of the errors.  A second test is White's test for functional misspecification.  This test compares the OLS

estimates of the structural coefficients to weighted least squares (WLS) estimates.  If the OLS and WLS

estimates are far apart, then functional misspecification is indicated.

Ramsey's RESET (regression specification error test) test (Ramsey 1969) is similar in purpose to

White's test for functional form.1  The RESET test is based on the notion that if the functional form of the

model is incorrect, then the correct specification might be approximated by the inclusion of powers of the

variables in the original model.  The original set of independent variables is augmented by powers of
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these variables.  If the coefficients associated with the added variables are statistically significant,

misspecification from sources such as incorrect functional form or the exclusion of relevant variables is

suggested.

On the basis of the IM and functional form test, White (1981:423) suggests "a natural procedure

for the validation of any regression model."  First, the IM test is applied.  If the test is passed, the

estimates of the structural coefficients and the standard errors should be consistent and the usual methods

of hypothesis testing are justified.  If the model fails the IM test, then White's test for functional

misspecification should be performed.  If the functional form test fails, the hypothesis of correct

functional form is rejected and OLS is inconsistent.  If the test is passed, the functional form can be

accepted as provisionally correct and OLS will be an unbiased estimator of the structural coefficients. 

Since the IM test failed, the standard OLS estimator of the variances and covariances of the estimates is

biased.  Consequently, standard statistical tests must be replaced by those based on a heteroscedasticity

consistent estimator (discussed below).

Given that misspecification of the first moment is more fundamental and its consequences are

more serious than misspecification of higher moments, this sequence of testing is reversed.  If the

functional form is incorrect, estimates from the incorrect model are at best approximations to those from

the correct model and interpretation of the estimates should be avoided.  Heuristically, if the conditional

mean estimate is inconsistent, tests of the conditional variance cannot be interpreted.  Since it is possible

to pass the IM tests and fail a test of functional form, the implicit assumption that passing the IM test

eliminates the need for testing functional misspecification should be reconsidered.  A sounder strategy is

to begin with a test of functional misspecification.  If it is passed, the IM test should be performed.  If it

fails, the OLS estimator of the structural coefficients is still consistent, but the estimator of the

covariance matrix is inconsistent.  This inconsistency can be corrected by calculating a heteroscedasticity

consistent covariance matrix.

In evaluating specification tests the related issues of orthogonality and robustness are of concern. 

Specification tests evaluate the null hypothesis of no misspecification against some alternative.  Such

tests may be joint or uni-dimensional.  Joint tests simultaneously test for departures from the null in

several directions.  For example, the information matrix test is a joint test of the normality and

homoscedasticity of the errors.  A statistically significant joint test indicates the presence of either

several or just one misspecification.  Such a test is difficult to interpret since the specific cause of the
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violation is undetermined.  Uni-dimensional tests evaluate departures in a single direction (e.g.,

homoscedasticity only).  Ideally the test will have high power against departures from the null in one

direction, but be insensitive or orthogonal to departures in another direction.  If two tests have this

property, the tests are asymptotical orthogonal.  Given two variants of the same test, one would prefer

the variant which has the orthogonality property.  Note that tests may be asymptotically orthogonal but be

correlated in finite samples.  Tests that are strongly correlated provide little guidance regarding which

assumption has been violated or what the appropriate remedy is.  Orthogonality is related to the notion of

robustness.  A particular specification test may require that an auxiliary assumption is maintained.  For

example, a test of linearity may assume that the errors are homoscedastic.  If a test is sensitive to the

auxiliary assumptions, the test lacks robustness.  A robustified version of a test attempts to prevent this,

usually with the loss of some power if the robustification was not necessary.

     A modern and attractive interpretation of a specification test is a conditional moment (CM) test. 

Every specification test may be thought of as a restriction on some conditional moment.  For example a

functional form test is a test of a restriction on the conditional mean function, a heteroscedasticity test is

a test of a restriction on the conditional variance function,  a test of symmetry of the distribution is a test

of a restriction on the third moment of the distribution, and so forth.  An excellent exposition of this

view-point is in Pagan and Vella (1989).  Every CM test can be interpreted as a test of

, where  is an unknown parameter and (y,X) are data;  m(.) is called the moment

function.  To implement the test  must be replaced by a consistent estimator.  Specification tests have

two aspects:  the choice of the suitable moment function; and implementation of the test.  Implementation

requires the estimator , the asymptotic variance of , and a method of computing the test

statistic T.  T is ususally of the form .  Competing variants of a CM test may

therefore differ in terms of (a) the choice of the CM function; (b) the asymptotic variance of the CM

function; and (c) the auxiliary regression used to compute T.  These differences in the construction of

tests will be referred to below and used to interpret some of the results of the Monte Carlo simulations.

THE REGRESSION MODEL

The multiple regression model may be written as
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where  is a (n×1) vector of values for the dependent variable,  is a (K×1) vector of unknown

parameters,  is a (n×K) matrix of rank K containing nonstochastic independent variables, and  is a

(n×1) vector of stochastic disturbances.  The first column of  may contain ones to allow for an

intercept.  For purposes of describing the specification tests it is useful consider the assumptions of the

model in terms of conditional expectations of the error vector .

Assumption 1.  :  the expected value of the error is zero for a given value of .  The

simplest violation of this assumption occurs if the conditional expectation is a nonzero constant, which

affects only estimates of the intercept.  More serious violations occur when the value of the conditional

expectation depends upon the values of  for a given observation.  This can occur when the correct

functional form is nonlinear and a linear model is estimated, or when an independent variable is

incorrectly excluded from .  Such misspecifications are referred to as misspecifications of the first

order since they concern the first moment of the error.  In general, violations of the first order render the

OLS estimator biased and inconsistent.

Assumption 2.  :  errors have a constant variance and are uncorrelated

across observations.  When the variance of the errors are uniform the errors are homoscedastistic; if the

variances are not uniform, the errors are heteroscedastistic.  In the presence of heteroscedasticity, the

OLS estimator  is unbiased, but inefficient.  The estimator of the variances and covariances of 

is biased and the usual tests of significance are inappropriate.  Since this assumption concerns

expectations of the second moment of the errors, violations can be thought of as misspecification of the

second order.

Assumption 3.  :  the errors are normally distributed with a bounded variance.  If the errors

are not normal, the OLS estimator of  is still a best linear unbiased estimator and the usual tests of

significance have asymptotic justification.  However, the OLS estimator is no longer the maximum

likelihood estimator and the small sample behavior of significance tests is uncertain.  Since the normal

distribution is symmetric and mesokurtic, the normality assumption implies that  and

.  Thus, violations of the normality assumption can be thought of as misspecifications

of the third and fourth order conditional moments.

The specification tests detailed below are designed to detect violations of these assumptions.
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WHITE'S TEST OF FUNCTIONAL MISSPECIFICATION

White's test for functional misspecification (White 1980b, White 1981) is a test of

misspecification of the first order.  Assume that the correct functional form is

A test of functional form involves testing the hypothesis that  is correct against the alternative

that  where .  To develop this test White considers the regression model

 as an approximation to .   is defined as the vector of parameters that minimize

the weighted distance between the expected values of  from the two model specifications

 and .  That is,  makes the linear approximation as close as possible to the

nonlinear specification, where "close as possible" involves minimizing the squared, weighted distance

between the predicted 's from the two specifications.  Specifically,  minimizes the function

where  is a weighting function.  If  is the OLS estimator from the equation ,  will

approximate  in the sense that  is linearized using a Taylor expansion and all higher order

terms are dropped.  Under regularity conditions discussed by White (1980b:152-155)

is distributed normally with mean zero and a covariance matrix  defined as follows.  Let

where  is a (1×K) vector of the values of  for observation i.  Then,

This estimator is called the heteroscedasticity consistent covariance matrix or simply the HC covariance

matrix.

When ,  regardless of the weighting function .  When  the

least squares approximation  depends on the weighting function .  White's test of functional
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[1]

[2]

[3]

misspecification involves obtaining an OLS estimate  and a weighted least squares estimate 

based on an arbitrary weighting function .  Functional misspecification is indicated by  and

 being significantly apart.  The test statistic is defined as (White 1980b:157)

where

with

and

 is asymptotically distributed  with K degrees of freedom.  If  is larger than the critical value at

the given significance level, the null hypothesis that  is rejected.

It is essential to realize that the size and power of this test depends on the choice of the weight

function .  Statistical theory provides little guidance for selecting optimal weights, a problem that

will be shown below to greatly limit the application of this test.

THE RESET TEST

Ramsey's RESET test (Ramsey 1969) is another test for misspecification of the first order,

including incorrect functional form and the exclusion of relevant variables.  If

is the null model being considered, a possible alternative model can be written as

If the correct variables  are in the model but the linear equation [2] is the incorrect functional form, a

polynomial approximation to the correct form  can be made by defining the 's in equation
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[4]

[5]

[6]

[3] as powers of the 's.  Ramsey proposed using powers of .  Since  is a linear combination of

the 's, this adds powers of the 's to the equation, albeit in a constrained manner.  With this definition

of the 's equation [3] can be written as

A RESET test of order P involves testing whether the addition of  through  to the right hand side

of  results in a significant improvement in fit.  The test statistic is the standard F-test of the

hypothesis H0: .  To define this test, partition the covariance matrix of  as

Then let  be the partition in  corresponding to .  The F-test is defined as

which is distributed as F with P and n-K-P degrees of freedom if the model is correctly specified.

The RESET test assumes that the errors are distributed normally with a constant variance.  Thus,

it tests the null hypothesis H0:  against the alternative H1:  where  is not

zero.  When used as part of a sequence of specification tests, the sensitivity of the test to

misspecifications of the second and higher orders is problematic since a decision to reject the hypothesis

of correct functional form may be a consequence of heteroscedasticity or non-normality.  This indicates a

need for a version of the RESET test that is robust to these violations.

ROBUST RESET TESTS

Several authors (see for example Godfrey 1988:107) have suggested that the RESET test can be

robustified for heteroscedasticity by replacing the standard OLS covariances matrix for  with the robust

or HC version.  The resulting Wald test is defined as

where  contains that HC covariance matrix for the 's from equation [4].  This test statistic is

distributed as F with P and n-K-P degrees of freedom if the model is correctly specified (Milliken and
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[7]

Graybill 1970).  While this adjustment is appealing due to its computational simplicity, simulations

presented below suggest that it has poor size and power properties.  This poor performance is consistent

with results of Chesher and Austin (19xx).

A second robust test was constructed as a Lagrange multiplier test, following Davidson and

MacKinnon (1985).  This test examines whether the residuals from the null model  are

correlated with the excluded 's after removing the linear influence of the 's from the 's.  To robustify

the test for heteroscedasticity, the HC covariance matrix from the null model [2] is used as the weight

matrix in the quadratic form of the test statistic.  Specifically, the test statistic is defined as

where (n-K)/(n-K-P) is a degrees of freedom correction.   is a diagonal matrix with diagonal elements

equal to the squares of the residuals from equation [2].   is a (n×P) matrix where the i th column

contains  from the regression

Thus, the i th column of  contains the 's after removing the linear influence of the 's.   tests

whether the 's from equation [2] are correlated with that part of the 's that is uncorrelated with the 's. 

By using a HC covariance matrix from equation [2], the resulting test should be robust to

heteroscedasticity.  The test statistics are asymptotically distributed as  with P degrees of freedom

(Davidson and MacKinnon 1985).2

THE INFORMATION MATRIX TEST

If a test of functional form fails, there is no justification for proceeding to test for second and

higher order misspecifications or to interpret the estimated parameters.  If the functional form appears

adequate, it is reasonable to proceed to test for violations of assumptions 2 and 3 involving higher

moments of the error terms.  White's information matrix test, originally designed as an omnibus

misspecification test without specific alternatives, has this feature.

Under the assumptions of the regression model given above, the 's are distributed . 
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If the parameters  and  are stacked in the vector , the resulting log-likelihood equation is

The maximum likelihood estimator  is the value that maximizes the likelihood function.  The score or

gradient vector of the log-likelihood can be written as

If  is the true value of , the expected value of  will be zero when evaluated at .

The asymptotic theory of maximum likelihood estimation shows that the covariance matrix of 

approaches .  If the regularity conditions for maximum likelihood estimation hold, the

information matrix can be expressed in either of two ways.  First,

This is the outer product of the gradient or OPG version.  Second, the information matrix can be written

as a function of the Hessian of the log-likelihood function.  Let the Hessian be written as

The information matrix then equals

where the right hand size is the Hessian version of the information matrix.  If the assumptions of the

model are correct and certain regularity conditions hold, then

or in our earlier notation .

The equality of the Hessian and OPG versions of the information matrix when the model is

correctly specified is the basis for the IM test.  If we define  as the value of the log-likelihood

function for observation i, we may define
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[8]

[9]

 is a (q×q) symmetric matrix, where q is the number of 's plus one for .  Since 

should equal 0 if the model is correctly specified, White proposes  as a measure of

misspecification.  He demonstrates that  is normally distributed with mean zero when the model

is correctly specified.  A  statistic is constructed based on the lower triangle of  (since the matrix

is symmetric).  For simplicity, we will refer to this test statistic as .

To understand how this test statistic depends on the assumptions of the regression model it is

useful to consider the results of Hall (1987).  Hall demonstrates that  can be decomposed as

where the 's are asymptotically uncorrelated.   is a test of the second moments of the error

distribution that closely resembles White's (1980a) earlier test of heteroscedasticity and the Breusch and

Pagan's (1979) test for heteroscedasticity.   is a test of the skewness or third-moments of the error

terms that resembles the  test of skewness.   is a test of kurtosis or the fourth moment that is

similar to the  test of kurtosis.  This decomposition is accomplished by partitioning [8] according to

the components  and  of .  Thus,  is based on

which is a function of .   is based on

which is a function of .  And  is based on
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[10]

[11]

[12]

[13]

which is a function of .

The computation of the 's is relatively simple.  First, estimate the regression

Let ,  and  contain the second, third and fourth powers of the residuals from [10].  Let  be the

maximum likelihood estimate

Second, create  to contain all of the unique products and bivariate cross-products of the 's. 

Specifically,  contains , ,..., , ,..., ,..., .  If  is the constant 1, then

, , and so on.  Using these as a starting point, the components of the IM test can be

easily computed.  In the following expression the superscript H indicates that the formulas are based on

Hall's construction of the test.

To compute  estimate the regression

Then,

where  is the explained sum of squares from the regression.  To compute  estimate the regression

Let  be the total uncentered sum of squares  and  be the residual sum of squares
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[14]

[15]

[16]

.  Then

 is computed as

The joint test is then computed as

, ,  and  are asymptotically distributed as  with ,  ,  and  degrees of

freedom.  Recall that  is the number of columns of , possibly including a column of ones for the

intercept.

A major advantage of Hall's formulation of the IM test is that it may suggest which aspects of the

assumption  are being violated.  To the extent that asymptotic property of the 's being

uncorrelated is approximated in small samples,  should be robust to violations of skewness and

kurtosis,  should be robust to violations of heteroscedasticity and kurtosis, and  should be robust to

violations of heteroscedasticity and skewness.  While Hall's 's are asymptotically uncorrelated, our

simulations suggest that in small samples they are substantially correlated.  Consequently,  can be

statistically significant as a result of skewness, rather than hetero-scedasticity, and similarly for  and

.

Cameron and Trivedi (1990a, 1990b) have demonstrated that the IM test can be viewed as a test

with explicit alternatives.  In the process they provide an orthogonal decomposition of the IM test.  Let
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[17]

[18]

[19]

[20]

[21]

[22]

[23]

,  and  be defined as above.  In addition let  be the uncentered coefficient of determination

defined as

where the  are the residuals from a given regression.  Note that most regression packages do not

provide the uncentered coefficient of determination.

To estimate , run the regression

Then,

To estimate , run the regression

Then,

To estimate , run the regression

where  is a vector of ones.  Then,

The joint test is then computed as

As with the Hall version of the test, , ,  and  are asymptotically distributed as  with

,  ,  and  degrees of freedom.  The Monte Carlo experiments presented below

indicate that their estimates for the 's are substantially less correlated in small samples than are those
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based on Hall's formulas.

Components of Hall's version of the IM test may be compared to CT's version in terms the choice

of the conditional moment function and the implementation of the test.  The comparison is between Hall's

expressions given by [11], [13], and [15] and CT's expressions given by [17], [18], and [21].  For testing

heteroscedasticity, both use essentially the same conditional moment function based on  and , so

there should be little difference between the performance of the two on this account.  For tests of

symmetry and excess kutosis, there is a slight difference since CT use conditional moment functions

which are orthogonal to each other, but Hall does not.  The key difference between the two lies in the

treatment of the variance term in the test.  Hall's expressions for the tests use the variance of the

conditional moment function that would be obtained if the null hypothesis were to hold.  In this case the

variance of the second, third and fourth moment restrictions would be indeed ,  and ,

respectively.  CT's versions of the corresponding tests does not use this assumption.  Therefore, it is to be

expected that Hall's variants would have better size properties, but will be less robust and powerful than

CT's variants which do not impose the variance assumption on the test statistic.  We may also expect that

the use of the same (inconsistent) estimate of residual variance in the components of the IM test will

cause these components to be mutually correlated. 

A further point concerns the implementation of the test using  from an auxiliary regression. 

Observe that when the alternative hypothesis is valid, the auxiliary regressions given in [17], [19], and

[21] have heteroscedastic residuals, which will induce a bias in the estimate of the residual variance and

the uncentered  from these auxiliary regressions, thereby affecting the properties of the tests.  An

alternative to the -based test is a heteroscedasticity consistent Wald test of the hypothesis that the

slope parameters in the auxiliary regressions [17] and [19], and the intercept in [21], are all zero.  As

little is known about the merits of the heteroscedasticity consistent Wald test relative to the -based

test, Monte Carlo simulations were undertaken to compare them.  Though a more detailed discussion is

given later, we anticipate the major conclusion of these experiments:  the heteroscedasticity consistent

Wald test has unsatisfactory size properties, especially with regard to tests of heteroscedasticity in small

samples.
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[24]

HETEROSCEDASTICITY CONSISTENT COVARIANCE MATRICES

If specification tests of the first-order are passed, but those for higher-order (and particularly

heteroscedasticity) are not, standard tests of statistical significance are inappropriate.  In such cases

heteroscedasticity consistent tests should be considered.  These tests are based on results of White

(1980a) who extended earlier work of Eicker (1967) and Fuller (1975).

In the presence of heteroscedasticity the OLS estimator  is unbiased, but inefficient.  The

usual OLS estimator of  is biased and the usual tests of significance are inconsistent.  If the exact

form of heteroscedasticity is known to be , the covariance matrix of  is

In general the specific values of  are not known.  White's HC estimator of  involves substituting

for  the matrix  that contains  on the diagonal and 0's on the off-diagonal.  The resulting HC

estimator is

White recommends that if specification tests for the first-order are passed but test of higher order

misspecification fail, tests based on the HC covariance matrix should be used.

MONTE CARLO STUDIES

Each of the tests discussed above is justified on the basis of asymptotic considerations.  Since

exact results for small-sample behavior are unavailable, Monte Carlo simulations provide a means for

examining the small-sample behavior of these tests.  These simulations involve a series of experiments in

which:  (1) a population is generated with a known data structure; (2) a large number of random samples

are drawn from the population; (3) test statistics are computed for each sample; and (4) the test results

across all samples are used to assess the size and power of the tests.  Details of our simulations are now

given.

Data Structures.  Eight data structures were used.  See Table 1 for a summary.  For each data

structure, one population was generated with an R² of approximately 0.4 and another with an R² of

approximately 0.8.  Three independent variables were used.   was generated with a uniform

distribution ranging from one to two, except for data structures 6 and 7 in which the range is zero to 100;
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 with a normal distribution with means zero and variance one; and  with a  distribution with one

degree of freedom with values ranging from zero to about fifteen.3  The correlations among the 's are

approximately equal to

        

   1.00 0.82 0.57

   0.82 1.00 0.46

   0.57 0.46 1.00

Structure 1 was generated to conform to the null hypothesis of no misspecification.  The

remaining seven structures represented various types of misspecification.  Structure 2 has errors that are

distributed as t with 5 degrees of freedom, which corresponds to a case with moderately thick tails. 

Structure 3 has errors that are distributed as  with 5 degrees of freedom, which corresponds to a

moderate amount of skewness in the errors.  Structure 4 incorporates heteroscedasticity of the form

, where the value  is determined by the R² required.  Given the uniform [1,2] distribution of

, this represents a moderate amount of heteroscedasticity.  Structure 5 incorporates heteroscedasticity

of the form , where the value  is determined by the R² required and 0.25 is added to

avoid extremely small variances in those cases were  is close to zero.  Given the uniform distribution

of , this represents a substantial amount of heteroscedasticity.  Structure 6 was generated with the

nonlinear equation .  Given the range of  from one to two, only a slight departure

from linearity is involved.  Structure 7 was generated with the nonlinear equation . 

Given the range of  from zero to fifteen, a substantial departure from linearity is involved.  For each of

these structures the model estimated was .  Structure 8 was generated in the

same way as structure 1, that is, without specification errors.  However, in this case the model estimated

was .
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The Experiment.  For each data structure the following experiment was run twice, once for an R²

of .4 and once for an R² of .8.  Each experiment consisted of:

(1) 150,000 observations with a known structure are generated and saved to disk.  These

observations are thought of as the population.  A regression was run on the population to determine the

exact values of the population parameters.

(2) From each population a random sample with replacement is drawn.  This is repeated 1,000

times for each of the sample sizes:  25, 50, 100, 250, 500 and 1,000.

(3) Test statistics and parameter estimates are computed for each sample.

Summary of Experiments.  Our simulations are used to assess the small sample size and power of

each test.  The tests that are evaluated are summarized in Table 2.  If a data structure does not violate the

assumptions being evaluated, the size of the test is assessed by comparing nominal significance level of

the test to the empirical significance level.  The empirical significance level is defined as the proportion

of times that the correct null hypothesis was rejected over the 1,000 replications.  Results are presented

for nominal significance levels of 0.05, 0.10 and 0.20.  In results not shown tests were evaluated at

significance levels from 0.01 to 0.99 in increments of .01.  If a data structure violates the assumptions

evaluated by the test, the power of the tests is indicated by the proportion of times the null hypothesis is

rejected at the 0.05, 0.10 and 0.20 levels.

Results are presented in the order corresponding to the strategy for testing that has been

advocated.  We begin with tests for specification of the first order, namely the White test and the RESET

test.  Tests for specification errors of the second and higher order are then considered with the IM test

and its components.

Before presenting the results for the White test, we discuss how information on the power and

size of a test is being plotted.  Figure 1 is an example of the plots.  The horizontal axis represents the size

of the sample.  Values of 25, 50, 100, 250, 500 and 1,000 are plotted.  The vertical axis indicates the

percentage of time that the null hypothesis of no misspecification was rejected.  This is referred to as the

empirical alpha.  The range of the vertical axis will vary with the particular set of results being

presented.  For each test, results are given for three nominal alphas, with �=0.05 represented by �,

�=0.10 by �, and �=0.20 by �.  Horizontal dotted lines are plotted at 0.05, 0.10 and 0.20.  While the

range of the vertical axis varies with the particular set of results being presented, the dotted lines are

always at the same locations.  If data were generated without any specification error and a test had
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[25]

perfect small sample size properties, the empirical alphas should fall directly on these dotted lines.  If

data were generated with specification errors that the test should detect, the higher the location of the

empirical alphas, the greater the power of the test to detect the specification error.

SPECIFICATION TESTS OF THE FIRST ORDER

White's Test of Functional Form.  White's test of functional form is designed to detect

specification errors of the first order.  To implement this test an "arbitrary" weighting function is chosen. 

Since theory provides little guidance in choosing a weighting functions, three sets of weights were

considered based on suggestions in the literature.  Version 1 of the test defines the weight as

; the weights are inversely proportional to the expected value of  for the null model

(White 1980b:158-159).  Version 2 defines the weight as follows.  Let  be the squared residuals from

equation [2].  Run the regression

where  consists of  plus all of cross-products of the 's (e.g., , ).  Then the weights are

defined as  from equation [25].  Those observations with the largest residuals (i.e., those that conform

least well to the model) are given the greatest weight, which should make the test more powerful (White

1981).  For both version 1 and 2, extremely small values were set equal to .00000001 and large values

were set equal to 50.  Version 3 defines the weights as 1 for large values of the dependent variable and

.001 for small values of the dependent variable (White 1980b:159).  Several variations on these

weighting schemes were also tried.

Figure 1 demonstrates the practical problems involved in applying the White's test of functional

form.  Panel 1 presents the size properties of version 1 and 2 of the test.  For version 1 the empirical

alphas for the 0.05 significance level are close to 0.05, those for the 0.10 level begin at about .075 for

n=25 and decrease to 0.05 for n=1,000, those for the 0.20 level begin at 0.10 and also decrease.  Version

1 rejects H0 slightly less frequently than it theoretically should.  Version 2 of the test almost always

rejects H0, regardless of the significance level and thus would not be useful in practice.  These results

hold for other significance levels.  For example, with a sample size of 25, version 1 rejects the correct

null hypothesis only 28 percent of the time using �=0.90, whereas version 2 rejected the correct null 98

percent of the time using �=0.01.  Panel 2 presents the power of the test to detect nonlinearity based on
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data structure 7.  Version 1 of the test rejects the H0 less often than it did with the correct specification,

while version 2 rejects H0 nearly every time.

The results presented in Figure 1 are typical of those obtained with other weighting functions and

other data structures.  For all weights considered either the size properties are unacceptable or the test

had too little power to be useful.  While it is possible that better weighting functions would improve the

test, our experimentation suggests that these may be elusive.  On the basis of our simulations we

conclude:  without operational procedures for choosing weights, White's test for functional

misspecification is not practical for detecting misspecification in the regression model.

RESET Test.  The RESET test is also a test for misspecification of the first order.  Since the

standard form of the RESET test assumes homoscedasticity, robust Wald and Lagrange multiplier

versions of the test were constructed using White's HC covariance matrix.  In all version we included the

second through fourth powers of , so .

Figure 2 shows the size properties of the RESET test using data structure 1 with R²=0.4.  Results

are nearly identical for R²=0.8.  The size properties of the standard RESET test (plot A) are quite good. 

Size properties of the robust Wald RESET test (plot B) are very poor for small sample sizes, but improve

steadily as the sample increases.  However, even by n=1,000 the robust Wald test rejects the true H0

substantially more often than the nominal alpha.  The robust LM RESET test rejects the H0 too seldom,

although by n=100 the size properties approximate those of the standard RESET test.  Given the

substantially better size properties of the LM version compared to the Wald version, only the LM version

is considered hereafter.

Figure 3 examines the properties of the RESET and LM RESET tests in the presence of

heteroscedasticity.  Panel 1 presents the results for a slight amount of heteroscedasticity (data structure 4)

with R²=0.4.  Panel 2 presents the results for a moderate amount of heteroscedasticity (data structure 5)

with R²=0.4.  Results are very similar for R²=0.8.  In Panel 1 with a slight amount of heteroscedasticity,

the size properties of both versions of the RESET test remain similar to those obtained in the absence of

heteroscedasticity, with the standard RESET test being superior to the LM version.  Panel 2 with more

extreme heteroscedasticity demonstrates the sensitivity of the standard RESET test to heteroscedasticity. 

As sample size increases, the percent rejected increases sharply.  The robust LM version of the test is not

affected by the heteroscedasticity and has reasonable size properties beginning with n=50.

Figure 4 shows the behavior of the RESET test in the presence of non-normal errors (data
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structures 2 and 3).  The standard RESET test has similar properties as when no misspecification was

present, although there is a tendency to reject H0 too frequently when the errors have a  distribution. 

For t-distributed errors the empirical alphas for the LM test are too small at n=25, but improve as n

increases.  By n=1000, the empirical alphas are almost exactly equal to the nominal alphas.  It is unclear

whether the empirical alphas will stay at this level for higher n's or continue to increase.  For -errors

the empirical alphas are too small, but become reasonably close by n=100.

Figures 5, 6 and 7 examine the power of the RESET test to detect misspecifications of the first

order.  Figure 5 is based on data structure 7 which contains some nonlinearity.  Panel 1 is based on

R²=0.4.  Neither test detects the nonlinearity, with empirical alphas being similar to those for data

without misspecification.  Panel 2 is based on R²=0.8.  For all sample sizes the standard RESET has

larger empirical alphas than the LM RESET test, but by n=100 the differences are small.  Figure 6 is

based on data structure 6 which contains greater nonlinearity.  Panel 1 is based on R²=0.4.  The tests

behave similarly, with the ability of the test to detect nonlinearity increasing steadily with sample size. 

Panel 2 is based on R²=0.8.  For all sample sizes the standard RESET test has larger empirical alphas, but

by n=100 the percentage difference is small.  As before, the power to detect nonlinearity increases

substantially with the larger R².  Figure 7 considers the cases of an excluded variable.  Both tests are

extremely powerful by n=250, with the LM version again being somewhat less powerful for all samples. 

Unlike the cases for nonlinearity, the power of the test decreases with the larger R².

Summary.  White's test of functional form is not useful for detecting misspecifications of the first

order.  The standard RESET and the robust LM RESET tests are very effective for detecting first-order

specification error.  In the absence of heteroscedasticity the standard RESET test has slightly better size

properties and is slightly more powerful.  However, it is affected by heteroscedasticity while the LM

version of the test is not.  Given the likelihood of heteroscedasticity in real world data and the relatively

slight disadvantages of the LM test, the robust LM RESET test appears to be the preferred test.  The

robust Wald test has poor size properties for samples up to 1,000 and is not recommended.

SPECIFICATION TESTS OF HIGHER ORDER

Size Properties.  White's IM test is designed to detect misspecification of the second and higher

order.  As shown by Hall, the test can be decomposed into components detecting heteroscedasticity,

skewness and kurtosis.  Figure 8 examines the size properties of the test for each component plus the

combined test score for both the Hall method of computation and the method of Cameron and Trivedi
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(CT).

For the overall test, both versions have empirical size close to the nominal size at the 0.05 level. 

One exception is the too small size of the CT version for n=25 and the too large size of the Hall version

for n=100.  At the 0.10 level both the empirical size of the overall tests are very close to 0.10 by n=100. 

Below that the sizes are too small.  At the 0.20 level, both versions have sizes that are too small but

improve with sample size, with the Hall version being less well behaved.  In results not shown the size

properties of the Hall version continue to deteriorate as the significance level increases.

The components of the IM test reveal the following.  Consider first the Hall version.  At the 0.20

level, the empirical size is substantially too small at n=25 with increasingly better size as n increases.  By

n=500 the empirical size is quite close to the nominal size.  At the 0.10 level, the trend is similar although

the overall behavior of the test is better.  The size properties at the 0.05 level are extremely good for all

sample sizes.  Consider now the CT version of the test.  At the 0.20 and 0.10 levels of the test the

heteroscedasticity and skewness portions of the test have somewhat better size properties than the Hall

version.  At the 0.05 level the two versions are similar, except at n=25 where the Hall version behaves

better.  The size of the kurtosis portion of the CT version of the test becomes too large after n=25 but

improves somewhat above 250.

Power for Non-normal Errors.  Figures 9 and 10 examine the power of the IM test for violations

of the assumption that the errors are normally distributed.  Figure 9 considers errors that are t-distributed

with 5 d.f. for the cases with R²=0.4; results are similar for R²=0.8.  Having errors that are t as opposed to

normal should introduce kurtosis but not heteroscedasticity or skewness.  Herein lies the major difference

between the Hall and CT versions of the test.  In the Hall version the computation of a specific

component of the test assumes that there are no violations of the other components being tested.  For

example, the computation of the skewness component assumes there is no heteroscedasticity or kurtosis. 

In the CT version the tests are robustified for violations of other assumptions.  Thus in Panel 1 of Figure

9 we see that the Hall version of the tests rejects the hypothesis of no heteroscedasticity and of no

skewness quite frequently, even though there is neither heteroscedasticity or skewness in the data.  In

Panel 2 we see that the CT version rejects these hypotheses at approximately the significance level of the

test.  In the kurtosis portion of the test, the Hall version is more powerful than the CT version,

particularly when used at lower significance levels.

The greater sensitivity of the Hall versions of the tests to violations that are not being tested is
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reflected in the correlations among the test statistics.  Tests of heteroscedasticity and skewness have a

correlation of 0.71 for the Hall versions compared to 0.27 for the CT versions; tests of heteroscedasticity

and kurtosis have a correlation of 0.49 for the Hall versions compared to -.02 for the CT versions; and

tests of skewness and kurtosis have a correlation of 0.83 for the Hall versions compared to -.18 for the

CT versions.

Figure 10 presents the results for errors from a  distribution with 5 d.f.  Such errors introduce

skewness and kurtosis, but not heteroscedasticity.  The Hall version detects heteroscedasticity, while the

CT version does not.  On the other hand, the Hall version is more powerful at detecting violations of

skewness and kurtosis.  Once again, the Hall tests are more highly correlated than the CT versions.

Power for Heteroscedasticity.  Figures 11 and 12 examine the ability of the IM test to detect

heteroscedasticity.  In Figure 11 the variance of the errors is proportional to the square root of ; in

Figure 12 it is proportional to the square root of  and is much stronger.  Results are for R²=0.4;

results are very similar for R²=0.8 and are not shown.

With slight heteroscedasticity both the Hall and CT versions of the test behave similarly, with the

Hall version being just slightly more powerful.  Given the modest amount of heteroscedasticity, the tests

require 1,000 cases before the null hypothesis is rejected 75 percent of the time using a 0.05 significance

level.  The skewness and kurtosis portions of the test behave quite similarly to how they did in our tests

of size.

In the case of a modest amount of heteroscedasticity, shown in Figure 12, several differences are

seen.  First, as would be expected, the power of the test increases.  With a sample size of 250 the null of

no misspecification is rejected nearly 100 percent of the time.  The Hall version of the test remains

somewhat more powerful, particular when a significance level of 0.05 is used.  Finally, the more extreme

heteroscedasticity results in tests of skewness and kurtosis that are more often significant.  This is more

often the case with the Hall version of the test.

Power for Nonlinearity and an Excluded Variable.  The power of the IM test to detect violations

of the assumption of linearity will depend upon the degree to which the presence of nonlinearity in the

data generating process will result in errors that appear heteroscedastic, skewed or kurtotic in the linear

analysis.  With the nonlinear data structure 7, the hypothesis of no specification error was rejected less

than 10 percent of the time using a significance level of 0.05 when n=1,000 regardless of the R².  With
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data structure 6, which had more severe nonlinearity, the null hypothesis was still rejected less than 10

percent of the time when R²=0.4.  With an increase in the R² the tests had some, but still limited power. 

This is shown in figure 13.  At the 0.20 level, H0 was rejected less than 40 percent of the time with

n=1,000.  The power of the IM test to detect an excluded variable also depends on the degree to which

the excluded variable generated heteroscedasticity, skewness or kurtosis in the model analyzed.  Figure

14 compares the performance of the Hall and CT versions of the test in the cases where X1 has been

excluded from the equation and R²=0.4.  Results are similar for R²=0.8.  Overall we conclude that while

the IM test is sometimes referred to as a test of functional misspecification, its power is limited.  To the

extent that functional misspecification results in residuals that are heteroscedastistic, skewed or kurtotic,

the IM test will indicate functional misspecification.  In cases where the assumptions regarding the

higher order moments are not violated, the IM test will not detect functional misspecification.

THE HETEROSCEDASTICITY CONSISTENT WALD VERSION OF THE IM TEST

Finally, consider the properties of heteroscedasticity consistent Wald tests of heteroscedasticity,

skewness and excess kurtosis based on CT's auxiliary regression equations [17], [19] and [21].  As

previously explained, one tests the hypothesis that the slope parameters in regressions [17] and [19] and

the intercept parameter in [21] are zero.  Monte Carlo experiments were carried out to compare the size

and power of the original variants of CT tests and the corresponding heterscedasticity consistent variants. 

To conserve space we only report a small selection of the output.

Table 3 gives the empirical size of heteroscedasticity consistent variants of the three IM tests at

the 5% nominal level.  In this case the rejection rate for all tests should be 5% since the data were

generated without misspecification.  However, the rejection rate for the heteroscedasticity test is 96.9%

for n=25.  While the rejection rate decreases as n increases, it is still as high as 33.8% for n=500.  Thus

the heteroscedasticity consistent variant of the test overrejects and is unsatisfactory, whereas the 

variant of the same test shows far less size distortion.  By contrast, once sample size exceeds 50,

skewness and excess kurtosis tests show little size distortion.

Table 4 shows the rejection rates for the three tests when the data are generated by a model with

moderate heteroscedasticity.  Though the heteroscedasticity test appears to have high power, the reported

rejection frequency overstates the power of the test becasue the appropriate concept here is size-corrected

power.  Given that the test over-reject when the null hypothesis is true, the nominal rejection frequency

overstates the power of the test.  For n larger than 50, the size distortion was not a serious problem for
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either the skewness or the heteroscedasticity tests.  It is seen that size and power are roughly equal for

these tests.  We conclude that heteroscedasticity consistent tests produce very mixed results.

CONCLUSIONS

The tests considered in this paper provide a potentially useful set of tools for assessing regression

models.  To be useful for applied work a test must have reasonable size properties and enough power to

detect departures from the null that may be expected in applied work.  Our Monte Carlo experiments

showed a tendency towards over-rejection in some tests.  Tests with severe size distortion cannot be

recommended unless they are corrected for this distortion.  There are at least two ways of adjusting a test

to achieve lower size distortion.  First, using asymptotic expansions of the test statistic, one may

calculate an adjustment factor for the test statistic.  Alternatively, one might calculate adjusted critical

values for tests at conventional significance levels.  Both these approaches typically involve nonstandard

calculations which applied researchers will find burdensome.  Obviously, computationally simple tests

with desirable size and power properties are preferable.  Our Monte Carlo results suggest that specific

variations of the RESET and IM tests have these characteristics.

The following strategy for testing should provide a useful assessment of one's model.  First, the

RESET test and the robust LM RESET test (rather than the heteroscedasticity robust Wald version of

RESET) should be applied.  If both tests pass, suggesting an adequate conditional mean specification, the

IM test of higher order moment misspecification should be used.  If the standard RESET test fails, but the

robust version passes, correct functional form is indicated but higher order moment misspecification

seems likely.  Again the IM test should be considered.  In applying the IM test, the decomposition

suggested by Hall is useful for determining the specific violation that may cause the IM test to fail. 

While Hall's decomposition is useful, components of Hall's version of the test are not robust to departures

from the null.  For example, when the null is false, Hall's components of the test will be correlated which

limits its ability to specific violations.  The alternative variant of the IM test based on an orthogonal

decomposition proved to be more robust when implemented along the lines of Cameron and Trivedi

(1990b).

While specification tests have significant potential for the applied researcher, our results suggest

the importance of carefully evaluating their properties with Monte Carlo methods.  Additionally

evaluation is needed to determine the behavior of these tests under additional violations of assumptions

(e.g., the presence of outliers in the data) and with multiple violations of assumptions (e.g., nonlinearity
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and heteroscedasticity).  Given the sometimes surprising behavior of specification tests for the simple

case of regression, it is essential that as specification tests for the covariance structure model (Arminger

and Schoenberg, 1989) are developed, that their properties are thoroughly examined with Monte Carlo

methods before they are routinely applied.
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1.  White's test for functional form can be viewed as a variable augmentation test just as the RESET test. 

For details, see Godfrey (1988:152-5).

2.   is awkward to compute since it requires combining the residuals  from  regressions with the

residuals  from the original regression.  There does not appear to be a single auxillary regression that

will simplify the computations. 

3.  Random numbers were generated using the procedures RNDUS and RNDNS in GAUSS Version 2.1

(Aptech Systems 1991).  The functions are based on a multiplicative congruential method for generating

random numbers.

ENDNOTES
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TABLE 1:  Description of data structures for Monte Carlo Simulations.

Data
Structure Description

Systematic Component
Errors Error Variance R2 Estimated Model

1 Correct
Specification

Normal 0.4
0.8

2 t-distributed
errors

t (5 df) 0.4
0.8

3 �²-distributed
errors

�² (5 df) 0.4
0.8

4 Heteroscedas-
ticity on X1

Normal 0.4
0.8

5 Heteroscedas-
ticity on X3

Normal 0.4
0.8

6 Nonlinearity
in X1

Normal 0.4
0.8

7 Nonlinearity
in X3

Normal 0.4
0.8

8 Excluding X1 Normal 0.4
0.8
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TABLE 2:  Description of tests evaluated with Monte Carlo Simulations.

Test Equation Description

White's test for functional misspecification,
Version 1

1 Weight function:  

White's test for functional misspecification,
Version 2

1 Weight function:  

RESET Test 5 Standard F-test of added variables.

Robust Wald RESET Test 6 Wald test using robust covariance matrix.

Robust LM RESET Test 7 LM test using robust covariance matrix.

IM Test - Total 15 Hall version.

IM Test - Heteroscedasticity Component 11 Hall version.

IM Test - Skewness Component 13 Hall version.

IM Test - Kurtosis Component 14 Hall version.

IM Test - Total 22 Cameron and Trivedi version.

IM Test - Heteroscedasticity Component 17 Cameron and Trivedi version.

IM Test - Skewness Component 19 Cameron and Trivedi version.

IM Test - Kurtosis Component 21 Cameron and Trivedi version.
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TABLE 3:  Empirical Size of the Heterscedasticity Consistent Wald Versions of the IM Test.

Empirical Size

Sample
Size Heteroscedasticity Skewness

Excess
Kurtosis

25 0.969 0.148 0.026

50 0.867 0.060 0.052

100 0.694 0.046 0.081

250 0.461 0.039 0.097

500 0.338 0.038 0.071

TABLE 4:  Empirical Rejection Rates in the Presence of Heteroscedasticity for the Heterscedasticity
Consistent Wald Versions of the IM Test.

Percent Rejected

Sample
Size Heteroscedasticity Skewness

Excess
Kurtosis

25 0.967 0.467 0.037

50 0.888 0.050 0.052

100 0.793 0.035 0.063

250 0.809 0.035 0.041

500 0.941 0.052 0.050
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Figure 1: Size and power of White’s test for functional misspecification.
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Figure 2: Size of RESET test.
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Figure 3: Properties of RESET and LM RESET tests in the presence of heteroscedasticity.
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Figure 4: Properties of RESET and LM RESET tests in the presence of nonormal errors.
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Figure 5: Power of RESET and LM RESET tests to detect slight nonlinearity.
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Figure 6:  Power of RESET and LM RESET tests to detect moderate nonlinearity.
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Figure 7:  Power of RESET and LM RESET tests to detect an excluded variable.
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Figure 8: Size of information matrix test.
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Figure 9: Power of information matrix test to detect errors distributed as t with 5 df.
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Figure 10: Power of information matrix test to detect errors distributed as chi-square with 5 df.
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Figure 11: Power of information matrix test to detect slight heteroscedasticity.
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Figure 12: Power of information matrix test to detect moderate heteroscedasticity.
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Figure 13: Properties of information matrix test in the presence of moderate nonlinearity.
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Figure 14: Properties of information matrix test in the presence of an excluded variable.


