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ABSTRACT
Novelty Search, a new type of Evolutionary Algorithm, has
shown much promise in the last few years. Instead of select-
ing for phenotypes that are closer to an objective, Novelty
Search assigns rewards based on how di↵erent the pheno-
types are from those already generated. A common criticism
of Novelty Search is that it is e↵ectively random or exhaus-
tive search because it tries solutions in an unordered man-
ner until a correct one is found. Its creators respond that
over time Novelty Search accumulates information about the
environment in the form of skills relevant to reaching un-
charted territory, but to date no evidence for that hypothe-
sis has been presented. In this paper we test that hypothesis
by transferring robots evolved under Novelty Search to new
environments (here, mazes) to see if the skills they’ve ac-
quired generalize. Three lines of evidence support the claim
that Novelty Search agents do indeed learn general explo-
ration skills. First, robot controllers evolved via Novelty
Search in one maze and then transferred to a new maze ex-
plore significantly more of the new environment than non-
evolved (randomly generated) agents. Second, a Novelty
Search process to solve the new mazes works significantly
faster when seeded with the transferred controllers versus
randomly-generated ones. Third, no significant di↵erence
exists when comparing two types of transferred agents: those
evolved in the original maze under (1) Novelty Search vs.
(2) a traditional, objective-based fitness function. The evi-
dence gathered suggests that, like traditional Evolutionary
Algorithms with objective-based fitness functions, Novelty
Search is not a random or exhaustive search process, but
instead is accumulating information about the environment,
resulting in phenotypes possessing skills needed to explore
their world.
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1. INTRODUCTION
Evolutionary Algorithms (EAs) perform automated op-

timization and are used in many di↵erent fields, such as
designing pharmaceutical drugs [16], creating stock trad-
ing agents [15], evolving gaits for robots [2, 10, 3, 7], or
optimizing tra�c flow in congested cities [1]. Despite of-
ten outperforming human engineers [7, 9, 6], they have the
same Achilles Heel all optimization methods possess: they
get stuck in local optima. The reason is because EAs typ-
ically have a user-defined objective incorporated into a fit-
ness function that rewards solutions the closer they are to
that objective (or the better they perform on that objec-
tive). The problem is that often times the path from a cur-
rent solution to the global optimum is not a series of moves
that are increasingly closer to the objective; problems that
are deceptive [8] require temporarily moving away from (i.e.
scoring worse on) the objective to find better solutions. A
nice visual example is the “Hard Maze” from [12], wherein
robot controllers are evolved to go from the Start location to
the Goal (Fig. 1, upper left). A traditional, objective-driven
EA results in robots stuck in the dead end just below the
Goal [12]. Such local optima are present in all challenging
problems [5].

Novelty Search is an EA variant that is less susceptible to
local optima because it entirely ignores the objective, except
as a stopping criteria [12]. It rewards agents based on how
di↵erent their behaviors are from the solutions that have al-
ready been evolved, which introduces a pressure to contin-
uously do something new. In the Hard Maze example, con-
trollers are rewarded for reaching not-yet-explored areas of
the maze [12]. By exploring all paths, Novelty Search agents
solve the maze significantly more often than objective-driven
EA agents [12], which tend to get stuck in the dead end just
below the Goal.

Disregarding objectives in an EA is a radical idea, leading
to skepticism regarding Novelty Search’s ability to scale up
to more challenging problem domains [4]. Because it is too
easy to be novel in high-dimensional spaces, and because
those spaces are so large that randomly stumbling upon the
objective is exceedingly unlikely, a common objection posed
to the creators of Novelty Search is that it will “simply get
lost in [a] vast search space” [11].

When considering the objection that Novelty Search will
get lost in a vast search space, it is important to keep in mind
the distinction between the genome search space, which is
usually high-dimensional, and the behavior space, which is
usually low-dimensional by design. The behavior space,
which is where the Novelty Search algorithm searches, is
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Figure 1: Experiments Designed to Test if Novelty Search Produces Exploration Skills. In the main Novelty
Search treatment (blue/highest arrow), networks that solve the Hard Maze are obtained via Novelty Search.
These networks are transferred into a new maze, where their initial exploration abilities are measured by
quantifying the percentage of maze covered and the average distance (not pictured) from Start. The net-
works are then further evolved with Novelty Search to see if skills exist that speed up exploration under
Novelty Search. This further evolution is stopped after 50 generations. This procedure is repeated for three
control treatments: (1) a traditional, objective-driven evolutionary algorithm (middle/red arrow), (2) Naive
(randomly generated) networks not evolved on the hard maze (lower/green arrow), and (3) Naive networks
with the same topological complexity as Novelty Search networks (not pictured).

a user-defined description of behaviors. For example, the
behavior of a robot could be described as the final location
of a robot, the levers it presses, or the words it speaks. The
behavior space conflates many possible genomes, phenotypes
(e.g. neural networks), and actions: For example, a behav-
ioral description might ignore an 8-legged robot’s genome,
the weights and topology of its neural network, and its mo-
tor commands over time, to characterize that agent just by
its final location.

Novelty Search might indeed get lost in high-dimensional
genome spaces, because changes in the genome due to mu-
tations or crossover would produce new behaviors in nearly
every case. However, it is not clear a priori that Novelty
Search will get lost in low-dimensional behavior spaces, be-
cause it is non-trivial to generate new behaviors in such
spaces. For example, most mutations to neural networks
do not produce interesting new behaviors.

With these concepts in mind, we can return to the orig-
inal objection that Novelty Search will get lost in high-
dimensional search spaces. The response given by the cre-
ators of Novelty Search, is that it does not explore the search
space in a random or unordered manner. Instead, to contin-
uously produce novel behaviors, Novelty Search agents have
to learn about the environment they are in and how to in-
teract with it. As Lehman and Stanley explain:

...in a maze with walls, at first novel behaviors
will simply crash into nearby walls, yet eventu-
ally the search must find a behavior that avoids
walls to do something new. Then, once it ex-
ploits this new ability within the initial hallways,
it will have to learn to go through doors to do
something new. In e↵ect, it is forced to accumu-
late information about the world (e.g. walls and
doors) to produce novel behaviors. [11]

Over time there is constant pressure to explore even more
of the environment, creating an incentive to learn general
exploration skills. A key argument for Novelty Search is
thus that Novelty Search causes agents to accumulate skills
for exploring their environment. This paper tests that hy-
pothesis and finds evidence that supports it.

2. NOVELTY SEARCH
Any evolutionary algorithm can be modified to perform

Novelty Search by replacing the objective-based fitness func-
tion with a novelty metric and implementing an archive [12].
The archive contains a history of where the search has ex-
plored to prevent backtracking. In the initial Novelty Search
software [11], which we conducted our experiments in, Nov-
elty Search was implemented by replacing the objective-
driven measure for the novelty metric in the fitness function



of the neuroevolution of augmenting topologies (NEAT) al-
gorithm [14]. NEAT starts with a simple neural network
and adds complexity in the form of nodes and connections
over evolutionary time. It also has a mechanism to promote
diversity and an intelligent way of performing crossover. We
made minor modifications to the original software to al-
low transferring maze-solving robots to new mazes. Our
code and data are available at EvolvingAI.com. All param-
eters are identical to those in the original Novelty Search
paper [12].

A traditional fitness function scores solutions based on
how close they are to an objective. A novelty metric rates
solutions based on how di↵erent or novel their behavior is
from the current population and archive. Each robot’s ac-
tions can be encoded as a vector of numbers representing
important aspects of its behavior. This vector is a point in
the space of all possible behaviors known as the behavioral
space. For each agent the novelty metric computes the av-
erage distance between it and its k nearest neighbors in the
behavioral space. An individual that has large distances to
its neighbors is thus in an unexplored area of behavior space
and is highly rewarded because it is performing a new be-
havior. Individuals in densely populated regions within the
behavioral space have small average distances to neighbors
and are less likely to be selected. In essence, the novelty met-
ric encourages agents to explore and continuously perform
new actions.

The novelty metric is computed as follows:

⇢(x) =
1
k

kX

i=0

dist(x, µi) (1)

where dist is the Euclidean distance between individual x
and its ith-nearest neighbor, µi [12].

3. METHODS

3.1 Problem Domain
The problem domain in this study is from the papers

that introduce and highlight the benefits of Novelty Search:
evolving wheeled robots to solve mazes [12]. The robots are
controlled by artificial neural networks (ANNs). Because
Novelty Search is based on NEAT, the initial population of
ANNs are generated by spawning a simple, feedforward neu-
ral network. The spawning process takes the initial neural
network and makes copies, each with weights drawn from a
uniform, allowable range of [-1,1]. The di↵erence between
Novelty Search and NEAT is that the initial starting net-
work, and subsequent spawned networks, start o↵ with one
hidden neuron [12] versus none [14].

In this paper we evolve robots in the “Hard Maze” from
the original Novelty Search papers [12] (Fig. 1, upper left).
In the Hard Maze, robots must navigate from the Start to
the Goal. Each robot’s behavior is represented by a two-
dimensional vector holding the final x and y position of the
agent. The novelty metric therefore computes the average
distance, within the behavioral space, from an agent to the
k closest neighbors in the population and archive. Robots
are thus rewarded to explore the maze.

We conduct 50 runs of Novelty Search in the Hard Maze
(Fig. 1, upper left); each run produced one hard-maze-solving
robot, which was the first to solve the maze by reaching its

finish. To test if these solutions have general exploration
skills or, alternately, if they have simply memorized a tra-
jectory that solves the Hard Maze, we transfer them to a
new maze and study their exploration abilities (Fig. 1).

Our initial test for exploration skills consists of two parts.
First we transfer agents into a new maze and observe their
baseline exploratory abilities. Second, we further evolve the
transferred agents with Novelty Search to observe the pro-
gression of their abilities over time. Two measures, Area
Covered and Distance Traveled, quantify the agents’ ex-
ploratory skills. For this test there is no target in the new
maze and evolution is stopped after 50 generations (a pre-
determined number that preliminary experiments revealed
to be roughly when performance stops improving).

For an additional test of exploratory skills, we evolve agen-
ts in the new maze with di↵erent Goal locations distributed
around the Start position (Fig. 2). Each target location ap-
proximates conducting an experiment in a di↵erent maze,
increasing the sample size from which we can draw conclu-
sions about the abilities of transferred agents to repurpose
their exploration skills in new environments. As in the orig-
inal experiment [12], each run stops if an agent reaches the
Goal or if 2000 generations pass.

Figure 2: The Adaptation Test. The new maze,
which agents are transferred into, is shown with
the di↵erent Goal locations of the Adaptation Test.
Novelty Search networks are transferred into this
new maze and then further evolved with Novelty
Search to find each Goal (in separate experiments).
Each location can be considered as a separate test.
If Novelty Search networks posses exploration skills,
then they should find Goal locations faster than the
control treatments, which are introduced in the next
section.

The dimensions of the new maze, which agents are trans-
ferred into, are 450⇥450 (Fig. 1, 2), while those for the Hard
Maze are 200⇥200. Since it is much larger than the Hard
Maze, we refer to this new maze as the Large Maze. The
added size provides more corridors and passageways to ex-
plore. Moreover, the Large Maze is designed so that a mem-
orized trajectory that is successful on the Hard Maze will



not lead to much exploration, since going right and up from
the Start will immediately cause collisions with walls. When
testing whether robots can find di↵erent Goals, the target
locations are placed symmetrically around the Start position
(Fig. 2) to mitigate the benefits of any memorized trajectory
a transferred network may posses.

3.2 Controls
For the first control treatment, 50 randomly generated

networks were obtained via the same process that gener-
ated the initial population of ANNs for the Novelty Search
treatment. These Naive networks reveal the performance of
agents that do not posses any domain knowledge or skills.

If the hard-maze-solving-networks produced by Novelty
Search outperform the Naive networks, it supports the claim
that Novelty Search facilitates the accumulation of explora-
tory skills. However, an alternate explanation exists that
we would like to rule out: that the increased skill level sim-
ply results from the fact that networks evolved via Novelty
Search have more complex topologies (i.e. more neurons
and connections) than Naive networks. Recall that NEAT
adds nodes and connections across generations and that the
Novelty Search networks undergo many generations of evo-
lution on the Hard Maze before being transferred to the new
maze, whereas the Naive networks start with a single hid-
den neuron. To control for this explanation, we created a
network complexity control (NCC). As with the Naive con-
trol, 50 random networks were generated. The di↵erence is
that the ith NCC network has the same number of neurons
as the ith hard-maze-solving network in the Novelty treat-
ment, where i represents the run number (for all treatments
i = 1...50). For simplicity, the pattern of connections in the
Novelty Search networks, including the presence of recurrent
connections, is not mirrored in the NCC control. The initial
NCC networks are all feed forward, following the conven-
tion of how initial networks are created in NEAT [14] and
Novelty Search [12].

A third random control is the Random Search treatment
from the original Novelty Search paper [12]: Agents were
evolved with the objective-based EA, but given random fit-
ness values. For each of 50 runs, the population evolved for
E evaluations, where E is the number of evaluations it took
the ith Novelty Search run to solve the Hard Maze. For each
run, the agent from all of these E evaluations that got clos-
est to the Goal became the ith member of the stock of initial
networks for the Random Search treatment.

Along with Naive and NCC, the Random Search treat-
ment is another interpretation of a random process. Because
we experimentally found that this treatment performs qual-
itatively the same as Naive and NCC (data not shown), we
do not separately report on it in the Results section.

In addition to random controls, it is informative to in-
clude in the comparison agents evolved in the original Hard
Maze via a traditional, objective-driven evolutionary algo-
rithm (EA). This Fitness Control sheds light on what skills
exist in a process that is known to follow an information
gradient (i.e. a search process that is clearly not random or
exhaustive). Because objective-driven search is less likely to
succeed on the Hard Maze, even if run for large numbers of
generations [12], we had to conduct 306 runs of the objective-
driven EA to obtain 50 hard-maze-solving-networks. Specif-
ically, we run the objective-driven EA until an agent either

solves the maze or 2000 generations pass. If the latter oc-
curs, we start a new run. Each generation consists of N

evaluations, where N is the population size. As in the orig-
inal experiment, the population size is 250.

Each treatment has an initial stock of 50 networks. Each
of these networks are used to seed the initial population for
a Novelty Search process on the new maze.

3.3 Metrics for Measuring Skills
Each of the four treatments starts with an initial, distinct

set of 50 networks. For each treatment the ith network is
cloned N times to generate an initial population for each
run Ri. The population for Ri is then transferred to the
new maze to evaluate its inherent exploration ability prior to
any further evolution (Fig. 1). Thus, any increased ability to
explore in the Novelty Search networks vs. controls suggests
the presence of general exploration skills that transferred
from one maze to a di↵erent one. The Ri population is then
further evolved on the new maze with Novelty Search for
a predetermined number of generations. Since there is no
Goal to cause an early stop to the evolutionary process in
the new maze, each run terminates at the final generation,
which is 50. Fig. 1 illustrates the entire process.

Every 5 generations, the exploration skills for each treat-
ment are measured via two metrics: Area Covered and Dis-
tance Traveled. An example of the Area Covered metric is
shown in Fig. 1. In this figure the ith Novelty Search net-
work is first placed in the new maze to examine its baseline
exploratory skills. As explained in the preceding paragraph,
it is cloned N times to create the initial population for run
Ri. The population for run Ri is then further evolved with
Novelty Search for 50 generations. Every 5 generations the
Area Covered by the N individuals within the current pop-
ulation is calculated.

The curved paths in Fig. 1 show the trajectories of the
individuals of Ri at generation g, where g goes from 0 to
50 at intervals of 5. Each trajectory is encoded in a 2⇥400
vector that represents the x and y positions of a robot over
400 time steps. A 450⇥450 matrix, initially composed of
0’s, is created to represent the Large Maze. The x and y

coordinates, originally floating point values, are rounded up
to whole integers. For each (x, y) point within the vector
trajectories a 1 is recorded on the Large Maze matrix. The
percent of 1’s to 0’s within the Large Maze gives a measure
of the area (Ai) covered by the N individuals in the current
population for run Ri at generation g. Once the Ai values
for each run are calculated the median is obtained as the
measure for generation g.

The Distance Traveled metric, like the Area Covered met-
ric, is sampled every 5 generations. Like the Area Covered
metric at generation g, the population for run Ri is exam-
ined. The Start position and final position for each indi-
vidual are obtained and the length of the shortest path be-
tween these points is calculated. The distance traversed for
all N individuals within the current population is averaged
to produce Di, which is the average distance traveled for Ri

at generation g. The median Di, over all 50 runs, is then
obtained and used as the measure for generation g.

Figure 3 illustrates the procedure for obtaining the length
of the shortest path for four example individuals from R1

at generation 5. The curved lines represent the robots’ tra-
jectories and the dotted lines are the shortest path from the
Start position to the final location for these agents. Each



agent receives a distance score that is then averaged across
all the individuals in the population to produce a single value
(Ai) for the run. The A* algorithm is used to measure the
shortest path. The length of the shortest path is used in-
stead of the length of the robot trajectory, because the robot
could simply go in circles within a small section of the maze.
The purpose of the Distance Traveled metric is to see how far
away from the Start location the agents get. Since getting
away from the Start location involves avoiding collisions and
navigating corridors, it is a measure of a robot’s exploratory
skills.

Figure 3: The Distance Covered Metric. Many
robot trajectories (curved lines) are shown. The
dotted lines represent the shortest path from the
Start location to the final location (via the A* al-
gorithm [13]) for four of the individuals within the
population. A* calculates the distance traveled from
Start to end so as not to count ine�cient loops,
while still respecting the walls of the maze (which a
straight-line distance would not do). The distance
values for all the individuals within the population
are averaged to produce a single distance measure
for this run.

Lastly to make A* computationally tractable, the maze
and locations are scaled from a 450⇥450 maze to a 90⇥90
maze. This means that a matrix representing the Large
Maze (0’s for open space and 1’s for walls) is reduced by a
factor of 5 (450÷ 90 = 5), in the same way that images are
shrunk with typical image processing. The Start and final
locations for each individual are also scaled by 1

5 .

3.4 Adaptation Test
Aside from measuring general exploratory skills, it is inter-

esting to measure how fast Novelty Search networks can find
Goals in new mazes. If the Novelty Search agents posses ex-
ploratory skills, they should solve the new tasks faster than
the Naive agents, which are starting from scratch.

As in the original experiments [12], agents are placed
within a maze and evolved until they find the Goal location
or a set number of evaluations elapses. Instead of evolving
the treatments on a few di↵erent mazes, each with its own
Goal, we conducted 14 separate experiments that involved
evolving agents on the Large Maze with 14 di↵erent Goal
locations (Fig. 2). The networks for each treatment begin
evolution in the Large Maze for a particular Goal in the
same state as they were when transferred from the Hard

Maze. In other words, the results for one location do not af-
fect the results for another. The 14 di↵erent locations allows
us to generate a large sample size of data.

4. RESULTS AND DISCUSSION

4.1 Novelty Search vs. Naive
The results provide three lines of evidence showing that

networks evolved with Novelty Search have greater explo-
ration skills than Naive networks.

Second, when further evolved with Novelty Search on the
new maze, Novelty Search networks explore significantly mo-
re area than Naive networks at every sampled generation
(Fig. 6, Left) and travel significantly further than Naive
networks in early generations (Fig. 6, Right). These results
suggest that Novelty Search on the Hard Maze produces a
skill set that gives networks in the Novelty Search treatment
a head start for exploring the new maze. While that head
start makes a significant di↵erence for many generations,
eventually the gap shrinks, suggesting that over time the
Naive networks accumulate their own exploratory skills from
Novelty Search and begin to catch up in terms of exploration
abilities.

Third, when Novelty Search is given a specific target Goal,
as in the original experiments [12], Novelty Search networks
reach that Goal significantly faster (p < 0.05) than Naive
networks for a majority of the locations: Figure 7 shows the
median number of evaluations until a solution was found, for
all the treatments, across 14 di↵erent Goal locations within
the new maze. For this task a smaller number of evaluations
is better (i.e. lower numbers on the plot are better). The
Large Maze, with all the Goal locations, is shown in Figure 2
and as the inset of Figure 7.

Figure 4: Area Covered on the New Maze Before
Further Evolution. The data plotted show the per-
cent area of the maze covered by the networks for
the four treatments when they are evaluated in the
Large Maze, prior to any further evolution on the
Large Maze. Novelty Search networks explore sig-
nificantly more of the maze than Naive or NCC net-
works. There is no significant di↵erence in the area
covered between Novelty Search networks and those
evolved via a traditional, objective-driven evolution-
ary algorithm.



First, without further evolution, Novelty Search networks
cover a significantly larger region than the Naive control
(Figs. 4 and 5). Because no further evolution has occurred,
and because a memorized trajectory cannot produce the di-
versity of paths and trajectories observed (Fig. 5), the evi-
dence supports the claim that Novelty Search produces gen-
eral exploration skills during evolution on the Hard Maze.

Figure 5: Paths Traveled on the New Maze Prior
to Further Evolution. The networks for each treat-
ment are run on the Large Maze without further
evolution to evaluate their ability to explore a new
environment. Novelty Search and Fitness networks
demonstrate the capability to explore more areas of
the maze, while Naive and NCC networks tend to
stick to the inner sections.

The di↵erent target locations are arranged on the bottom
axis from left to right, by innermost to outermost. The in-
nermost locations (A and E) are on the far left, and the out-
ermost locations (D, N , M , and L) are on the far right. The
results reveal that the further the Goal location is from the
Start position, the more evaluations are required to reach the
Goal. Consistent with results described above, the longer
the evolutionary process takes, the more likely the Naive
treatment is to catch up to the Novelty Search treatment:
Three of the four Goal locations that do not show a signifi-
cant di↵erence between Novelty Search networks and Naive
networks are at the furthest reaches of the maze. The other
Goal without a significant performance di↵erence is near the
Start, where substantial exploration skills are not needed to
reach it.

4.2 NCC
The Novelty Search treatment significantly outperforms

the NCC treatment in all but the last three sampled gener-
ations for the Area Covered metric (Fig. 6, Left), all but
the last five sampled generations for the Distance Trav-
eled metric (Fig. 6, Right), and all but three locations in
the Goal tests in the new maze (Fig. 7). Novelty Search
also explored a significantly larger area in the pre-evolution
case (Fig. 4). That NCC networks significantly underper-
form Novelty Search networks is evidence that simply hav-

ing more neurons and neural connections is not what gives
Novelty Search networks the advantage over Naive networks.

Looking closely at the Area metric, Distance metric, and
Adaptation tests it can be seen that NCC slightly outper-
forms Naive. This di↵erence is only significant in generation
0 and generation 5 for the Distance metric, and location H
and B in the Adaptation test (significance not shown on
plots). While adding more neurons is not enough to bump
up NCC’s performance so that it is on par with Novelty it
does seem to give a slight boost in comparison to Naive.

4.3 Novelty Search vs. Objective-Driven EA
There is no significant di↵erence between the Novelty Sea-

rch and Fitness treatments in regard to the Area Covered
metric (Fig. 6, Left), initial pre-evolution test (Fig. 4), or
Adaptation test (Fig. 7). For the Distance Traveled met-
ric, Novelty Search networks significantly outperform Fit-
ness networks at generation 10 and generation 45 (Fig. 6,
Right). Since this only happens in two, non-consecutive
sampled generations, it is di�cult to assign any real weight
to the di↵erence. In aggregate, the data suggest that the
Fitness and Novelty Search treatments are qualitatively the
same (Figs. 4, 6, 7).

The Fitness treatment was created with a traditional,
objective-based EA, which is regarded as an algorithm that
is non-random and follows an information gradient. That
the Novelty Search and Fitness treatments perform equally
suggests that Novelty Search is not a random or exhaustive
search, but is also encoding information about the world
within its evolved solutions.

5. FUTURE WORK
The evidence presented in this paper supports the claim

that Novelty Search is not random, but instead instills infor-
mation (skills) in its solutions. To further test that claim,
in future work we will conduct additional tests with new
types of mazes. The di↵erent types of mazes (e.g. those
with curved walls, narrow corridors, and other variations)
will be tried both as new mazes to transfer into, new mazes
to transfer from, or both. Additionally, we will conduct
tests in other problem domains, including those where Nov-
elty Search has already been shown to perform well, such as
biped locomotion [12].

Another subject we will explore further is the relation-
ship between the di�culty of domains and the exploration
skills that Novelty Search develops. We hypothesize that on
more di�cult domains that require more skills to explore,
Novelty Search will instill much more knowledge that will
produce increased exploration abilities in new environments
where those skills are also helpful. For example, if a robot
was evolved in a house and learned to open doors, go up and
down stairs, turn on faucets, etc., then those skills would also
likely transfer to o�ce buildings and possibly even to dif-
ferent environments like forests (where stair climbing could
provide basic skills that could help on rugged, hilly terrain).

A final interesting subject we plan to study is the di↵er-
ence between skills acquired via Novelty Search and Fitness.
It is surprising how similar the exploration skills were for
networks evolved under these two very di↵erent algorithms.
We plan to test whether this similarity holds, or whether
there are types of problems on which the skills produced by
the two algorithms di↵er.



Figure 6: Novelty Search Networks Cover More Area and Travel Further Than Naive Networks. Left: Median
area covered by treatments. Both the Novelty Search and Fitness treatments start o↵ exploring more of the
maze than Naive or NCC treatments. The Novelty Search treatment is significantly di↵erent than Naive for
all sampled generations, and significantly di↵erent from NCC for all but the last three sampled generations.
Right: Median average distance from the Start location. Both Novelty and Fitness start o↵ traveling further
than Naive and NCC. Novelty is significantly di↵erent from NCC and Naive for about half of the first
sampled generations. Note the drop in distance traveled at generation 5 for the networks originally evolved
with Novelty Search and the objective-driven EA (Fitness). This drop occurs because areas near the Start
have not been explored yet early on, causing a temporary selective pressure to shed skills for traveling far:
Recall that all treatments are being further evolved under Novelty Search, which rewards getting to all not-
yet-explored places, including those near the Start. Confidence intervals represent 75th and 25th percentiles.
Data are plotted every 5 generations. Asterisks indicate a significant di↵erence (p < 0.05) between Novelty
Search and the corresponding treatment.

Figure 7: Adaptation Test. Median of number of
evaluations for each treatment at the various loca-
tions within the Large Maze. Low values are good
because it took less time for the treatment to solve
the new tasks. For all locations Novelty Search
solved the new locations faster than Naive. The
di↵erent is also significant for all locations except
A, D, M, and L. Confidence intervals represent 75th
and 25th percentile.Asterisks indicate a significant
di↵erence (p < 0.05) between Novelty Search and the
corresponding treatment.

6. CONCLUSIONS
The impetus for this study stems from concerns in regards

to Novelty Search, which is an algorithm whose usefulness
and popularity is slowly growing within the Evolutionary
Algorithm community. Many researchers object to Novelty
Search’s abandonment of the objective. They argue that

without a target to direct the evolutionary process, the al-
gorithm is simply either a random search or an exhaustive
search. The response by Novelty Search’s creators (Lehman
and Stanley), which we examine in this study, is that Nov-
elty Search does not search randomly (or exhaustively), but
instead that information (skills) relating to exploring the
environment accumulate within a population evolved under
Novelty Search [11]. If true, the resulting Novelty Search
solutions should exhibit exploration skills that generalize to
new environments where such skills are useful.

To test this claim we took successful robot controllers
evolved with Novelty Search on one maze and transferred
them to a di↵erent maze. We observed their general ex-
ploratory skills in the new maze. When we compared their
performance to randomly generated robot controllers, we
found a significant increased ability to explore in networks
evolved under Novelty Search, suggesting that such agents
had indeed acquired some general exploration skills.

Moreover, we compared agents evolved under Novelty Sea-
rch to those evolved under an algorithm known not to be
exhaustive or random, a traditional evolutionary algorithm.
We found no significant di↵erence between the two types of
controllers, further suggesting that Novelty Search is follow-
ing an information gradient that encodes information about
the environment into its phenotypes.

Overall, our results rebut the argument that Novelty Sear-
ch is similar to an exhaustive or random search process.
Instead, as its creators argue, it is an interesting variant of an
evolutionary algorithm well worth continued investigation.
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