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Self-normalized laws of the iterated logarithm

Igor Zhdanov1

Abstract

Stronger versions of laws of the iterated logarithm for self-normalized
sums of i.i.d. random variables are proved.
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1 Introduction

The law of the iterated logarithm is one of the fundamental laws of the

classical probability theory. The reader will find various versions of the law of

the iterated logarithm reviewed in [1]. In the last decade, analogues of the law

of the iterated logarithm were proved for sequences of self-normalized sums of

i.i.d. random variables. The results are available in articles [2] and [3] as well

as sources referenced in these articles. This paper presents stronger versions
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of some of the known statements regarding the law of the iterated logarithm

for sequences of self-normalized sums of i.i.d. random variables.

Let i.i.d random variables Xn, n ∈ N = {1, 2, . . . }, be defined on a proba-

bility space (Ω,F ,P). Denote Sn = X1+· · ·+Xn, V
2
n = X2

1 +· · ·+X2
n, n ∈ N. A

self-normalized sum Sn/Vn is correctly defined on the set {Vn > 0}. For Sn/Vn

to be defined on the entire set Ω, we put Sn/Vn = 0 on the set {Vn = 0}.
Define a function λ(n), n ∈ N, by putting λ(n) = 1 for n = 1, . . . , 9 and

λ(n) = [n− n/ ln ln n] for n ∈ N, n ≥ 10. Square brackets stand for an integer

part function of the number in the brackets. The nonnegative integer function

λ(n), n ∈ N, has the following properties: λ(n) ≤ λ(n + 1) for all n ∈ N and

λ(n) < n for n ∈ N, n ≥ 10,

lim
n→∞

λ(n)

n
= 1, lim

n→∞
(n− λ(n)) = ∞. (1)

Theorem 1.1. (i) If a sequence {Sn/Vn}n≥1 is weakly compact, then

lim sup
n→∞

(2 log log n)−1/2 max
λ(n)≤k≤n

|Sk|
Vk

< ∞ a.e. (2)

(ii) If random variables Xn, n ∈ N, are symmetric, then

lim sup
n→∞

(2 log log n)−1/2 max
λ(n)≤k≤n

|Sk|
Vk

≤ 1 a.e. (3)

As an immediate consequence, we get statements from the article [2].

Corollary 1.2. (i) If a sequence {Sn/Vn}n≥1 is weakly compact, then

lim sup
n→∞

|Sn|
Vn

√
2 log log n

< ∞ a.e.

(ii) If random variables Xn, n ∈ N, are symmetric, then

lim sup
n→∞

|Sn|
Vn

√
2 log log n

≤ 1 a.e.

2 Supporting lemmas

Virtually all of the following lemmas are known to specialists. Let Fn =

σ(Sk, V
2
k , k ≥ n) denote a σ-algebra generated by random variables Sk, Vk, k ≥

n.



Igor Zhdanov 147

Lemma 2.1. If E|X1| < ∞, then for any n ∈ N and k = 1, . . . , n + 1 we

have

E(Sk|Fn+1) =
k

n + 1
Sn+1 a.e. (4)

Proof. Equalities similar to (4) are offered as an exercise in some advanced

textbooks on probability theory. It is also used in [2]. We were unable to find

a source that has a proof of this equality. At the same time, the proof of

our theorem is based on equality (4). For this reason we will give its proof

here. It suffices to show the equality of conditional mathematical expectations

E(Xk|Fn+1) = E(X1|Fn+1) a.e. for any k = 1, . . . , n+1. Then (4) follows from

additivity of conditional mathematical expectation. Let L denote a class of

events A ∈ Fn+1, for which the following holds

∫

A

XkdP =

∫

A

X1dP. (5)

Since X1 Xk are i.i.d, equality (5) holds with A = Ω. If equality (5) holds

for B,C ∈ Fn+1 and B ⊂ C, then it holds for A = C \ B due to integral’s

property of linearity. If equality (5) holds for events An, n ∈ N, and An ⊆ An+1

for all n ∈ N, then it holds for A = ∪∞n=1An by the dominated convergence

theorem. This implies that class L is a λ-class. Let C denote a class of events

such as A = {Sk1 < c1, , . . . , Skr < cr, V
2
m1

< b1, . . . , V
2
ml

< bl} for natural

numbers r, l, n + 1 ≤ k1 < · · · < kr, n + 1 ≤ m1 < · · · < ml and for real

numbers c1, . . . , cr, b1, . . . , bl. It is easy to verify, using the integration measure

change theorem, that equality (5) holds for any A ∈ C. Intersection of any two

events from class C is in C. In other words, class C is a π-class. Clearly, π-class

C generates σ-algebra Fn+1. By Sierpinski’s theorem ([4], p. 5), sigma-algebra

σ(C) generated by class C is in λ-class L. Since Fn+1 = σ(C) ⊆ L ⊆ Fn+1,

it follows that L = Fn+1. Thus we proved that equality (5) holds for any

A ∈ Fn+1, which is equivalent to equality E(Xk|Fn+1) = E(X1|Fn+1) a.e. This

completes the proof of Lemma 1.

The following lemma demonstrates an important property of random vari-

ables

Yk =
( n

n + m− k

Sn+m−k

Vn+m−k

)2

, n, m ∈ N, k = 1, . . . , m.

Lemma 2.2. Random variables Yk, k = 1, . . . , m, form a submartingale

relative to filtration Fn+m−k, k = 1, . . . ,m.
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Proof. In essence, a proof of this lemma is provided in [2]. We include it

here for the reader’s convenience. It is easily seen that for any k = 1, . . . , m

the random variable Yk is measurable with respect to sigma-algebra Fn+m−k,

and EYk < ∞. To complete the proof of the lemma, we have to verify that the

submartingale condition Yk ≤ E(Yk+1|Fn+m−k) holds a.e. for any 1 ≤ k < m.

We will make an additional assumption EX2
1 < ∞. By equality (4), an obvious

inequality Vn+m−k−1 ≤ Vn+m−k as well as Jensen’s inequality for conditional

mathematical expectations

(E(Sn+m−k−1|Fn+m−k))
2 ≤ E(S2

n+m−k−1|Fn+m−k) a.e.,

we have

E(Yk+1|Fn+m−k) = E
(( n

n + m− k − 1

Sn+m−k−1

Vn+m−k−1

)2

|Fn+m−k

)

≥
( n

n + m− k − 1

1

Vn+m−k

)2

E(S2
n+m−k−1|Fn+m−k)

≥
( n

n + m− k − 1

1

Vn+m−k

)2

(E(Sn+m−k−1|Fn+m−k))
2

=
( n

n + m− k − 1

1

Vn+m−k

)2(n + m− k − 1

n + m− k
Sn+m−k

)2

=
( n

n + m− k

Sn+m−k

Vn+m−k

)2

= Yk a.e.

We will now no longer assume that EX2
1 < ∞. By 1A denote the indicator

function of an event A ∈ F and X
(r)
k = Xk1{|Xk|≤r} for k = 1, . . . , n and r ∈ N.

Define random variables S
(r)
k = X

(r)
1 + · · ·+ X

(r)
k and Y

(r)
k similarly to Sk and

Yk. It is not difficult to see that

lim
r→∞

Y
(r)
k = Yk a.e., lim

r→∞
E|Y (r)

k − Yk| = 0. (6)

Applying the arguments shown above, we have Y
(r)
k ≤ E(Y

(r)
k+1|Fn+m−k) a.e.

Letting r → ∞, we obtain inequality Yk ≤ E(Yk+1|Fn+m−k) a.e. It is well

known that conditions (6) are sufficient to justify the limit operation on condi-

tional mathematical expectations. This completes the proof of Lemma 2.

3 Main Results

(i). Denote nr = [exp{r/(log r)2] for any r ∈ N, r ≥ 2 and n1 = 1.
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By Lemma 2 for n = λ(nr) and m = nr+1 − λ(nr), nr > 10, random vari-

ables Yk, k = 1, . . . ,m, form a submartingale relative to filtration Fn+m−k, k =

1, . . . , m. For any t > 0 a convex function exp{tx), x ≥ 0, is increasing. There-

fore, a sequence exp{tYk}, k = 1, . . . , m, forms a submartingale relative to

filtration Fn+m−k, k = 1, . . . , m. Denote

Ar =
{

max
λ(nr)≤k<nr+1

λ(nr)

λ(nr) + k

|Sk|
Vk

> x(2 log r)1/2
}

, r ∈ N, nr > 10, x > 0.

Event Ar can be written as

Ar =
{

max
1≤k≤m

n

n + m− k

|Sn+m−k|
Vn+m−k

> x(2 log r)1/2
}

= { max
1≤k≤m

exp{tYk} > exp{2x2t log r}}

By the maximum inequality for submartingales ([4], p. 93) we have

P{Ar} ≤ exp{−2x2t log r}EetYm = exp{−2x2t log r}E exp{tS2
λ(nr)/V

2
λ(nr)}.

(7)

In [5] inequality supn≥1 E exp{cS2
n/V 2

n } ≤ 2 is proven for some constant c > 0.

Putting t = c and x =
√

2/c in (7), we obtain P{Ar} ≤ 2/r2, nr > 10, and

∞∑
r=1

P{Ar} ≤
∑

r:nr≤10

+
∑

r:nr>10

2

r2
< ∞.

By the Borel-Cantelli lemma, we have

lim sup
r→∞

(2 log r)−1/2 max
λ(nr)≤k<nr+1

λ(nr)

λ(nr) + k

|Sk|
Vk

≤ x = 2
√

2/c a.e.

It is not difficult to verify that limr→∞ nr+1/nr = 1 and limr→∞ log log nr/ log r =

1. This along with the first statement in (1) implies that limr→∞ λ(nr)/nr+1 =

1. From this, in turn, it follows that

lim sup
r→∞

(2 log log nr)
−1/2 max

λ(nr)≤k<nr+1

|Sk|
Vk

≤ 2
√

2/c a.e. (8)

For any n ∈ N there exists r ∈ N such that nr ≤ n < nr+1 and, consequently,

the following inequality holds

max
λ(n)≤k≤n

|Sk|
Vk

≤ max
λ(nr)≤k<nr+1

|Sk|
Vk

.

This together with (8) proves (2).
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(ii). If random variables Xn, n ∈ N, are symmetric, then E exp{tS2
n/V

2
n } ≤

2/(1 − 2t) for any t < 1/2. This statement is proven in the article [2]. Now

inequality (7) can be restated as follows

P{Ar} ≤ exp{−2x2t log r}EetYm = exp{−2x2t log r} 2

1− 2t
, t <

1

2
, nr > 10.

Put x = 1 + ε, where ε is any positive number. There exists t, 0 < t < 1/2,

such that 2(1 + ε)2t > 1. For such x and t the previous inequality implies that

∞∑
r=1

P{Ar} ≤
∑

r:nr≤10

PAr}+
2

1− 2t

∑
r:nr>10

1

r2x2t
< ∞.

By the Borel-Cantelli lemma we have

lim sup
r→∞

(2 log r)−1/2 max
λ(nr)≤k<nr+1

λ(nr)

λ(nr) + k

|Sk|
Vk

≤ 1 + ε a.e.

Properties of numbers nr, r ∈ N, as well as the function λ(n), n ∈ N, referred

to in the proof of the first statement, imply that

lim sup
r→∞

(2 log log nr)
−1/2 max

λ(nr)≤k<nr+1

|Sk|
Vk

≤ 1 + ε a.s.

Using concluding arguments from the proof of the first statement, we can again

verify that

lim sup
n→∞

(2 log log n)−1/2 max
λ(n)≤k<n

|Sk|
Vk

≤ 1 + ε a.e. (9)

This inequality holds on an event Ωε of probability one. Inequality (9) holds

on the event Ω′ = ∩∞l=1Ω1/l of probability one for any ε = 1/l, l ∈ N. Letting

ε = 1/l → 0 in (9), we get (3). This completes the proof of the theorem.
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