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ABSTRACT
In this paper an initial-boundary value problem for a lin-

ear equation describing an axially moving stretched beam will
be considered. The velocity of the beam is assumed to be time
varying. since the order of magnitude of the bending stiffness
terms depends on the vibrations modes and the frequencies in
volved a that combination of two simplified models (a string
equation and a beam with string effect equation) will be used
to describe the transversal vibrations of the system accurately
Based on the calculations of the natural frequencies the region
of applicability of these models will be determined. A two
time-scales perturbation method will be used to construct for-
mal asymptotic approximations of the solutions. It will be shown
that the linear axially moving “string to beam” model already has
complicated dynamical behavior.

NOMENCLATURE
U(X,T) the displacement of the string in vertical direction,
V(T) the time-varying belt speed,
c the wave speed,
X the coordinate in horizontal direction,
E the modulus of elasticity,
I the moment of inertia with the respect to theX (horizontal)

axis,
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ρ the mass density of the belt,
A the area of the cross section of the belt,
T the time, and
πL the distance between the pulleys.

INTRODUCTION
Axially moving systems are present in a vast class of engi-

neering problems which arise in industrial, civil, aerospatial, me-
chanical, electronic, medical, and automotive applications. Ser-
pentine belts, aerial cables, tram and train ways, oil pipelines,
magnetic tapes, power transmission belts, band saw blades, chair
lifts in skiing resorts, and even models of human DNA are ex-
amples of real objects where axial transport of mass can be as-
sociated with transverse vibrations. Investigating transverse vi-
brations of a belt system is a challenging subject which has been
studied for many years by many researches and still is of inter-
est today (see references for a recent overview). In the classical
analysis of axially moving continua the vibrations are usually
classified into two types, i.e. whether it is of a string-like type
or of a beam-like type, depending on the bending stiffness of
the belt. If the bending stiffness can be neglected then the sys-
tem is classified as string (wave)-like, otherwise it is classified
as beam-like. The transverse vibrations of a belt system (with
time-varying velocityV(t)) can be modelled mathematically as:
Copyright c© 2007 by ASME
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Dow
string-like by

UTT +2VUXT +VTUX +(V2−c2)UXX = 0, and (1)

beam-like (with a string effect) by

UTT +2VUXT +VTUX +(V2−c2)UXX +
EI
ρA

UXXXX = 0,

(2)

wherec =

√

T0

ρ
, in which T0 is assumed to be the constant t

sion of the belt. The time-varying belt velocityV(T) is given by
V(T) = ε(V0 + αsin(ωT)), whereV0, ω and α are some posi
tive constants withV0 > 0 andV0 > |α|, and whereε is a small
parameter with 0< ε ≪ 1. The termεαsin(ωT) can be seen a
a small perturbation of the main belt speedV0, due to different
kinds of imperfections of the belt system. The small parameε
indicates that the belt speedV(T) is small compared to the wav
speedc. The conditionV0 > |α| guarantees that the belt alwa
moves forward in one direction.

Due to different kind of imperfections of the belt syste
such as roll eccentricities and varying belt speed, severe tran
sal vibrations (due to internal resonances) can occur. The o
rence of resonances should be prevented since they can
operational and maintenance problems including excessive
of the belt and the support components, and an increase of e
consumption of belt system. By knowing the natural frequen
of the belt, so called resonance-free belt system can be des
Although the non-linear models can be more informative,
describe the real conveyer belt systems usually better, it is
meaningless to investigate the linear equations (1) and (2) fi

Equation (1) was studied by G. Seweken and van Hor
in [1]. It was found that there are infinitely many values oω
giving rise to internal resonances in the belt system. It was
shown that the truncation method can not be applied to ob
asymptotic results on long time-scales (that is, on time-sc
of orderε−1). On the other hand it was also shown in [2] th
for the beam equation (2) the truncation method can be app
but the dynamic behavior of the belt system is still very co
plicated. The stability conditions for the belt system were a
derived in [2]. From experiments it is known that real dyna
behavior of conveyer belt systems with relatively small be
ing stiffness is some sort of combination of both models (1)-
The first vibration modes look more like string modes and hig
order modes (when the bending stiffness becomes more im
tant) look more like beam modes. It is not only interesting
also important from the applicational point of view to inves
gate such phenomena of transients “from string to beam” be
ior. In recent papers [3]- [5] the following attempts to descr
these phenomena can be found. When the belt speed is
nloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms o
en-

-

s

ter
e
ys

m
sver-
ccur-
cause
wear
nergy
cies
igned.
and

not
rst.
ssen
f
also
tain
ales
at
lied,
m-
lso

mic
nd-
(2).
her
por-

but
ti-
hav-
ibe
high

and has the same order of magnitude as the wave speedc (that
is V(T) = V0 + εαsin(ωT)) H. R. Öz, etc. in [3] studied the
case for which the bending stiffness is of orderε, and found an
approximate analytical expression for the natural frequency and
stability regions. E.̈Ozkaya, etc. in [4] used the same assump-
tions and constructed boundary layer solutions. Approximations
of the eigenvalues of the belt system were also presented in [5]
by L. Kong and R. G. Parker. All these authors found that the
natural frequencies change due to presence of a small bending
stiffness, but missed the fact that for the higher order modes the
bending stiffness terms are not of orderε anymore, and must be
included in theO(1)-problem. Moreover, the natural frequencies
of the beam model (2) withV(T) = V0 + εαsin(ωT) can not be
found exactly (see for instance [8] and [9]). In this paper for sim-
plicity it will be assumed thatV(t) = ε(V0+αsin(ωt)). The idea
how and when in this case different simplified models may be
applied to construct a more realistic model of the traveling belt
system was proposed by I. V. Andrianov and W. T. van Horssen
in [10]. Usually it is not possible to calculate the natural frequen-
cies of a real belt system exactly. The bending stiffness, however,
is not important for the lower modes of vibrations. And for the
higher modes of vibration the bending stiffness terms become
more important than the string terms. So, there are at least three
simplified models depending on the vibration modes and the cor-
responding frequencies: a string model for the lower frequencies,
a beam-string model for the intermediate frequencies, and a pure
beam model for the higher frequencies. A combination of these
models can improve the results of the existing models and meth-
ods. The proposed method is based on calculating the natural
frequencies of each sub-model, and determining the relative er-
rors in it. In this way one can define intervals of applicability of
these simplified models with a predefined, desired accuracy.

The paper is organized as follows. In section 2 formula-
tion of the problem will be given. The reregions of applicability
of simplified models will be determined. In section 3 the two
time-scales perturbation method will be applied in order to avoid
secular term in the approximate solution of the problem. Values
of ω that give rise to internal resonances will be found. The res-
onant case and the resonant case will be studied. Finally section
4 some conclusions and remarks will be drawn.

FORMULATION OF THE PROBLEM
In this paper a new method will be proposed to construct a

mechanical model for an axially moving continuum, which in-
cludes both string type and beam type dynamic behavior. The
simplest mechanical model for a traveling belt is a simply sup-
ported tensioned Euler-Bernoulli beam (see Figure 1). The equa-
tion for this model is given by (see also (2))

UTT +2VUXT +VTUX +(V2−c2)UXX +
EI
ρA

UXXXX = 0. (3)

The speed of the belt is assumed to be time-varying and given
byV(T) = ε(V0 +αsin(ωT)). The boundary conditions and the
2 Copyright c© 2007 by ASME
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initial conditions for (3) are given by

U(0,T;ε) = U(πL,T;ε) = UXX(0,T;ε) = UXX(πL,T ;ε) = 0, T >0,

U(X,0;ε) = f (X), andUT(X,0;ε) = r(X), 0 < X < πL, (4)

where f (X) represents the initial displacement of the belt,r(X)
is the initial velocity of the belt, and whereπL is the distance
between the pulleys. For simplicity it is assumed that that th
cross section of the belt has a rectangular shape, so thatA =

hb and I =
bh3

12
, whereh is the thickness andb is width of the

belt cross-section, respectively (see Figure 2). Following the 3D
theory of elasticity additional conditions have to be imposed to

the stretched beam equation (3), that is:
πL
k

≫ h andb≫ h.

Equation (3) in non-dimensional form becomes:

utt −uxx+µuxxxx =

ε(−αωcos(ωt)ux−2(V0 +αsin(ωt))uxt)− ε2(V0 +αsin(ωt))2uxx,
(5)

wherex =
X
L

, V0 =
V0

c
, t =

c
L

T, u =
U
L

, ω =
L
c

ω, α =
α
c

and

µ=
EI

ρAc2L2 =
Eh2

12ρc2L2 . The boundary conditions and the initial

conditions for (5) are given by:

u(0,t;ε) = u(π,t;ε) = uxx(0,t;ε) = uxx(π,t;ε) = 0, t > 0, (6)

u(x,0;ε) =
f (x)
L

, and ut(x,0;ε) =
r(x)

c
, 0 < x < π. (7)

U(X,T)

X

V(T)

πL = l

Figure 1. THE TRAVELING BELT SYSTEM.

As it was explained in the introduction, the natural frequen
cies can usually not be calculated exactly for real problems o
traveling belts due to the presence of different sorts of (non
)linearities, such as variable stiffness etc. It is not meaningles
to include only string behavior for the lower vibration modes of
the belt (when the influence of bending stiffness is very sma
and can be neglected in theO(1)-problem) and the following ap-
proach shows how one can define the regions of applicability
Let us first consider the equation:

utt −uxx+µuxxxx= 0, (8)
3
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Figure 2. THE TRAVELING BELT CONFIGURATION.

subjected to the boundary conditions (6). To determine the natu-
ral frequencies of this problem the method of separation of vari-
ables can be used, giving as non-trivial solutions

for k = 1,2,3, . . . : eiΩkt sin(kx), (9)

wherei =
√
−1, and

Ωk = k
√

1+µk2. (10)

Equation (10) gives us exact natural frequencies for equation (8)
subjected to the boundary conditions (6). For the string model
(i.e. equation (8) without bending stiffness) and for the beam
model (i.e. equation (8) without string effect) the natural fre-
quencies also can be found, so that:

Ω(1)
k = k for the string model,

Ω(2)
k = k

√

1+µk2 for the stretched beam model, and

Ω(3)
k = k

√
µ for the beam model.

(11)

It is possible now to find intervals of applicability of these
simplified models (fork), based on the natural frequencies (11),
with a desired or required accuracy. In table 1 these regions
for k are given forµ equal to 0.0001, 0.002, 0.01, 0.1, 1, and
10, and with relative errors of 0,1 %, 1 %, 3 %, and 5 % in the
frequencies respectively.

Let us consider a real moving belt, fabricated from rub-
ber, with the following mechanical properties:E = 1,8GPa,
ρ = 1,5g/cm3, h = 0,8cm, l = 100m, T0 = 5N/mm andb <
3000mm. This implies thatµ = 0.002. From Table 1 it can be
seen, that with a relative error of 5 % in the frequencies the fol-
lowing model can be derived (the original problem (5) can now
be split by assumingu(x,t) = Σ∞

k=1uk(t)sin(kt)):
For 16 k 6 7 - string model:

utt −uxx = ε(−αωcos(ωt)ux−2(V0 +αsin(ωt))uxt −c1uxxxx)

− ε2(V0 +αsin(ωt))2uxx,
(12)
Copyright c© 2007 by ASME
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µ 0.0001 0.002 0.01 0.1 1 10

rel error; model

string 1 6 k 6 4 k = 1 — — — —

0,1%; string-beam 56 k 6 2234 26 k 6 691 16 k 6 223 16 k 6 70 1 6 k 6 22 1 6 k 6 7

beam 22356 k < ∞ 6926 k < ∞ 2246 k < ∞ 716 k < ∞ 236 k < ∞ 8 6 k < ∞

string 1 6 k 6 14 1 6 k 6 3 k = 1 — — —

1%; string-beam 156 k 6 702 4 6 k 6 161 2 6 k 6 70 1 6 k 6 23 1 6 k 6 7 1 6 k 6 2

beam 7036 k < ∞ 1626 k < ∞ 716 k < ∞ 246 k < ∞ 8 6 k < ∞ 3 6 k < ∞

string 1 6 k 6 25 1 6 k 6 5 1 6 k 6 2 — — —

3%; string-beam 266 k 6 399 6 6 k 6 89 3 6 k 6 39 1 6 k 6 12 1 6 k 6 3 k = 1

beam 3946 k < ∞ 906 k < ∞ 406 k < ∞ 136 k < ∞ 4 6 k < ∞ 2 6 k < ∞

string 1 6 k 6 32 1 6 k 6 7 1 6 k 6 3 k = 1 — —

5%; string-beam 336 k 6 304 8 6 k 6 68 4 6 k 6 30 2 6 k 6 9 1 6 k 6 3 —

beam 3056 k < ∞ 696 k < ∞ 316 k < ∞ 106 k < ∞ 4 6 k < ∞ 1 6 k < ∞

Table 1. APPLICABILITY REGIONS FOR THE SIMPLIFIED MODELS: STRING, BEAM WITH STRING EFFECT, AND BEAM EQUATIONS.
Copyright c© 2007 by ASME
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where it is assumed in (12) thatµuxxxx= O(ε), so thatµuxxxx=
εc1uxxxx.

For 86 k 6 68 -beam with string effect model:

utt −uxx+µuxxxx= ε(−αωcos(ωt)ux−2(V0 +αsin(ωt))uxt)

− ε2(V0 +αsin(ωt))2uxx,
(13)

where it should be observed that the terms in the left hand side
of (13) are of leading order and of the same order of magnitude.

For 696 k < ∞ - beam model:

utt +µuxxxx= ε(−αωcos(ωt)ux−2(V0 +αsin(ωt))uxt +
1
ε

uxx)

− ε2(V0 +αsin(ωt))2uxx,

(14)

where it should be observed that the terms in the left-hand side
of (14) are at least an order of magnitude larger than those term
in the right-hand side of (14).

As it was shown in [1] the truncation method can not be ap-
plied to the string equation (12), but for the beam with string
effect equation (13) the method can be applied (see [2]) when
the internal resonances are taken into account. Based on th
observation it is assumed now for simplicity, that the original
problem (5) is split up into 2 simple models: for 16 k 6 7
- the string model (12), and for 86 k < ∞ - the beam with
string effect model (13). It was shown in [2] that by substitut-
ing u(x,t) = ∑∞

n=1un(t;ε)sin(nx) into (5), by multiplying both
sides of so-obtained equation with sin(kx), and then by integrat-

4
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ing with respect tox from x = 0 tox = π it follows that:

ük +(µk4 +k2)uk =

ε
∞ ∗
∑
n=1

kn

(n2−k2)π

(

4αωcos(ωt)un +8(V0 +αsin(ωt))u̇n

)

+O(ε2),

(15)

where the∗ in ∑∞ ∗
n=1 indicates that the summation is only car-

ried out for n± k is odd. Fort = 0 uk(t) satisfies:uk(0;ε) =
2

Lπ

Z π

0
f (x)sin(kx)dx, andu̇k(0;ε) =

2
cπ

Z π

0
r(x)sin(kx)dx. In the

next section a two time-scales perturbation will be applied.

APPLICATION OF THE TWO TIME-SCALES PERTUR-
BATION METHOD

To avoid secular terms in the approximate solution of (15) a
two time-scales perturbation method is used. The two new time
scales aret0 = t andt1 = εt, implying thatuk(t;ε) = vk(t0,t1;ε).
The following transformations are needed for the time deriva-
tives:

duk

dt
=

∂vk

∂t0
+ ε

∂vk

∂t1
,

d2uk

dt2
=

∂2vk

∂t2
0

+2ε
∂2vk

∂t0∂t1
+ ε2 ∂2v

∂t2
1

.

(16)
se: http://www.asme.org/about-asme/terms-of-use
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It is assumed thatvk = vk0 + εvk1 + . . ., and vk(t0,t1;ε) =

v(1)
k (t0,t1;ε) for 1 6 k 6 7 (i.e. time behavior is from the string

model), andvk(t0,t1;ε) = v(2)
k (t0,t1;ε) for 8 6 k < ∞ (i.e time

behavior is from the beam with string effect model). So that,
fact there are two sets ofO(1) andO(ε) problems. By taking to-

gether terms of equal powers inε for v(1)
k andv(2)

k it follows that
for 1 6 k 6 7:

O(1)(1) :
∂2v(1)

k0

∂t2
0

+k2v(1)
k0 = 0,

O(ε)(1) :
∂2v(1)

k1

∂t2
0

+k2v(1)
k1 = −2

∂2v(1)
k0

∂t0∂t1
−c1k4v(1)

k0

+
7∗
∑
n=1

(

kn
(n2−k2)π

4ωαcos(ωt)v(1)
n0 +8(V0 +αsin(ωt))

∂v(1)
n0

∂t0

)

+
∞∗
∑
n=8

(

kn
(n2−k2)π

4ωαcos(ωt)v(2)
n0 +8(V0 +αsin(ωt))

∂v(2)
n0

∂t0

)

,

(17)
and for 86 k < ∞:

O(1)(2) :
∂2v(2)

k0

∂t2
0

+(k2 +µk4)v(2)
k0 = 0,

O(ε)(2) :
∂2v(2)

k1

∂t2
0

+(k2 +µk4)v(2)
k1 = −2

∂2v(2)
k0

∂t0∂t1

+
7∗
∑
n=1

(

kn
(n2−k2)π

4ωαcos(ωt)v(1)
n0 +8(V0 +αsin(ωt))

∂v(1)
n0

∂t0

)

+
∞∗
∑
n=8

(

kn
(n2−k2)π

4ωαcos(ωt)v(2)
n0 +8(V0 +αsin(ωt))

∂v(2)
n0

∂t0

)

.

(18)
Equation (17) represents the time behavior of the main equa
(5) for the first seven modes with small bending stiffness term
The second sum in equation (17) represents the influence o
beam with string effect model. In the first sum in (18) there s
is the influence of the string model. So there is an interact
between the two models. In (18) the bending stiffness terms
now of leading order. The solution of theO(1)(1)-problem is
given by:

v(1)
ko = Ak0(t1)sin(Ω(1)

k t0)+Bk0(t1)cos(Ω(1)
k t0), k = 1,2, . . . ,7. (19)

The solution of theO(1)(2)-problem is given by:

v(2)
ko = Ak0(t1)sin(Ω(2)

k t0)+Bk0(t1)cos(Ω(2)
k t0), k = 8,9, . . . . (20)

In (19) and (20)Ω(1)
k andΩ(2)

k are given by (11).Ak0(t1) and
Bk0(t1) are still arbitrary functions and can be used to avoid se
lar terms in the solutions of theO(ε)(1)-problem and theO(ε)(2)-
5
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problem. TheO(ε)(1) equation now becomes:

∂2v(1)
k1

∂t2
0

+(Ω(1)
k )2v(1)

k1 = −2Ω(1)
k

(

∂Ak0

∂t1
cos(Ω(1)

k t0)−
∂Bk0

∂t1
sin(Ω(1)

k t0)

)

−c1k4
(

Ak0(t1)sin(Ω(1)
k t0)+Bk0(t1)cos(Ω(1)

k t0)
)

+
7∗
∑
n=1

{

kn
(n2−k2)π

4ωαcos(ωt)An0(t1)sin(Ω(1)
n t0)+Bn0(t1)cos(Ω(1)

n t0)

+8(V0+αsin(ωt))Ω(1)
n

(

An0(t1)cos(Ω(1)
n t0)−Bn0(t1)sin(Ω(1)

n t0)
)}

+
∞∗
∑
n=8

{

kn
(n2−k2)π

4ωαcos(ωt)An0(t1)sin(Ω(2)
n t0)+Bn0(t1)cos(Ω(2)

n t0)

+8(V0+αsin(ωt))Ω(2)
n

(

An0(t1)cos(Ω(2)
n t0)−Bn0(t1)sin(Ω(2)

n t0)
)}

,

(21)

and theO(ε)(2) equation is given by:

∂2v(2)
k1

∂t2
0

+(Ω(2)
k )2v(1)

k1 = −2Ω(2)
k

(

∂Ak0

∂t1
cos(Ω(2)

k t0)−
∂Bk0

∂t1
sin(Ω(2)

k t0)

)

+
7∗
∑
n=1

{

kn
(n2−k2)π

4ωαcos(ωt)An0(t1)sin(Ω(1)
n t0)+Bn0(t1)cos(Ω(1)

n t0)

+8(V0+αsin(ωt))Ω(1)
n

(

An0(t1)cos(Ω(1)
n t0)−Bn0(t1)sin(Ω(1)

n t0)
)}

+
∞∗
∑
n=8

{

kn
(n2−k2)π

4ωαcos(ωt)An0(t1)sin(Ω(2)
n t0)+Bn0(t1)cos(Ω(2)

n t0)

+8(V0+αsin(ωt))Ω(2)
n

(

An0(t1)cos(Ω(2)
n t0)−Bn0(t1)sin(Ω(2)

n t0)
)}

.

(22)

From equations (21) and (22) it can readily be seen that there
are infinitely many values ofω that can give rise to internal res-
onances. It fact these values are (in anO(ε) neighborhood of):

(i) ω±Ω(1)
n = ±Ω(1)

k , for n,k = 1,2, . . . ,7,

(ii) ω±Ω(2)
n = ±Ω(1)

k , for k = 1,2, . . . ,7,andn = 8,9, . . . ,

(iii ) ω±Ω(1)
n = ±Ω(2)

k , for n = 1,2, . . . ,7,andk = 8,9, . . . ,

(iv) ω±Ω(2)
n = ±Ω(2)

k , for n = 8,9, . . . ,andk = 8,9, . . . .
(23)

For all resonant cases(i)-(iv) the additional condition that
k±n is an odd number, still holds due to summation in (15). By
interchangingn andk, the resonant case(ii) (derived out of the
O(ε)(1)-problem) becomes the resonant case(iii ) (derived out of
theO(ε)(2)-problem). The resonant case(i) is a resonance condi-
tion for the string equation, and has been investigated in [1]. The
resonant case(iv) is a resonance condition for the beam with
string effect equation. The solutions and stability conditions for
this case can be found in [2]. Due to the interactions of these
two simplified models the model as proposed here, there are ad-
ditional resonant conditions(ii) and(iii ), whereω might be the
sum or difference of one natural frequency of the string and one
natural frequency of the beam with string effect. It is also neces-
sary to investigate additionally ifω in the resonant case(i) also
satisfies the cases(ii), (iii ), and(iv), and vice versa.
Copyright c© 2007 by ASME
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THE NON-RESONANT CASE.
In this case it is assumed that the frequencyω of the velocity-

fluctuations of the axially moving continuum is not equal to an
combination of the resonance frequencies as listed in (23).
eliminate the secular terms in the solution of theO(ε)(1)-problem
and theO(ε)(2)-problem it follows thatAk0 andBk0 have to sat-
isfy:















dAk0

dt1
= −c1k3

2
Bk0,

dBk0

dt1
=

c1k3

2
Ak0, for 16 k 6 7,

(24)

and











dAk0

dt1
= 0,

dBk0

dt1
= 0, for 86 k < ∞.

(25)

In this case system (24) can be seen as some sort of correc
on the slow time (t1) behavior of the solution in the first seven
vibration modes due to presence of the small bending stiffn
term in theO(ε)(1)-problem.

SOME RESONANT CASES.
The following resonant cases will be investigated in the p

per [12]:ω = m∗ (wherem∗ is any odd number),ω = Ω(2)
9 −Ω(2)

8

(a difference type of resonance),ω = Ω(1)
1 −Ω(2)

8 (an additional

difference type of resonance),ω = Ω(2)
9 + Ω(2)

8 (a sum type of

resonance),ω = Ω(1)
1 + Ω(2)

8 (an additional sum type of reso-

nance),ω = Ω(1)
7 −Ω(2)

8 (an additional difference type of reso

nance),ω = Ω(1)
7 + Ω(2)

8 (an additional sum type of resonance

andω = 2Ω(2)
8 (a principal parametric resonance). The concl

sions about the stability of the axially moving continuum wi
also be presented for these cases in [12].

CONCLUSIONS AND REMARKS
In this paper an initial-boundary value problem for a linea

equation, describing an axially moving stretched beam has b
studied. This equation can be used as a model for the transve
vibrations of a conveyor belt system. The axially moving be
is assumed to move in one direction with a non-constant sp
V(t), that is,V(t) = ε(V0 + αsin(ωt)), where 0< ε ≪ 1, and
whereV0,α andω are positive constants. ForV0 it is assumed
thatV0 > 0 andV0 > |α|. A new model approach describing the
6
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transient “from string to beam” behavior, based on the calcula-
tion of the natural frequencies have been proposed. The influence
of the bending stiffness on the time behavior of an approximate
solution of the problem has been studied. The regions of appli-
cability of the simplified models were found for different values
of the bending stiffness parameter and the relative error. It turns
out that there are infinitely many values ofω that give rise to
internal resonances in the axially moving belt system. In fact,
that happens whenω is equal to any sum or difference combina-
tion of the natural frequencies of the string and (or) the stretched
beam equations. The correction to the natural frequencies has
been found in the non-resonant case. The formal approximation
of the solution and stability analysis in the resonant case will be
presented in the forth coming paper [12].
Copyright c© 2007 by ASME
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