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ABSTRACT p the mass density of the belt,

In this paper an initial-boundary value problem for a lin- A the area of the cross section of the belt,

ear equation describing an axially moving stretched beam will T the time, and

be considered. The velocity of the beam is assumed to be time-mi_  the distance between the pulleys.

varying. since the order of magnitude of the bending stiffness

terms depends on the vibrations modes and the frequencies in-

volved a that combination of two simplified models (a string |NTRODUCTION

equation and a beam with string effect equation) will be used Axially moving systems are present in a vast class of engi-

to describe the transversal vibrations of the system accurately. neering problems which arise in industrial, civil, aerospatial, me-

Based on the calculations of the natural frequencies the regions gy, aica). electronic, medical, and automotive applications. Ser-

of applicability of these models will be determined. A W0  apiine belts, aerial cables, tram and train ways, oil pipelines,

time-scales perturbation method will be used to construct for- - netic tapes, power transmission belts, band saw blades, chair

mal asymptotic approximations of the solutions. It will be shown is " skiing resorts, and even models of human DNA are ex-

that the linear axially moving "string to beam” model already has - 5 jes of real objects where axial transport of mass can be as-

complicated dynamical behavior. sociated with transverse vibrations. Investigating transverse vi-
brations of a belt system is a challenging subject which has been
studied for many years by many researches and still is of inter-

NOMENCLATURE est today (see references for a recent overview). In the classical
U(X,T) the displacement of the string in vertical direction, analysis of axially moving continua the vibrations are usually
V(T) the time-varying belt speed, classified into two types, i.e. whether it is of a string-like type
¢ the wave speed, or of a beam-like type, depending on the bending stiffness of
X the coordinate in horizontal direction, the belt. If the bending stiffness can be neglected then the sys-
E the modulus of elasticity, tem is classified as string (wave)-like, otherwise it is classified
I the moment of inertia with the respect to the(horizontal) as beam-like. The transverse vibrations of a belt system (with
axis, time-varying velocityV (t)) can be modelled mathematically as:
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string-like by and has the same order of magnitude as the wave spébdt
is V(T) =Vp+¢easin(@T)) H. R. Oz, etc. in [3] studied the
case for which the bending stiffness is of ordeand found an
approximate analytical expression for the natural frequency and
stability regions. EQzkaya, etc. in [4] used the same assump-
beam-like (with a string effect) by tions and constructed boundary layer solutions. Approximations
of the eigenvalues of the belt system were also presented in [5]
El by L. Kong and R. G. Parker. All these authors found that the
Utt +2VUxT +VrUx + (V2 — cZ)Uxx + —Uxxxx =0, natural frequencies change due to presence of a small bending
PA ) stiffness, but missed the fact that for the higher order modes the
bending stiffness terms are not of ordeanymore, and must be

Urt + 2VUxt +VrUx + (V2= c)Uxx =0, and (1)

_ [To . . . included in theO(1)-problem. Moreover, the natural frequencies
wherec =, / —, in which Tp is assumed to be the constant ten- of the beam model (2) with! (T) = Vo + £asin(@T) can not be
sion of the belt. The time-varying belt veloch(T) is given by found exactly (see for instance [8] and [9]). In this paper for sim-
V(T) =¢(Vo+asn(@T)), whereVo, @ and @ are some posi- plicity it will be assumed tha¥/ (t) = (Vo +asin(wt)). The idea
tive constants witl/o > 0 andV, > [a], and where is a small how and when in this case different simplified models may be

parameter with 6< € < 1. The termedsin(@T ) can be seenas  applied to construct a more realistic model of the traveling belt
a small perturbation of the main belt speégl due to different system was proposed by I. V. Andrianov and W. T. van Horssen
kinds of imperfections of the belt system. The small pararmgeter in[10]. Usually it is not possible to calculate the natural frequen-
indicates that the belt spe®dT ) is small compared to the wave  cies of a real belt system exactly. The bending stiffness, however,
speecc. The conditiorVo > || guarantees that the belt always is not important for the lower modes of vibrations. And for the
moves forward in one direction. higher modes of vibration the bending stiffness terms become
Due to different kind of imperfections of the belt system more important than the string terms. So, there are at least three
such as roll eccentricities and varying belt speed, severe transver-simplified models depending on the vibration modes and the cor-
sal vibrations (due to internal resonances) can occur. The occur-responding frequencies: a string model for the lower frequencies,
rence of resonances should be prevented since they can causa beam-string model for the intermediate frequencies, and a pure
operational and maintenance problems including excessive wearbeam model for the higher frequencies. A combination of these
of the belt and the support components, and an increase of energymodels can improve the results of the existing models and meth-
consumption of belt system. By knowing the natural frequencies ods. The proposed method is based on calculating the natural
of the belt, so called resonance-free belt system can be designedfrequencies of each sub-model, and determining the relative er-
Although the non-linear models can be more informative, and rors in it. In this way one can define intervals of applicability of
describe the real conveyer belt systems usually better, it is not these simplified models with a predefined, desired accuracy.
meaningless to investigate the linear equations (1) and (2) first. The paper is organized as follows. In section 2 formula-
Equation (1) was studied by G. Seweken and van Horssen tion of the problem will be given. The reregions of applicability
in [1]. It was found that there are infinitely many valuescwof of simplified models will be determined. In section 3 the two
giving rise to internal resonances in the belt system. It was also time-scales perturbation method will be applied in order to avoid
shown that the truncation method can not be applied to obtain secular term in the approximate solution of the problem. Values
asymptotic results on long time-scales (that is, on time-scales of w that give rise to internal resonances will be found. The res-
of ordere1). On the other hand it was also shown in [2] that onant case and the resonant case will be studied. Finally section
for the beam equation (2) the truncation method can be applied, 4 some conclusions and remarks will be drawn.
but the dynamic behavior of the belt system is still very com-
plicated. The stability conditions for the belt system were also
derived in [2]. From experiments it is known that real dynamic FORMULATION OF THE PROBLEM
behavior of conveyer belt systems with relatively small bend- In this paper a new method will be proposed to construct a

. . . - mechanical model for an axially moving continuum, which in-
ing stiffness is some sort of combination of both models (1)-(2). cludes both string type and begm typegdynamic behavior. The

The first vibration modes look more like string modes and higher gimplest mechanical model for a traveling belt is a simply sup-
order modes (when the bending stiffness becomes more impor-ported tensioned Euler-Bernoulli beam (see Figure 1). The equa-
tant) look more like beam modes. It is not only interesting but tion for this model is given by (see also (2))

also important from the applicational point of view to investi-
gate such phenomena of transients “from string to beam” behav-
ior. In recent papers [3]- [5] the following attempts to describe The speed of the belt is assumed to be time-varying and given
these phenomena can be found. When the belt speed is highbyV(T) =&(Vo+asin(@T)). The boundary conditions and the

El
Ut + 2V Uyt +VrUx + (V2 — ) Uxx + p—AUxxxx:Q (3)
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initial conditions for (3) are given by 7 i
U(0,T;e) =U (L, T;€) = Uxx(0,T;€) =Uxx (T, T;€) =0, T >0,
U(X,0;e) = f(X), andUt (X,0;€) =r(X), 0< X <L, 4 b

wheref (X) represents the initial displacement of the bglX)
is the initial velocity of the belt, and whemlL is the distance S P
between the pulleys. For simplicity it is assumed that that the j P

cross section of the belt has a rectangular shape, soAtkat - T
hbandl = % whereh is the thickness ant is width of the Figure 2. THE TRAVELING BELT CONFIGURATION.
belt cross-section, respectively (see Figure 2). Following the 3D
theory of elasticity add|t|o-nal cond|t|01;1Ls have to be imposed to subjected to the boundary conditions (6). To determine the natu-
the stretched beam equation (3), thaths: > handb>> h. ral frequencies of this problem the method of separation of vari-
Equation (3) in non-dimensional form becomes: ables can be used, giving as non-trivial solutions
Utt — Uxx + MUk = ®) .
£(—awcog wt)ux — 2(Vo -+ asin(wt) ) ux) — €2(Vo + arsin(wt ) )2y, fork=1,2,3,...: €™ sin(kx), 9
X \_/0 C U L_ a
wherex » 0 hzc’t LU @mcwe Cand wherei = /-1, and
El E
p= = . The boundary conditions and the initial
PpAc2LZ  12pc?L?
conditions for (5) are given by: O =ky/1+pk2. (10)
u(0,t;€) = u(Tt;€) = Ux(0,1;€) = Uxx(TTt;€) = 0, t > 0, (6) Equation (10) gives us exact natural frequencies for equation (8)
£(x) F(X) subjected to the boundary conditions (6). For the string model
u(x,0;¢) = - and w(x,0;¢) = ~ O<x<m (7) (i.e. equation (8) without bending stiffness) and for the beam
model (i.e. equation (8) without string effect) the natural fre-
guencies also can be found, so that:
UXT) oM =k for the string model
' vem) Ql((? = ky/1+ pk? for the stretched beam model, and(11)
- " @) Q|(< ) = k1 for the beam model
/qD — O X
! It is possible now to find intervals of applicability of these
| | simplified models (fok), based on the natural frequencies (11),
‘ n=I ‘ with a desired or required accuracy. In table 1 these regions

for k are given foru equal to 0.0001, 0.002, 0.01, 0.1, 1, and
10, and with relative errors of 0,1 %, 1 %, 3 %, and 5 % in the
frequencies respectively.

Figure 1. THE TRAVELING BELT SYSTEM.

As it was explained in the introduction, the natural frequen-
cies can usually not be calculated exactly for real problems of
traveling belts due to the presence of different sorts of (non-
)linearities, such as variable stiffness etc. It is not meaningless
to include only string behavior for the lower vibration modes of
the belt (when the influence of bending stiffness is very small
and can be neglected in tia¥1)-problem) and the following ap-
proach shows how one can define the regions of applicability.
Let us first consider the equation:

Let us consider a real moving belt, fabricated from rub-
ber, with the following mechanical propertie€ = 1,8GPa,
p =1,5g/cn?, h=0,8cm | = 100m, To = 5N/mmandb <
3000mm This implies thafu = 0.002. From Table 1 it can be
seen, that with a relative error of 5 % in the frequencies the fol-
lowing model can be derived (the original problem (5) can now
be split by assuming(x,t) = X2, uk(t) sin(kt)):

For 1< k< 7 - string model:

Ut — Uxx = £(—awcog wt)uy — 2(Vo + asin(ut) )ux — C1Uxxxx)

12
Ut — Uxx + HUoox= 0, 8) —&2(Vo+asin(wt) ) 2uxx, (12)
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M 0.0001 0.002 0.01 0.1 1 10
rel error; model
string 1<k<4 k=1 — —

0,1%; string-beanm] 5< k<2234 | 2< k<691 | 1< k<223 | 1<k<<70 | 1<kg22 k<7
beam 2235< k<o | 692 k<o | 224< k<o | 71<Kk<o | 23< k<o <k<ow
string 1<k<14 1<k<3 k=1 — — —

1%; string-beam | 15< k<702 | 4<k<161 | 2<k<70 | 1<k<23 k<7 <2
beam 703< k<o | 162< k<o | 71<k<oo | 24<k<o | 8B<k<w <k<ow
string 1<k<25 1<k<5 1<k<g?2 —

3%; string-beam | 26 < k<399 | 6<k<89 3<k<39 | 1<kg12 k<3 k=
beam 394< k<o | 90K k<o | 40<k<o | 13<k<o | 4<k<o | 2<k<®
string 1<kg32 1<kg77 1<kg3 k=1 — —

5%; string-beam | 33< k<304 | 8<k<68 4<k<30 2<k<9 1<kg3 —
beam 305< k<o | 69<k<o | 31<k<oo [ 10<k<o | 4<k<oo | 1<k<o

Table 1. APPLICABILITY REGIONS FOR THE SIMPLIFIED MODELS: STRING, BEAM WITH STRING EFFECT, AND BEAM EQUATIONS.

where it is assumed in (12) thatkxx = O(€), SO thatuuuxx =

€C1 Uyxxx:

For 8< k < 68 - beam with string effect model:

Utt — Uxx + MUkxxx = E(—0wecos wt )uy — 2(Vo + a sin(wt) )uxt)

— €2(Vp + asin(wt))?uxx,

where it should be observed that the terms in the left hand side Where the” in 557 indicates that the summation is only car-
of (13) are of leading order and of the same order of magnitude.

For 69< k < « - beam model:

. 1
Utt + Mkxxx = €(—awcog wt)ux — 2(Vp + asin(wt) )uxt + Euxx)

— €2(Vo -+ asin(wt))2uxy,

of (14) are at least an order of magnitude larger than those terms

in the right-hand side of (14).

13)

(14)

ing with respect tox from x = 0 to x = Ttit follows that:

Ui+ (UK + K2y =

00 %

€

n | |
n; _km (4acoc08(wt)un +8Vo+a sm(wt))un) 4O,

(15)

ried out forn+k is odd. Fort = 0 ug(t) satisfies: ux(0;€) =

2 (m . . 2 (M :

—/ f (x) sin(kx)dx, andui(0;€) = —/ r(x)sin(kx)dx. Inthe
Lrjo ) Cljo ~° :
next section a two time-scales perturbation will be applied.

APPLICATION OF THE TWO TIME-SCALES PERTUR-
where it should be observed that the terms in the left-hand side BATION METHOD

To avoid secular terms in the approximate solution of (15) a
two time-scales perturbation method is used. The two new time

As it was shown in [1] the truncation method can not be ap- scales aréy =t andt; = &t, implying thatu(t; &) = vk(to,t1;€).

plied to the string equation (12), but for the beam with string The following transformations are needed for the time deriva-

effect equation (13) the method can be applied (see [2]) when tives:

the internal resonances are taken into account.

Based on this
observation it is assumed now for simplicity, that the original

problem (5) is split up into 2 simple models: ford k < 7 d_uk - % +s%,
- the string model (12), and for & k < o - the beam with dt oo Ot
string effect model (13). It was shown in [2] that by substitut- ) ) ) ) (16)
ing u(x,t) = Y& ; Un(t;€)sin(nx) into (5), by multiplying both doue 0w 4o 0°Vk +823_V
sides of so-obtained equation with gr), and then by integrat- iz o2 Otooty ot
4 Copyright (© 2007 by ASME
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It is assumed thaty = vko + €Vi1 + ..., and v(to,t1;€) =

v|((l) (to,t1;€) for 1 < k < 7 (i.e. time behavior is from the string
model), andv(to,t1;€) = v|(( )(to,tl €) for 8 < k < o (i.e time
behavior is from the beam with string effect model). So that, in
fact there are two sets @f(1) andO(€) problems. By taking to-

gether terms of equal powersérfor vf<l> andvff) it follows that

for1<k<7:

aZV( 1
O(l)(l) : atkO k2 l(<0) — 0’
0
aZv( aZV(l)
) . kl 2,1 _ ko (1)
o) : 0 + kv 2(7toat1 cikvig
FNG)
+ z 4macos(wt) (1 4 8(Vo + asin(wt)) at';(’
@
+ % 4macos(wt) 2+ 8(Vo-+ asin(wt)) at';(’
17

and for 8< k < oo

62V<2)
2) . ko
o : 7+

(R + i = o,

2,/(2)
0()@ 07Viq +(k2+uk4)v<2) —_
ot? kL Otodty

3 (e

3@

(1)
4ma cos(oot) no )+ 8(Vo+asin(wt)) %

0v£‘%)
M |-

(18)

4ma cos(wt)vno +8(Vo+asin(wt))

Equation (17) represents the time behavior of the main equation

(5) for the first seven modes with small bending stiffness terms.

The second sum in equation (17) represents the influence of the

beam with string effect model. In the first sum in (18) there still
is the influence of the string model. So there is an interaction

between the two models. In (18) the bending stiffness terms are

now of leading order. The solution of th@(1)-problem is

given by:
v = Ao (ty) sin(QMto) + Bro(tr) cos Qo) k=1,2,...,7.  (19)
The solution of thed(1)(?-problem is given by:
V2 = A(t) sin(QPto) + Bio(tr) cogQPt), k=8,9,....  (20)

In (19) and (20)Q|((1> and Q|(<2> are given by (11).A(t1) and
Byo(t1) are still arbitrary functions and can be used to avoid secu-
lar terms in the solutions of th@(e)(M-problem and the(g)(?)-

problem. TheO(g)V) equation now becomes:

0Byo

2, (1)
g == sn(Qf(1>to)>

oG
— C]_k4 (Ako(tl) Sin(Q&l)to) + Byo(ta) COQQk )to)>
+ z {
+8(Vo+asin(wt))Q

+ 2\

+8(Vo+a sm(wt))

+@)ad = o <0Ako cos(@tg) - &

mCos(ux)Ano(tl)sm(Q( 'tg) + Bro(ts) cos( Q1) -
21

oV (AnO(tl) cog Qo) — Bro(ty) sin(Q(n”to)) }

—doxt cos(t) Avo(t) sin(QPto) + Bro(ty) cog Q' Pto)

n (An(](tl) COng to) — BnO(tl) sin(Qﬁ,Z)to)> } s
and theO(g)(® equation is given by:

R
at 2

+z{

+8(Vo+a sm(wt)) n

+ 2\

+8(Vo+asin(wt))Q

aBko

(42,1 _
+(@?) "

vy = —20) sin(QPty

? (2 cosafto) -

)
—Auxt cos(t)Anol(ty) sin(Q{Pto) + Bro(ty) cog QPto)

(22)

(AnO(tl) cog Qo) — Bro(ty) sin(Q(n”to)) }

— ot cos(t) Avo(t) sin(QPto) + Bro(ty) cos QPto)
,(12) (An(](tl) COngz)to) — BnO(tl) sin(Qﬁ,Z)to)> } .

From equations (21) and (22) it can readily be seen that there
are infinitely many values ab that can give rise to internal res-
onances. It fact these values are (in@(e) neighborhood of):

(i) w0 =10 “,fornk 1,2,...,7,

(i) wiQ(z):i m,fork 1,2, .,7,andn:8,9,...,
(|||)wi§2<1):i (2),forn_12 .., 7,andk=28,9,...,
(iv) wiQﬁz)_i I(<),forn—89 ..,andk=8,9,....

(23)

For all resonant cas€$)-(iv) the additional condition that
k+nis an odd number, still holds due to summation in (15). By
interchanging andk, the resonant cagé) (derived out of the
0(g)M-problem) becomes the resonant céig (derived out of
the O(g)(?-problem). The resonant cadé¢is a resonance condi-
tion for the string equation, and has been investigated in [1]. The
resonant cas€iv) is a resonance condition for the beam with
string effect equation. The solutions and stability conditions for
this case can be found in [2]. Due to the interactions of these
two simplified models the model as proposed here, there are ad-
ditional resonant condition@i ) and (iii ), wherew might be the
sum or difference of one natural frequency of the string and one
natural frequency of the beam with string effect. It is also neces-
sary to investigate additionally @ in the resonant cagg) also
satisfies the cas€8), (iii ), and(iv), and vice versa.
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THE NON-RESONANT CASE. transient “from string to beam” behavior, based on the calcula-
In this case it is assumed that the frequenof the velocity- tion of the natural frequencies have been proposed. The influence

fluctuations of the axially moving continuum is not equal to any of the bending stiffness on the time behavior of an approximate

combination of the resonance frequencies as listed in (23). To solution of the problem has been studied. The regions of appli-

eliminate the secular terms in the solution of tb(e)<1>-problem cability of the simplified models were found for different values
and theO(g)@-problem it follows thatg andByg have to sat- of the bending stiffness parameter and the relative error. It turns
isfy: out that there are infinitely many values @fthat give rise to
internal resonances in the axially moving belt system. In fact,
3 that happens whem is equal to any sum or difference combina-
% - _Cl_Bk07 tion of the natural frequencies of the string and (or) the stretched
diy 32 (24) beam equations. The correction to the natural frequencies has
dBio _ %Ako, for1<k<7, been found in the non-resonant case. The formal approximation
dy 2 of the solution and stability analysis in the resonant case will be
presented in the forth coming paper [12].
and
dBsy (25)
—— =0, for8< k< .
dt;

In this case system (24) can be seen as some sort of correction
on the slow timetg) behavior of the solution in the first seven
vibration modes due to presence of the small bending stiffness
term in theO(g)(M-problem.

SOME RESONANT CASES.
The following resonant cases will be investigated in the pa-

per[12]: w=m" (wherem" is any odd numberjp= ng) — Qéz)
(a difference type of resonance)= Q(ll> — Qéa (an additional

difference type of resonancep = Qéz) + ng) (a sum type of

resonance)w = Q<11) + Qéz> (an additional sum type of reso-

nance),w = Q(71> — Qéz) (an additional difference type of reso-

nance),w = Q(71) + Qéz> (an additional sum type of resonance),

andw = 2(2,(32> (a principal parametric resonance). The conclu-
sions about the stability of the axially moving continuum will
also be presented for these cases in [12].

CONCLUSIONS AND REMARKS

In this paper an initial-boundary value problem for a linear
equation, describing an axially moving stretched beam has been
studied. This equation can be used as a model for the transversal
vibrations of a conveyor belt system. The axially moving belt
is assumed to move in one direction with a hon-constant speed
V(t), that is,V(t) = (Vo + asin(wt)), where 0< £ <« 1, and
whereVp,a andw are positive constants. F¥j it is assumed
thatVp > 0 andVp > |a|. A new model approach describing the
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