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Abstract

We address the issue of the quality of hybrid simulation, an experimental method used in earthquake engineering to
examine the response of structural systems to dynamic excitation. After describing the typical sources and the effects
of measurement and actuation errors, we present a reachability-based formulation of error propagation in hybrid
simulation. This approach predicts possible (sets of) states of a structural system under dynamic loading for all (sets
of) perturbations acting on the system. We compute ellipsoidal approximations of these sets. Finally, we demonstrate
the reachability analysis approach on a few canonical dynamic problems.

I. Introduction

TheGeorge E. Brown Jr. Network for Earthquake Engineering Simulation(NEES) spurred renewed interest in hybrid
simulation for earthquake engineering in the US and worldwide. New modeling concepts, such as geographically dis-
tributed hybrid models, new simulation algorithms, new methods of integrating numerical and physical substructures,
and new ways of speeding up the test were proposed and evaluated experimentally using NEES. Yet, it is not clear how
to compare the accuracy of the numerous hybrid simulations done to date. The question “how good was your test?”
remains unanswered.

Hybrid simulation is an experiment-based method for investigating the dynamic response of structures to a time-
varying excitation using a hybrid model. A hybrid model of structural systems is an assemblage of one or more
numerical and one or more experimental substructures. The boundary conditions at the interfaces between these
heterogenous substructures are maintained using data exchange networks. The response of the hybrid model to a
time-varying excitation is obtained by solving its equations of motion using a time-stepping integration procedure and
dynamically incorporating measured and computed data. This integration procedure is conducted in the presence of
disturbances such as: model abstractions and approximations, random measurement errors, systematic experimental
errors, actuation servo-control errors, numerical integration algorithm errors, noise and delay in data communication
networks. Disturbances in hybrid simulation are the cause of discrepancies between the response of the model and
the response of the prototype to the same excitation. Furthermore, accumulation of disturbances may lead to an
unrecoverable loss of stability and forced premature termination of a hybrid simulation experiment.

In this article, we propose the use of reachability analysis to evaluate the quality of a hybrid simulation experiment.
Reachability analysis is a control theory method to predict possible (sets of) states of a dynamic system for all (sets of)
perturbations acting on the system. While a number of studies to evaluate and examine the effect of errors on hybrid
simulation experiment outcome have been conducted to date (Shing and Mahin, 1990), reachability analysis has not
been used in this context. We present a reachability-based formulation of measurement and excitation error propaga-
tion in a dynamics experiment to establish measures of experiment quality based on an ellipsoidal approximation of
reachable state sets.

This article is organized as follows. In Section II, a simplified model of structural systems is presented. Section III
provides a reachability-based formulation of the hybrid simulation problem, while Section IV instantiates this ap-
proach to ellipsoidal reachability approximations. Section V presents simulation results of reachable sets computation
for structural systems under harmonic excitations and free vibrations. Finally, Section VI presents our concluding
observations.
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II. Mathematical Model of Structural Systems

In this section, we present a simplified mathematical model of numerical substructures of a hybrid model, in order to
use reachability theory as an analysis tool for the quality of hybrid simulation. We neglect the material and geometric
nonlinearities in order to emphasize the reachability framework. We will consider a more detailed structural model in
our future work.

Figure 1:Structural model used for this study.

The equation of motion governing the displacementu (t) = (u1 (t) , u2 (t) , · · · , un (t))T of the idealized structure of
Figure 1, assumed to be linearly elastic, subject to an external dynamic forceP (t) = (p1 (t) , p2 (t) , · · · , pn (t))T , is
given by

Mü(t) + Cu̇(t) + Ku(t) = P(t) (1)

whereM, C andK are the mass matrix, the damping matrix and the elastic constant matrix:

M =




m1 0 . . . 0
0 m2 . . . 0
...

...
. . .

...
0 0 . . . mn


 C =




c1 + c2 −c2 . . . 0
−c2 c2 + c3 . . . 0

...
...

. ..
...

0 0 . . . cn


 K =




k1 + k2 −k2 . . . 0
−k2 k2 + k3 . . . 0

...
...

.. .
...

0 0 . . . kn




wheremi, ui, ki, ci, pi(t), (i = 1, · · · , n) are the mass, relative displacement with respect to the ground, linear
elastic stiffness coefficient, linear viscous damping coefficient and the excitation (control input) acting on thei-th
mass, respectively. Using a space state description for dynamic systems, knowing thatM is invertible and denoting

X (t) =
(

u(t)
u̇(t)

)
, we can rewrite the system (1) in the form oflinear time-invariant(LTI) dynamic systemẊ(t) =

AX(t) + BP(t) with A =
(

0 I
−M−1K −M−1C

)
andB =

(
0

M−1

)
. Simplifying the notation, in the next

sections we will denote a linear structural system asẋ(t) = Ax(t) + Bu(t), with control inputu(t) = P(t).

III. Reachability Theory for Linear Time-Invariant Systems

In this section, we summarize known results for reachability for LTI systems. We consider a LTI system of the form:

ẋ(t) = Ax(t) + Bu(t), t ≥ t0

x(t0) = x0

(2)

wherex(t) ∈ Rp is the state,u(t) ∈ Rq is the control input,A ∈ Rp×p is the dynamics matrix andB ∈ Rp×q is the
input matrix. The state matrix transition is defined by the following equations:

∂Φ(t, t0)
∂t

= AΦ(t, t0), t ≥ t0

Φ(t0, t0) = I.

(3)
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The nominal trajectory, solution of system (2), is given by

x (t, t0, x0, u(·)) = Φ (t, t0)x0 +
∫ t

t0

Φ(t, τ) Bu (τ) dτ, t ≥ t0. (4)

Definitions of initial state and inputs.We callX0 the set of

Figure 2:Evolution of the reachable set.

initial states andU the set of control inputs. We assume that
X0 ⊂ Rp andU ⊂ Rq are compact sets. Furthermore, we as-
sume that the control inputu(t) and the initial conditionx(t0)
are restricted to the following sets:u (t) ∈ U andx (t0) ∈ X0.

Definitions of input functions.The space of control input func-
tions U(t) is given byU(t) = {η : [t0, t] −→ U | η is
measurable}. We denoteu(·) the control input functions and
we assume that it is restricted to the following functional space
u (·) ∈ U(t).

Definition of reachable set.The reachable setX (t, t0,X0, U(t))
at time t > t0 from an initial setX0 is the set of all states
x(t) reachable at timet by the system (2) from an arbitrary
x0 ∈ X0 through an arbitrary controlu(·) ∈ U(t). The
reachable setX (t, t0,X0, U(t)) can be expressed byX (t) =
X (t, t0,X0, U(t)) = {x (t, t0, x0, u(·)) | x0 ∈ X0 andu(·) ∈
U(t)}.

A graphical representation of all the sets and trajectories defined above is shown in Figure 2.

IV. Ellipsoidal Approximations of Reachable Sets

In this section, we instantiate the reachability analysis formulation for linear systems using ellipsoidal approxima-
tions of reachable sets. Ellipsoidal techniques for reachability analysis oflinear-time varyingsystems, introduced by
Kurzhanski and Varaiya (2000), parameterize families of external and internal ellipsoidal approximations of reachable
sets by constructing them such that they tangent the reachable sets at every point of their boundary at any instant of
time. These approximations, described through ordinary differential equations, are implemented using theEllipsoidal
Toolbox(ET) by Kurzhanskiy and Varaiya (2006). Starting from reachability theory for linear systems, summarized
in Section III, we instantiate the ellipsoidal approximations of the reachability problem as follows.

Definition of ellipsoidal set. A generic ellipsoidal setE(z(t), Z(t)) ⊂ Rp is defined asE(z(t), Z(t)) = {u :
〈(u− z(t)), Z−1(t)(u− z(t))〉 ≤ 1} with z(t) ∈ Rp (the center of the ellipsoid) andZ(t) ∈ Rp×p positive defi-
nite “shape” matrix function continuous int.

Definition of support function of a set.Let K be a nonempty subset of a Banach spaceX. The support functionρ of
the setK with any continuous linear formp ∈ X∗ is a functionρK : X∗ → R ∪ {+∞} defined by

ρK (p) := ρ(K, p) := sup
x∈K

〈p, x〉 ∈ R ∪ {+∞}.

Specific case of an ellipsoid.The support functionρ of the ellipsoidal setE(q(t), Q(t)) with any vectorl ∈ Rp is
given by

ρE(q(t),Q(t))(l) = ρ(E(q(t), Q(t)), l) = 〈l, q(t)l〉+ 〈l, Q(t)l〉1/2
.

We consider the system (2) in which, the initial conditionx(t0) and the control inputu(t) are restricted to the following
setsx(t0) ∈ X0 andu(t) ∈ P(t), whereX0 = E(x0, X0) andP(t) = E(q(t), Q(t)) are ellipsoidal sets. We give the
following definitions.
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18th Engineering Mechanics Division Conference (EMD2007)

Definition of reachable set by ellipsoidal technique.Given a set of initial positionsX0, the reachable setX (t, t0,X0, Π(t))
at time t ≥ t0, from this setX0, is the setX (t, t0,X0, Π(t)) of all statesx(t, t0, x0, u(·)) reachable at timet by
the system (2) withx(t0) = x0 ∈ X0, through all possible controlsu(·) that satisfy the constraintu(·) ∈ Π(t),
whereΠ(t) = {ξ : [t0, t] −→ P(t) | ξ is measurable}. The reachable setX (t, t0,X0, Π(t)) can be expressed by
X (t, t0,X0, Π(t)) = {x (t, t0, x0, u(·)) | x0 ∈ X0 andu(·) ∈ Π(t)}.

Definition of external ellipsoidal approximation of a reachable set.An external approximationE+ of a reachable set
X (t, t0,X0, Π(t)) satisfiesX (t, t0,X0, Π(t)) ⊆ E+. It is tight if there exists a vectorl ∈ Rp such thatρ(E+,±l) =
ρ(X (t, t0,X0,Π(t)),±l), whereρ is the support function ofE(q(t), Q(t)).

The reachable setX (t, t0,X0, Π(t)) is a convex-compact set that evolves continuously int. Although the initial set
X0 = E(x0, X0) and the control setP(t) = E(q(t), Q(t)) are ellipsoidal sets, the reachable setX (t, t0,X0, Π(t)) will
in general not be an ellipsoid. The reachable setX (t, t0,X0,Π(t)) may be approximated both externally and internally
by ellipsoidal sets. In our work, we will consider the external ellipsoidal approximationsE+, because this represents a
conservative approximation (it accounts for all possible perturbations in the allowed set of perturbation).

V. Ellipsoidal Reachable Sets Computation for Structural Systems

In this section, we compute the reachable sets for low-dimension (small number of degrees-of-freedom) linear struc-
tural systems, for free vibration and harmonic excitation cases, by using ellipsoidal external approximations of reach-
able sets. Consider the equation (2) for a single degree-of-freedom (SDOF) structural system:

[
ẋ1

ẋ2

]
=

[
0 1
− k

m
− c

m

] [
x1

x2

]
+

[
0
1
m

]
[

u
]

(5)

wherex1 andx2 are the position and the velocity of the massm, respectively. We consider the following system

parameter valuesm = 1 kg andk = 1 N/m, giving a natural frequencyωn =
√

k
m

= 1 rad/sec, a natural period

Tn = 2π
ωn

= 6.28 s and a critical damping coefficientcr = 2k
ωn

= 2 Ns/m. Settingu = 0 in (5), we first examine

the free vibration response of the system. Given the initial timet0 = 0 s, the time intervalT = [t0, t] = [0, 40] s,

the set of initial conditionsX 0 = E(x0, X0) = E
( [

0 1
]T

, 5 · 10−2 ·
[

1 0
0 1

] )
, with initial displacement of

0 m and initial velocity of1 m/s, and the control inputu(t) ∈ P(t) = E(q(t), Q(t)) = E
( [

0
]
, 10−16 · [ 1

] )
,

we compute the reachable setX (t, t0,X0,Π(t)) for a SDOF system during free vibration. Figure 3 shows the free
vibration response of anundamped systemand anunderdamped systemdefined by settingc = 0 andc = 0.1cr (10%
damping ratio), respectively.

Figure 3:Free vibration response of a SDOF system.Left: Undamped system. Right: Underdamped system.
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Second, we consider the same system (5) subjected to a harmonic excitation, starting with the equilibrium point
[x1, x2]T = [0, 0]T . In the same time intervalT = [0, 40] s, we consider the set of initial conditionsX 0 =

E(x0, X0) = E
( [

0 1
]T

, 10−1 ·
[

1 0
0 1

] )
and the control inputu(t) = 1 · sin(0.5 · ωnt) N defined in

the ellipsoidal setP(t) = E(q(t), Q(t)) = E
( [

1· sin(0.5 · ωnt)
]
, 10−16 · [ 1

] )
. We compute the reachable

setX (t, t0,X0, Π(t)) of (5) subjected to harmonic excitation for two different values of the damping coefficient used
previously. Figure 4 shows the results of a harmonic response for a nonresonatingundampedand a nonresonating
underdampedsystem.

Figure 4:Harmonic response of a SDOF system.Left: Undamped system. Right: Underdamped system.

Finally, in the same time interval and with the set of initial conditionsX 0 = E(x0, X0) = E
( [

0 0
]T

,

[
1 0
0 1

])
,

we consider an harmonic excitationu(t) = 1 · sin(ωnt) N acting on the system (5) and defined in the ellipsoidal set

P(t) = E(q(t), Q(t)) = E
( [

1· sin(ωnt)
]
, 10−16 · [ 1

] )
. Figure 5 shows the results for anundampedand an

underdampedsystem at resonance obtained using the Ellipsoidal Toolbox and by direct integration of the ordinary
differential equation (5).

Figure 5:Resonance response of a SDOF system.Left: Undamped system. Right: Underdamped system.

In all cases, we have shown the comparison between the direct integration of the ordinary differential equation (5) and
the external ellipsoidal approximation of the reachable set obtained using the Ellipsoidal Toolbox. The trajectories
of the LTI structural system, computed by direct integration of the equations of motion, are contained in the external
ellipsoidal approximation of the structural systems’ reachable set, obtained using the same dynamic excitation. The
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18th Engineering Mechanics Division Conference (EMD2007)

initial conditionsx0 and the control inputu(t) belong to ellipsoids with shape matrix characterized by small eigen-
values in both free vibration and harmonic excitation cases. In this sense, the ellipsoidal reachability approach for
hybrid simulation enables us to model the uncertainties due to errors in measurement of initial conditions and control
input (excitation) errors made by actuation, using an appropriate shape matrix for initial and input sets. Furthermore,
we are able to estimate the extent of error propagation during time evolution of the trajectory of the structural system
under dynamic load. An analytical relation between the size of the control set and the size of the reachable set, at
given timet, can be obtained because the system is linear. Considering the nominal trajectory (4) of a LTI system and
assuming that the termu(·) is not known exactly, but that it belongs to a tube (created by evolution during timet of
the ellipsoidal control input set), we obtain that the radius of the reachable set at timet is less than a prefixed positive
quantityµ, if we choose the shape matrixQ(t) of the ellipsoidal control set such that

∫ t

t0

emax(svd(A(t−τ))) ·Mdτ ≤ µ (6)

whereM is the maximum on[t0, t] of the maximal eigenvalue ofBQ(t)BT andsvd(A) is the vector of singular
values ofA. The equation (6) can be derived from (4), considering thatu(t) ∈ E(q(t), Q(t)). Finally, based on
the reachability analysis of theunderdamped systems,we observe that the size of the ellipsoidal approximation tube
decreases as damping of the system increases. Thus, increased damping may reduce the effect of random errors in
hybrid simulation experiments.

VI. Conclusions

We presented a reachability-based approach for linear time-invariant structural systems and we computed ellipsoidal
approximations of the reachable sets, considering errors in estimating the initial conditions and in applying external
excitation. We are proposing to use the size of the ellipsoidal approximation of reachable sets as the measure of quality
of a dynamic experiment in two ways. First, the maximum size of the ellipsoidal approximation of the reachable set
indicates the maximum error in a dynamics experiment, giving a direct measure of experiment quality. Second, the
evolution of the ellipsoidal approximation (the shape of the tube enveloping the actual trajectory in the figures) during
a dynamics experiment depends on the parameters of the dynamical system and on the magnitude of errors, thus
allowing the experimentalist the control of the quality of a dynamic experiment. The reachability analysis approach
can be readily extended to hybrid simulation, given that it is a special case of a dynamic experiment conducted using
a hybrid model. Work to extend our findings to non-linear multi-degree-of-freedom hybrid models with time-delay
under earthquake excitation is ongoing.
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