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We propose a subspace-tracking-based space-time adaptive processing technique for airborne radar applications. By applying a
modified approximated power iteration subspace tracing algorithm, the principal subspace in which the clutter-plus-interference
reside is estimated. Therefore, the moving targets are detected by projecting the data on the minor subspace which is orthogonal
to the principal subspace. The proposed approach overcomes the shortcomings of the existing methods and has satisfactory
performance. Simulation results confirm that the performance improvement is achieved at very small secondary sample support,
a feature that is particularly attractive for applications in heterogeneous environments.

1. Introduction

The primary goal of airborne ground moving target indi-
cator (GMTI) radar is to detect and estimate the physical
location of moving targets. Therefore, the clutter mitigation
approach, that is, space-time adaptive processing (STAP)
technique, must be employed to separate moving targets
from stationary clutter. In essence, STAP combines spatial
and temporal degrees of freedom to design a bidimension
filter. It is recognized as central to effectively eliminate
interference since the publication of Brennan and Reed [1],
and the basic theory has been well developed in [2–5].

The optimal STAP processor derives a data-dependent
weighting vector which can offer a significant increasing
in output signal-to-interference-plus-noise ratio (SINR).
However, this calculation requires the knowledge of the
space-time covariance matrix at the cell under test (CUT).
Two major reasons that have restrained its application in
practice are the high computational cost and the substantial
amount of stationary sample support (also called secondary
data). These issues have motivated the development of
suboptimal methodology such as reduced-rank STAP [6–
11] and multichannel parametric STAP [12–15]. A recent
overview of these algorithms can be found in [16].

Moreover, the STAP algorithm which is based on the
use of subspace projection has been shown to be an
attractive approach for rank reduction and can achieve
good performance with very little sample support, since
only the principal subspace needs to be estimated. The
estimation of the principal subspace is commonly based on
the traditional eigenvalue decomposition (EVD) or singular
value decomposition (SVD). However, the main drawback of
these decomposition approaches is that they are inherently
computationally expensive. Therefore, a large number of
algorithms have been proposed for performing the fast
subspace tracking task. See [17–19] and references therein
for some early work and [20, 21] for samples of more recent
work.

We present here a new post-Doppler subspace-based
STAP approach which is performed in two stages. The first
step is used to recursively calculate the principal subspace.
Once the signal subspace has been calculated, the adaptive
weight vector can be achieved with the use of subspace
projection in the last stage. This algorithm presents several
advantages such as the following: an orthonormal subspace
basis is computed at each updating step, the computational
cost can be significantly reduced, the dimension of the
dominant subspace can be adaptively determined, and
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convergence comparable with subspace estimation using the
EVD can be achieved.

The paper is organized as follows. In Section 2, the
subspace-based STAP algorithm and the dominant subspace
tracking method are briefly introduced. In Section 3, our
modified subspace tracking method based on the post-
Doppler adaptive architecture is developed. In Section 4, the
performance of this method is compared to that of several
subspace-based STAP algorithms among which are EVD,
FAPI [22], and OPAST [23]. Finally, the main conclusions
of this paper are summarized in Section 5.

2. Problem Description

2.1. Signal Model. The radar transmitter emits a pulse and
collects samples of the received signal until the next pulse
is emitted. Each of these samples corresponding to a given
range is commonly referred to as “range bin”. For each range
bin, the data at the output of the array is arranged into a
vector x of length M · N , where N is the number of pulses
per coherent processing interval (CPI) and M is the number
of antennas. This space-time data can be more compactly
written as

H0 : x(r0) =
Nc∑

i=1

γic · ai
clu + J + n,

H1 : x(r0) =
Nc∑

i=1

γic · ai
clu + S + J + n,

(1)

in which H0 is the null hypothesis indicating moving target
absence, while H1 is the alternative hypothesis indicating
moving target presence. J represents the contribution of
the jammers and n the additive thermal noise. Nc is the
number of clutter patches considered in range bin r0. γic is
the amplitude, and ai

clu = as
clu( f is ) ⊗ at

clu( f id) is the space-
time steering vector associated with the ith clutter patch.
f is represents the spatial frequency and f id the Doppler
frequency. as

clu( f is ) represents the spatial steering vector
and at

clu( f id) the temporal steering vector. “⊗” denotes the
Kronecker tensor product. S = γt · atar is the moving target
term, where γt and atar denote the target amplitude and the
target space-time steering vector, respectively.

2.2. Subspace-Based STAP Algorithm. The weight vector of
the linearly constrained minimum variance (LCMV) is given
by

wopt = R−1
H0

(r0)atar, (2)

where RH0 (r0) is the space-time covariance matrix under null
hypothesis, and “(·)H” is complex conjugate transpose. In
practice, RH0 (r0) is unknown and needs to be estimated from
the training data, in which case

wopt = R̂−1
H0

(r0)atar, (3)

where R̂H0 (r0) is the sample covariance matrix which can be
formed from a sufficiently larger number L of range bins

adjacent to the range r0. It is also referred to as the sample
matrix inversion (SMI) algorithm.

Note that the clutter-plus-jammer component exists in a
relatively low dimensional subspace of theM·N-dimensional
space of the space-time data. Let R̂H0 (r0) = UΛUH be the
eigenvalue decomposition of the sample covariance matrix.
Let ES be the matrix consisting of the columns of U
associated with the largest p eigenvalues. Then, ES is the
rank-p approximation to the clutter-plus-jammer subspace,
which we call the principal subspace or the signal subspace.
The remaining columns of U span a subspace orthogonal to
ES, which we denote by EN and call the minor subspace or the
noise subspace. Therefore, the weight vector can be rewritten
as

wopt =
(

ESΛ
−1
S EH

S + ENΛ
−1
N EH

N

)
atar, (4)

where ΛS is the diagonal matrix consisting of the largest p
eigenvalues and ΛN consisting of the smallest M · N − p
eigenvalues.

Since we chose p so that ζ = tr(ΛS)/ tr(Λ), it can be very
close to unity where “tr(·)” is the trace operator. Moreover,
each of these smallest M ·N − p eigenvalues is approximately
identical. Therefore, the subspace-based weight vector in the
so-called principal component canceller is given by,

wSP =
(

IM·N − ESEH
S

)
atar = ENEH

Natar, (5)

where IM·N denotes an identity matrix of dimension M ·N .
Thanks to the rank-reduction nature of the space-time

correlation matrix, the subspace-based methods are known
to converge faster than SMI with very little sample support.
Popularly, the size of the secondary data sample set of the
principal component canceller approach can be reduced
to L ≥ 2 · p. However, the algorithm is computationally
costly, since the very expensive EVD of space-time covariance
matrix, involving O((M ·N)3) complex operations, is still
included.

2.3. Introducing Subspace Tracking into STAP Algorithm. The
complexity of the dominant subspace estimation with EVD
procedure can be reduced by adopting subspace tracking
method. These subspace trackers are based on the minimiza-
tion of the mean square error according to the following cost
function:

J(US) = E
〈∥∥∥x(rk)−USUH

S x(rk)
∥∥∥

2
�

, (6)

where x(rk) denotes the data vector observed on secondary
range bins, and US ∈ CM·N×p is the p-dimensional dominant
subspace which is spanned by the correlation matrix. The
dominant subspace can be reliably estimated, since this cost
function has a single global minimum which is attained for
US = ESQ, where Q ∈ Cp×p and QHQ = QQH = Ip.

In spite of the fact that different subspace tracking
methods can be derived, here, we are more particularly
interested in the FAPI algorithm [22], which is a good
candidate owing to its efficiency and robustness. To provide
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a better estimation of the dominant subspace, the cost
function in FAPI algorithm is replaced by

J(US(L)) =
L∑

k=1

βL−k
∥∥∥x(rk)−US(L)UH

S (L)x(rk)
∥∥∥

2
, (7)

in which 0 < β ≤ 1 is the forgetting factor, and US is replaced
by US(L).

The key of this algorithm is the assumption of US(L− 1)
exactly spans the p-dimensional dominant subspace of the
correlation matrix, Therefore, US(L) and US(L − 1) are two
orthonormal matrices spanning the identical range space,
that is, US(L) = US(L − 1)Θ(L), where Θ(L) = UH

S (L −
1)US(L) is a p × p orthonormal matrix. The derivation of
the FAPI algorithm is not given here, since it can be found
in detail in [22]. Note only that a particular selection for the
Θ(L) matrix can reduce the computational cost dramatically,
and the dominant subspace is obtained from the power
iteration and projection approximation method.

Once the principal subspace was estimated, the subspace-
based weight vector is then

wSP(L) =
(

IM·N −US(L)UH
S (L)

)
atar. (8)

3. Modification of FAPI for Post-Doppler STAP

3.1. Motivation of the Proposed Algorithm. Two factors
affect the direct use of FAPI for the fully adaptive STAP
application. First, since the FAPI algorithm updates all dom-
inant eigenvectors per iteration, it propagates the error of
eigenbasis derivation. This error propagation consequently
decreases the convergence rate of the dominant subspace.
Second, either adopting subspace methods or not, all the
characteristics of the received data, such as clutter locus, are
not taken into consideration in fully adaptive STAP.

In fact, an improved performance of convergence rate can
be achieved if the aforementioned error propagation effect
can be avoided. Moreover, using the partially adaptive archi-
tecture, the performance of SINR loss can be improved. Note
that the post-Doppler approaches, which provides a good
tradeoff between detection performance and computational
burden, are indeed the most popular among others. That is
why only a modified FAPI method for post-Doppler STAP
will be considered in here.

3.2. Description of the Proposed Algorithm. Let q denote the
number of adjacent Doppler bins. Therefore, for a given
range gate rl and Doppler frequency f nd , the (q + 1)M × 1
post-Doppler data vector can be written as

xJ

(
rl, f nd

)
=
[

x
(
rl, f nd

)T
x
(
rl , f

n1
d

)T
· · · x

(
rl , f

nq
d

)T
]T

,

(9)

in which { f njd }
q

j=1 is a set of adjacent Doppler bins around

f nd , and (·)T denotes transpose. The typical structure for
obtaining x(rl, f

nj
d ) is presented in Figure 1.

Then, instead of updating all dominant eigenvectors per
iteration, we will estimate principal eigenvectors sequentially

Doppler filtering Doppler filtering

Stack the M element outputs
into a space snapshot

T T T T

M elements
· · ·

N pulses

f
nj
d

· · · · · · · · · · · ·
f
nj
d

x(ri, f
nj
d )

Figure 1: Representations of space snapshot for given range gate rl
and Doppler frequency f

n j
d .

utilizing all training data. Let v1(l) be the most dominant
eigenvector, and the reciprocal of z1(l) is the corresponding
eigenvalue at the lth iteration. The estimation procedure
based on FAPI is presented as follows:

Initialization : v1(0) =
⎡
⎣

1

0((q+1)M−1)×1

⎤
⎦z1(0) = 1,

for l = 1 to L post-Doppler snapshots do

y(l) = v1(l − 1)HxJ

(
rl , f nd

)
,

g(l) = z1(l − 1)y(l)(
β + z1(l − 1)

∥∥y(l)
∥∥2
) ,

ε2(l) =
∥∥∥xJ

(
rl , f nd

)∥∥∥
2
−
∥∥y(l)

∥∥2,

τ(l) = ε2(l)(
1 + ε2(l)

∥∥g(l)
∥∥2 +

√
1 + ε2(l)

∥∥g(l)
∥∥2
) ,

η(l) = 1− τ(l)
∥∥g(l)

∥∥2,

y′(l) =
⎛
⎝η(l) +

τ(l)z1(l − 1)(
β + z1(l − 1)

∥∥y(l)
∥∥2
)

⎞
⎠y(l),

σ(l) = τ(l)
η(l)

(
1− y′(l)∗g(l)

)
z1(l − 1)g(l),

z1(l) =
(
z1(l − 1)− g(l)z1(l − 1)y′(l)∗ + σ(l)g(l)∗

)

β
,

v1(l) = v1(l − 1) + g(l)∗
(
η(l)xJ

(
rl, f nd

)
− y′(l)v1(l − 1)

)
,

End
(10)

where (·)∗ is complex conjugate.
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Once the first eigenvector v1(L) has been achieved, the
clearing operation removes the projection of each training
snapshot onto v1(L) can be written as

for l = 1 to L post-Doppler snapshots do

y(l) = v1(L)HxJ

(
rl , f nd

)
,

xJ

(
rl, f nd

)
= xJ

(
rl, f nd

)
− v1(L)y(l).

End

(11)

Since all training data are projected onto the same eigenbasis,
the error propagation cased by the eigenbasis deviation
is avoided. Now, the second dominant eigenvector v2(L)
is the most dominant one in {xJ(rl, f nd )}Ll=1 and can be
obtained in the same way as v1(L) described in (10). Thus, all
desired eigenvectors can be worked out sequentially, which is
referred to as m-FAPI algorithm and described as follows:

for p = 1 to P principal eigenvectors do

{
xJ

(
rl, f nd

)}L
l=1

,

estimate vp(L) and zp(L)

Orth
(

v1(L) · · · vp(L)
)

,

for l = 1 to L post-Doppler snapshots do

y(l) = vp(L)HxJ

(
rl, f nd

)
,

xJ

(
rl, f nd

)
= xJ

(
rl , f nd

)
− vp(L)y(l),

End

End

(12)

where Orth(v1(L) · · · vp(L)) denotes the operator
in which an orthonormal basis for the range of
[v1(L) · · · vp(L)] can be obtained.

Remark 1. We clarify that our goal here is not to justify
whether the partially adaptive STAP approaches with FAPI
are of appropriateness or not. An answer to the question can
be found in [22], where it is shown that the FAPI algorithm
is very powerful and efficient in tracking the principal
subspace. Since the m-FAPI algorithm extracts principal
eigenvectors sequentially utilizing all training data, the error
propagation caused by updating all dominant eigenvectors
per iteration will be avoided. The comparison between the
subspace estimation error with m-FAPI and that with FAPI
will be investigated in Section 4.

Remark 2. Perhaps the biggest difficulty associated with
adopting a principal subspace tracker for STAP is determin-
ing what subspace dimension results in the best performance.
The assumption that the subspace dimension is known
is only used to simplify our presentation. In practice,
adopting the well-known selection techniques, such as the

Akaike information criterion (AIC) [24] and the minimum
description length- (MDL-) [25] based techniques, the
subspace dimension can be adaptively determined with
{zp(L)}Pp=1. Although robustness of the subspace dimension
selection would be of value in real application, it is beyond
the scope of the current paper.

Remark 3. We would like to point out that the orthonormal-
ity between the estimated eigenvectors cannot be guaranteed
by adopting only the clearing operation due to a numerical
stability problem and noise, especially when the dimension
of the estimated subspace is larger than that of the true dom-
inant subspace and/or the train data set is small. However,
our m-FAPI algorithm can guarantee the orthonormality
between the estimated eigenvectors at each iteration.

4. Simulation Results

In this section, two simulations are provided to illustrate the
effectiveness of our proposed approach. Firstly, the perfor-
mance of the subspace estimation is analyzed according to
the following estimation error cost function:

fU(L)

= 20 log10

(∥∥PU(L) − PES

∥∥) + 20 log10

⎛
⎝

∥∥∥U(L)HU(L)− IP

∥∥∥
∥∥∥EH

S ES − IP

∥∥∥

⎞
⎠

,

(13)

where PU(L) = U(L)(U(L)HU(L))
−1

U(L)H and PES =
ES(EH

S ES)
−1

EH
S denote the projection matrix that projects

onto the column space of U(L) (obtained with the sub-
space tracker) and ES (obtained via an exact eigenvalue
decomposition), respectively. In this simulation, we use
an eleven-element uniform linear array (ULA) with half
wavelength interspacing and consider four uncorrelated
signals coming from [−200 00 150 300], that is, M = 11
and P = 4. For the sake of simplicity, we are assuming
that the dimension of the dominant subspace is exactly
known. The forgetting factor of the m-FAPI and the
FAPI approach is β = 0.99. This estimation error fU(L)

versus sample number is shown in Figure 2(a) with 1000
Monte Carlo trials, and the single-to-noise ratio (SNR)
is given by [20 dB 20 dB 20 dB 20 dB]. It can be seen
that the m-FAPI algorithm and the FAPI algorithm reach
the almost same performance with the number of training
data increasing when the tested signals have equal SNR,
except at small sample support, where m-FAPI estimate
better. It also can be noticed that the difference is much
more distinct with the m-FAPI algorithm and the OPAST
algorithm, which means that m-FAPI converges faster. A
similar result is also given in Figure 2(b), where SNR
is given by [30 dB 20 dB 10 dB 20 dB]. In both cases,
the m-FAPI algorithm has best performance among these
algorithms. Moreover, the computational cost of the m-
FAPI is lower (O(L · (q + 1)M · P), where P is the
rank of the clutter covariance matrix for post-Doppler
processing) than the non subspace tracking algorithms under
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consideration (O((L · (q + 1)M)3)) for post-Doppler SMI
and for O((L ·M ·N)3) for full-dimensional SMI.

Secondly, the performance of clutter cancellation is
analyzed based on the SINR loss, which is defined as the
loss in SINR compared with a matched filter in the presence
of white noise only. We consider a side-looking airborne
radar, operating at SS-band with an eleven-element ULA
and using of N = 16 pulses per CPI. Typical platform
velocities are 120 m/s, and the aircraft flies 5 km above the
observed surface. The clutter-to-noise ratio (CNR) is given
by CNR = 30 dB, and the pulse repetition frequency (PRF)
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Figure 4: SINR loss versus normalized Doppler.

has been chosen to avoid both range and Doppler ambiguity
in the main lobe. We apply the EFA-STAP technique [6]
which adaptively combining all spatial channels with three
adjacent Doppler channels. Figure 3 shows the adaptive SINR
loss against sample number, where the target normalized
Doppler frequency equals to 0.25. As seen in the figure, all of
these algorithm reach the almost same performance with the
number of training data increasing. However, the converges
rate of m-FAIP algorithm is much more rapidly than that of
FAPI algorithm and OPAST algorithm, and the SINR loss of
m-FAPI algorithm is quite close to that of EVD algorithm.



6 Journal of Electrical and Computer Engineering

As a finial comparison, Figure 4 provides the SINR loss as a
function of the target normalized Doppler frequency, where
the number of I.I.D training data has been selected as 6. The
deep null in the figure is caused by the location of the clutter
ridge. It is obvious that our method leads to approximately
2 dB performance improvement over FAPI and OPAST and
achieves a performance quite comparable with EVD method
with very small secondary sample support. Similar to the first
simulation, the results support the discussions in Section 3
and illustrate the efficiency of our proposed method.

5. Conclusion

STAP technique is the bidimensional adaptive processing
in space and time which is employed for the purposes of
clutter mitigation to enable the detection of slow moving
targets. In this paper, a new method of partially adaptive
STAP was proposed. The approach is based on the use
of subspace projection, where the principal subspace has
been tracked with m-FAPI algorithm. Both in the terms of
estimation error and SINR loss, the method is proven able
to outperform FAPI and OPAST algorithm. Furthermore,
it is shown that m-FAPI algorithm converges quickly, and
the method achieves clutter mitigation performance quite
comparable with the EVD method. Finally, the proposed
subspace tracking algorithm can be applied as the starting
point of a real-time STAP processor, where the expensive
EVD procedure in eigenvector computation can be avoided.
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