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On Oscillatory Instability 
of Convective Flows at 
Low Prandtl Number 
Numericcd investigation of the o.scillatory instability of convective flows in laterally 
heated rectangular cavities is presented. Cavities with no-slip isothermal vertical 
boundaries, no-slip adiabatic lower boundary, and stress-free adiabatic upper bound­
ary are considered. Dependence of the critical Grashof number and the critical 
frequency of oscillations on the aspect ratio (A = length/height) of the cavity are 
investigated. The .stability diagrams were obtained for the whole interval of the aspect 
ratio 1 ^ A & 10. The study was carried out for two values of the Prandtl number, 
Pr = 0 and 0.015. It was shown that the oscillatory instability sets in as a result of 
the Hopf bifurcation. It was found that at two different values of the Prandtl number 
considered the instability is caused by different infinitely .small dominant perturba­
tions, which means that the convective heat tran.sfer .strongly affects .stability of the 
flow even for cases having .small Prandtl number. No asymptotic behavior for large 
aspect ratios was found up to A = 10. Slightly .supercritical oscillatory flows were 
approximated asymptotically by means of the weakly nonlinear analysis of the calcu­
lated bifurcation. 

Introduction 
The present .study is devoted to numerical analysis of the 

transition from steady to oscillatory state of convective flows 
at low-Prandtl-number in a laterally heated rectangular cavity. 
This problem attracted a wide scientific interest after experi­
ments of Hurle et al. (1974) showed that convective oscillations 
cause lattice structure of a growing crystal in the processes of 
crystal growth from a liquid phase. A particular case of a cavity 
with aspect ratio (length/height) A = 4 has been considered as 
a benchmark at the GAMM Workshop (Roux, 1989), and since 
then has been investigated in detail (see for example Winters, 
1988; Roux, 1989; Ben Hadid and Roux, 1989; Pulicani et al , 
1989; Okada and Ozoe, 1993a, b; Afrid and Zebib, 1990; Gelf­
gat and Tanasawa, 1994; McClelland, 1995 and references 
therein). This particular value of the aspect ratio is characteris­
tic for some crystal growth techniques and was used in the 
experiments of Hurle et al. (1974). However, the dependence 
of the steady-oscillatory transition on the aspect ratio of the 
cavity was not examined. 

In the present study, the dependence of the critical parameters 
(critical Grashof number Gr,.,. and critical frequency w,., of oscil­
lations) on the aspect ratio is investigated for 1 s A s 10, and 
for the following boundary conditions: rigid isothermal vertical 
boundaries, rigid adiabatic lower boundary, and flat stress-free 
adiabatic upper boundary. This con'esponds to the Ra-Fa 
(Rigid/adiabatic and stress-Free/adiabatic horizontal bound­
aries) case defined at the GAMM workshop. Investigation is 
carried out for the same values of the Prandtl number Pr = 0 
and 0.015, which were considered at the GAMM workshop 
(Roux, 1989). Stability diagrams for the whole interval 1 =s A 
==10 are obtained here for the first time. 

The stress-free upper boundary condition (denoted as R-F 
case in the GAMM workshop; Roux, 1989) was taken into 
consideration here because only one branch of steady-state 
flows is known for this case, at least for fluids with small Prandtl 
number (we consider here only Pr = 0 and 0.015). The case 
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of cavity with four no-slip boundaries (R-R case) is more com­
plicated for numerical study because of the existence of multiple 
stable steady states. The existence of two different steady states 
of the flow for A = A was reported by Crespo del Arco et 
al. (1989). Recently, Gelfgat, Bar-Yoseph and Yarin (1997) 
reported the existence of four distinct branches of stable-steady 
states for 3 == A < 10. Besides this, the central symmetry of 
the flow in R-R case may cause symmetry-breaking instabilities 
which makes stability features of the flow in R-R and R-F 
cases considerably different. The stiff dependence of the critical 
parameters on the geometry of the cavity shown here allows us 
to assume that similar stiff dependence on the boundary condi­
tions also exists. 

Choice of the stress-free boundary condition on the upper 
surface is idealization of the practically important model which 
includes also the thermocapillary force (see for example Ben 
Hadid and Roux, 1989; Mundrane and Zebib, 1994) and possi­
ble deformation of the free surface (McClelland, 1995). How­
ever, calculation of the stability maps in the space of several 
governing parameters has to be started by fixing some of them. 
It is a natural choice to set the thermocapillary force and the 
deformation of the free surface to zero for the beginning of 
such study. 

Setting the Prandtl number to zero means that the convective 
transport of heat is neglected. In this case the temperature can 
be evaluated analytically from the steady Laplace equation and 
only the Navier-Stokes equation with the constant buoyancy 
force has to be solved. This allows one to simplify the problem 
which may be important for many practical applications. The 
comparison of the steady-oscillatory transition at zero and small 
Prandtl numbers is one of the objectives of the present study. 
Another objective of the study is to check for which values of 
the aspect ratio it is possible to use the asymptotics of the 
infinite fluid layer (A -* <»; Laure and Roux, 1989). If such an 
asymptotics could be applied to a confined flow, the investiga­
tion of the instability onset, as well as understanding of the 
physics of the phenomenon, will be simplified. 

Formulation of tlie Problem 
The two-dimensional convective flow in a rectangular cavity 

O s x : s A , O s : } ' s l i s described by the dimensionless 
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momentum, energy and continuity equations for a Newtonian 
Boussinesq fluid 

[V, e) ( ; , G r ) = {v„, ^o)(Gr„) 

dv 
— + ( v V ) v = - V p + Av + Gr6ie„, 
at 

— + (\-V)d = — A e , 
dt Pr 

V - v = 0 

(1) 

(2,3) 

Here v is the fluid velocity, 9 is the temperature, p is the pres­
sure, Gr = gl3(6i - 62)H^iiy^ is the Grashof number, Pr = v/ 
X-is the Prandtl number, A = LIH is the aspect ratio, g is the 
gravity acceleration, j3 is the thermal expansion coefficient, (^i 
- ^2) is the temperature difference between the cold and hot 
vertical walls, v is the kinematic viscosity, x is the thermal 
diffusivity, L and H are, respectively, the length and the height 
of the cavity. 

The following boundary conditions are imposed: 

V(A: = 0, 0 s y < 1) = 0, \{x = A,Q ^ y ^ I) = Q 

(no-slip; vertical walls), (4, 5) 

V ( 0 S X < A , 3 ' = 0 ) = 0 (no-slip; bottom), (6) 

Vy{Q &x sA,y = 1) = 0, 
dy 

(0 A,y= 1) = 0, 

(stress-free; flat upper surface) (7, 8) 

^(x = 0, 0 s y < 1) = 1, d{x = A,Osy^\) = Q 

(isothermal; vertical walls) (9) 

d0_ 

dy 
(0 A,y = Q) = —{Q^x^A,y = 1) = 0 

ay 

(thermally insulated top and bottom) (10, 11) 

Computational Method 
Problem ( l ) - ( l l ) was solved using the spectral Galerkin 

method with globally defined basis functions which satisfy ana­
lytically all the boundary conditions and the continuity equation. 
The exponential convergence of the global Galerkin method 
allows us to decrease the number of degrees of freedom (num­
ber of scalar modes in the numerical method), and to investigate 
steady states, their stability and weakly supercritical regimes of 
the flow in the framework of a single computational model (for 
computational details and some preliminary test calculations 
see Gelfgat and Tanasawa (1994)). In particular, it was shown 
that for A — A use of 24 basis functions in horizontal and 10 
basis functions in vertical directions provides accuracy compa­
rable with the finite element method using 60 X 20 biquadratic 
finite elements (Winters, 1988) and the pseudospectral method 
with Chebyshev polynomial expansions using 50 X 20 colloca­
tion points (Pulicani et al., 1989). 

The whole numerical process is as follows. Steady states of 
the flow are calculated by the Newton method. Then the Navier-
Stokes equations are linearized in the vicinity of a stationary 
solution, and the corresponding spectrum and eigenmodes are 
calculated. The critical Grashof number is defined as the value 
at which the real part of the dominant eigenvalue is zero. The 
corresponding eigenvector describes the most unstable perturba­
tion of the flow (the critical eigenmode). After the critical 
Grashof number is obtained, the weakly nonlinear analysis of 
the bifurcation is carried out. The slightly supercritical states 
of the flow are approximated as 

Gr = Gr,, + fxe^ + 0{t'^), 

r (Gr) = — [1 -H r e ' + 0 (6" ) ] , 

+ e Real [VE, 6'fi} exp 
2m 

+ O(e ' ) (14) 

(12, 13) 

Here e is a small formal parameter, T is the period of oscilla­
tions, uj„ is the critical cycle frequency (the imaginary part of 
the dominant eigenvalue at Gr = Gr„.). The subscript 0 defines 
the steady state at Gr = Gr„, and the subscript E defines the 
eigenvector of the linearized Boussinesq equations. The asymp­
totic approximation (12-14) of the oscillatory state is defined 
by two parameters ^ and T, which are calculated using the 
algorithm described in Hassard et al. (1981). Application of 
this algorithm to the dynamic system corresponding to an in­
compressible fluid flow is described in Gelfgat et al. (1996a). 

The convergence of the critical Grashof number and the criti­
cal frequency (/„. = uicrl2ir) is shown in the Table 1 for the 
aspect ratios 1, 4, and 10, respectively. Grashof ntimber in 
Tables 1-3 is redefined as Gr* = Gr/A in according with 
the definitions used in the GAMM benchmark problem (Roux, 
1989). The critical parameters were calculated using different 
number of basis functions in the Galerkin series. Numbers of 
basis functions in x- and y-directions are denoted as N^ and Â ,̂ 
respectively. It follows from Table 1 that for A = 1 and 4 the 
critical parameters Gr *, and /„ converge rapidly with the in­
crease of the number of basis functions. As it is seen from the 
Table 1 the convergence for A = 10 is slower, but two correct 
digits of GVcr and / „ can be obtained with the use of 60 X 20 
basis functions. 

The numerical code has been validated by comparing its 
results with other independent solutions (Tables 2 and 3). It is 
seen (Table 2) that the present results, obtained using the stabil­
ity analysis, are in a good agreement (to within the second or 
the third digit) with the results of Ben Hadid and Roux (1989), 
Pulicani et al. (1990), Le Quere (1989), and Winters (1988). 
The discrepancy with the results of Okada and Ozoe (1993) is 
about 10 percent. An additional comparison with the results of 
the same work for other aspect ratios is shown in Table 3. For 
A = 3, 4 and 5 the discrepancy is also about 10 percent, but at 
A = 2.5 results disagree completely. Since the result of the 
present work for A = 4 is completely validated (see Table 1) 
and is compared better with the results of other numerical stud­
ies, it seems that the results of this reference are not accurate 
enough. 

To ensure convergence, the present calculations were carried 
out using 40 X 30 basis functions for 1 s A < 5 and 60 X 20 
basis functions for 4 < A < 10. In the interval 4 s A < 5 the 
results obtained with the two different truncations coincide to 
within the third digit. 

Results 
Numerical investigation of the spectrum of the steady states 

showed that for the two considered values of the Prandtl num­
ber, Pr = 0 and 0.015, and for the whole interval 1 < A =s 10 
the oscillatory instability sets in due to the Hopf bifurcation. 

The dependence of the critical Grashof number Gr,, on the 
aspect ratio is shown in Figs. 1(a) and 2(a) for 1 < A s 3 
and 3 < A < 10, respectively. Steady flows are stable below 
the curves and unstable above them. The corresponding rela­
tions uJ„{A) are shown in Figs, l ( ^ ) and 2{b). As it is seen 
from Figs. 1 and 2 the curves Gr„(A) and LOcriA) consist of 
several continuous branches corresponding to different domi­
nant perturbations (different eigenmodes of the linearized prob­
lem). These eigenmodes become dominant at different values 
of the aspect ratio and abruptly replace each other at the points 
where the neutral curves Gr„(A) have discontinuities in the 
slope (Figs. 1(a) and 2(a) ) . Switches of the dominant eigen­
mode lead to abrupt changes of the critical frequency (Figs. 
lib) and 2(b)). 
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Table 1 Convergence study for the critical parameters. Gr*. = Gr/A, Â^̂  and Â j, denote number of basis functions 
respectively in x- and y- directions 

Gr* X 10"'' 

u 

Gr* 

N. X N, 
Gr* 

16 X 16 
2.6956 
1474.8 

32 X 18 
19404 
14.916 

40 X 18 
61917 
51.17 

20 X 20 
2.6776 
1458.8 

36 X 22 
19403 
14.915 

50 X 20 
62314 
51.30 

A = 1 

26 X 26 
2.7695 
1469.4 

A = 4 

40 X 26 
19380 
14.909 

A = 10 

70 X 20 
61942 
51.13 

30 X 30 
2.7471 
1466.5 

50 X 20 
19361 
14.901 

60 X 20 
61663 
50.98 

36 X 36 
2.7467 
1466.4 

40 X 30 
19363 
14.903 

66 X 24 
62330 
51.34 

40 X 40 
2.7467 
1466.4 

60 X 24 
19363 
14.901 

70 X 24 
62515 
51.48 

Figures 1 and 2 show that the functions Gr„.(A) and a;„(A) 
are non-monotone and very sensitive to a small change of the 
aspect ratio or the Prandtl number. For example, at Pr = 0.015 
the values of the critical Grashof number and the critical fre­
quency for A = 1.7 and A = 1.8 differ drastically (Fig, 1). The 
difference between the critical parameters at Pr = 0.015 and Pr 
= 0 is relatively large almost everywhere except in the interval 
3 < A s 4.95 (Figs. 2(a) and (b)). Such a big difference in 
critical parameters for zero and small values of the Prandtl 
number means that the convective heat transfer plays a signifi­
cant role in the onset of instability and cannot be neglected 
when stability features of the flow are considered. This leads 
to the conclusion that extrapolation of results, obtained for par­
ticular values of the Prandtl number or the aspect ratio, to other, 
even very close, values of the control parameters should be 
done with an extreme caution. 

It is seen from Fig. 2(a) that the function Gr„(A) has a 
global minimum very close to A = 4 . This value of the aspect 
ratio was chosen for a comparative study with the benchmark 
of the GAMM workshop (Roux, 1989). Note that this particular 
value of the aspect ratio may not be a very good choice, since 
calculations for smaller values of Gr are always more accurate 
than for larger ones. Moreover, in the interval 3 s A < 4.95, 
the onset of instability for Pr = 0.015 and Pr = 0 is similar 
(see Fig. 4) and investigation of only a single value of the 
aspect ratio may lead to a wrong conclusion that the convective 

heat transfer can be neglected (see Gelfgat and Tanasawa, 1994 
for A = 4) . 

There are two hysteresis loops of the critical Grashof number 
for Pr = 0.015. One is located near A = 1.6 (Fig. 1(a)) , and 
another one is located in the interval 4.9 < A < 5 (Fig. 2(a) ) . 
The hysteresis of Gr,,,. means that there are three critical values 
Gr,V < Gr<i < Gr,',.. The first steady-oscillatory transition occurs 
at Gr = Gr^,. With the increase of Gr a backwards transition 
from an oscillatory to a stable steady state takes place at Gr = 
Gr^r, and then, at Gr = Grl,, the steady flow finally bifurcates 
to the oscillatory state. Each of the three transitions is character­
ized by its critical frequency such that in the hysteresis regions 
there are 3 critical frequencies corresponding to a single value 
of the aspect ratio (magnified areas in Figs. 1(b) and 2(b)). 

The first hysteresis (Fig. 1(a)) takes place on the branch of 
the neutral curve which starts at A >= 1.59 (point I in Fig. 1(a)), 
continues with the decrease of A and Gicr up to A « 1.57 (point 
II), and with the increase of A and Gr„ ends at A >« 1.69 
(point III). For example, at A = 1.59 the first steady-oscillatory 
transition takes place at Gr^r = 1.17 X 10'', then the oscillatory-
steady transition at Gr^ = 1.63 X 10^, and the final steady-
oscillatory transition at Gr^r = 1.77 X 10'' (which belongs to 
the previous branch of the neutral curve). 

The second hysteresis loop (Fig. 2(a)) starts at A «= 4.93 
(point IV in Fig. 2(a)) where the neutral curve turns such that 
the critical Grashof continues to grow with the decrease of the 

Table 2 Comparison with the published results (A = 4, Pr = 0, Gr^ = Gr/A) 

Reference Discretization Gr* 

Okada and Ozoe (1993) 
Ben Hadid and Roux (1989) 
Pulicani et al (1990) 
Le Quere (1989) 
Winters (1988) 
Present work 

121 X 35 finite difference non-uniform grid 
121 X 41 finite difference non-uniform grid 
27 X 15 Chebyshev spectral modes 
50 X 20 Chebyshev pseudospectral modes 
60 X 24 biquadratic finite elements (121 X 49 non-uniform grid) 
40 X 30 spectral modes 

15050 
13500-13750 
13100-13500 

13650 
13722 
13683 

13.08 
12.25-12.42 
12.32-12.37 

12.33 
12.36 
12.34 

A 

2.5 
3 
4 
5 

Table 3 

Mesh 

85 X 35 
121 X41 
121 X 35 
151 X 35 

Comparison with the results of Okada and Ozoe, 1993a (Pr = 

Okada and Ozoe (1993) 

Gr* 

90490 
30170 
15050 
13220 

/., 

60.86 
22.05 
13.08 
12.03 

Number of basis 
functions 

40 X 30 
40 X 30 
40 X 30 
50 X 20 

= 0, Gr* = Gr/A) 

Present work 

Gr* 

63916 
26703 
13683 
12136 

,/;.,-

45.12 
20.39 
12.34 
11.31 
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Fig. 1 (a) Dependence Grcr('A) 

Fig. 1 (b) Dependence la^AA) 

Fig. 1 Stabiiity diagram for aspect ratio 1 s >t s 3. 

aspect ratio. When the aspect ratio reaches the value A >=* 4.85 
(point V) the neutral curve turns once more such that Gr„ 
increases with the increase of A, e.g. at A = 4.9 three critical 
values of the Grashof number are 1.09 X 10^ 1.45 X 10^, and 
1.88 X 10'. 
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Fig. 2 Stabiiity diagram for aspect ratio 3 s; A s AO. 
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Fig. 3 Isolines of tlie stream function and thie temperature (solid lines), 
and the corresponding dominant perturbations (dashed lines) for aspect 
ratio A = 2. Alt isolines, except the stream lines i/r < 0, are equally spaced, 
(a) Pr = 0, Gr„r = 5.47 x 10"; i/.„,« = 502.9, i//„i„ = -8.957, (b) Pr = 0.015, 
Gr„ = 9.59 X 10=; i/f™, = 318.5, ^^t„ = -2.135. 

Fig. 4 Isolines of the stream function and the temperature (solid lines), 
and the corresponding dominant perturbations (dashed lines) for aspect 
ration = 3. All isolines, except the stream line il/ = 0, are equally spaced, 
(a) Pr = 0, Gr„ = 8.01 x 10*; i^™, = 104.8, il/„,„ = -0.5194, (b) Pr = 0.015, 
Gr„ = 1.54 X 10=; ./»„„ = 141.6, .̂ min = -0.8440. 

To compare the results with the case of an infinite fluid layer 
it is necessary to redefine the Grashof number using the average 
temperature gradient (^i — 62)/L instead of the characteristic 
temperature difference (0, — dj). This yields Gr* = g0(Oi 
- 92)H*/L]^^ = Gr/A. Figure 2 shows that no well defined 
asymptotic behavior is reached for Gr (neither for Gr*) at 
aspect ratios close to A = 10. Moreover, there is a switch of 
the dominant perturbation in the interval 9 s A s 10 for both 
values of the Prandtl number Pr = 0 and 0.015 (Fig. 2) . Further 
investigation is necessary to find for which values of A, the 
infinite layer solution is a valid approximation. 

Examples of steady flows at critical values of parameters and 
the corresponding dominant perturbations are shown in Figs. 
3 -5 for A = 2, 3 and 8. Flows and perturbations for A = 1, 4, 
and 10 are described in Gelfgat and Tanasawa (1994) and 
Gelfgat et al. (1996b). Since the eigenvector of the linearized 
problem is a complex vector (see Eq. (14)) which is defined 
within multiplication by a complex constant, its modulus is used 
to describe the dominant perturbations. Note that for slightly 
supercritical oscillatory flows the isolines of the amplitude of 
oscillations coincide with the isolines of modulus of the pertur­
bation. Each plot in Figs. 3 -5 is arranged in the following way: 
solid curves show isolines of the stream function ip and the 
temperature 9. Dashed lines show isolines of the modulus of 
the most dominant perturbations of functions ip and 9. For Pr 
= 0 only the stream function and its perturbation are reported. 

In the case Pr = 0 the buoyancy force is constant and the 
temperature is not perturbed at all. This means that only the 
fluid flow itself can become unstable, i.e., the instability is 
caused by the hydrodynamic effect only (heat transfer does not 
influence the flow stability). This instability is called hydrody­
namic instability to distinguish it from the other possible types 
of instability, which may arise at non-zero Prandtl numbers and 
may be caused by a thermal-hydrodynamic effect. 

Flow patterns and their corresponding dominant perturbations 
for A = 2 are shown in Fig. 3. It is seen that the perturbations 
of the stream function for Pr = 0 (Fig. 3(a)) and Pr = 0.015 
(Fig. 3(fo)) are different: the perturbation of 1// at Pr = 0 has 
a global maximum in the center of the main convective vortex, 
while at Pr = 0.015 maximal values of the perturbation of if/ 
are located near the hot wall. This difference in the patterns 
means that the onset of the instability at Pr = 0.015 is influenced 
by the thermal effects and differs from those at Pr = 0. The 
perturbation of 6 (Fig. 3(c)) also has a global maximum near 
the hot wall. This allows us to conclude that the oscillatory 

instability initiates in the form of oscillations of the velocity 
and the temperature near the hot wall where convecfive flow 
and convective heat transfer are relatively weak (see isolines 
of (A and 6 in Fig. 3(b) and (c)) . 

Figure 4 corresponds to the case A = 3 for which the oscilla­
tory instability at Pr = 0 (Fig. 4(a)) and Pr = 0.015 (Fig. 4(b)) 
is of the same hydrodynamic type. This conclusion foflows from 
the similarity of the patterns of the perturbations of ip for two 
values of the Prandtl number (Fig. 4(a) and 4(b)). According 
to the results of this study (Fig. 2) , this similarity is preserved 
only in the interval 3 < A < 4.95 (for the case A = 4 see 
Gelfgat and Tanasawa (1994) and Gelfgat et al. (1996b)). 

Results for a larger aspect ratio, A = 8, are plotted in Fig. 5. 
Note that at Pr = 0 the critical points for A = 3 and A = 8 
belong to the same branch of the neutral curve, and to different 
branches at Pr = 0.015 (Fig. 2) . Comparison of Figs. 4 and 5 
shows that at Pr = 0 the maximum of the perturbation of iji 
is located at the outer boundary of the strongest meridional 
circulation both for A = 3 and 8. The same was observed for 
A = 4 (see Gelfgat and Tanasawa, 1994 and Gelfgat et al , 
1996b). The pattern of the perturbation at Pr = 0.015 is different 

Fig. 5 Isolines of the stream function and the temperature (solid lines), 
and the corresponding dominant perturbations (dashed lines) for aspect 
ration = 8. All isolines, except the stream line •/> = 0, are equally spaced, 
(a) Pr = 0, Gr„ = 1.16 x 10=; i/f„ax = 94.79, i/r„i„ = -0.009570, (fa) Pr = 
0.015, Gr„ = 4.11 X 10=; i/(™« = 209.9, i/<„i„ = -2.651. 
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(Figs. 5(b) and 5(c)) . Two local maxima of the perturbation 
of i/* are located near weaker meridional circulations, and the 
global maximum of the perturbation of 9 is located in the same 
area. As it was previously reported for A = 10 (Gelfgat et al., 
1996b) and for both cases, Pr = 0 and Pr = 0.015, the flow 
and their perturbations do not contain any spatially periodic 
structures. With the increase of the aspect ratio, the global maxi­
mum of the stream function remains near the cold vertical 
boundary, and the whole convective vortex is shifted toward 
the colder area (Fig. 5) . This means that no spatially periodic 
structure is observed. It is obvious that the dominant perturba­
tion of the nonspatially-periodic flow also does not contain any 
spatially periodic structures. So, the asymptotic case of an infi­
nite fluid layer (A -»oo) cannot be applied for the considered 
finite aspect ratio cases (A == 10). Significantly larger values 
of the aspect ratio must be considered for investigation of this 
asymptotic behavior. 

Slightly supercritical oscillatory states of the flow are illus­
trated in Figs. 6-8 for A = 2, 3 and 8, respectively. The oscilla­
tory states were approximated asymptotically using weakly non-

Fig. 7 Instantaneous streamlines of the convective flow plotted for 
equal time intervals T/6 covering the complete period. Aspect ratio 
>l = 3. Pr = 0, Gr = 8.8 X 10^ 

Fig. 6(a) Pr = 0, 6r = 5.65 x 10= 

Fig. 6(b) Pr = 0.015, Gr = 1.02 X 10° 

Fig. 6 Instantaneous streamlines of the convective flow plotted for 
equal time intervals T/6 covering the complete period. Aspect ratio 
A =2. 

linear analysis of the Hopf bifurcation (Hassard et al., 1981) 
which results in Eqs. ( 1 2 ) - ( 1 4 ) . All the supercritical states 
were approximated for 10 percent supercriticality. 

Figure 6 shows the slightly supercritical states for Pr = 0 
and 0.015 in a cavity with A = 2. One can see that the onset 
of instability due to different dominant perturbations leads to 
different oscillations in time. Thus at Pr = 0 perturbation of 
the stream function has a global maximum inside the main 
convective circulation (Fig. 3(a) ) . This leads to oscillations of 
the two clockwise circulations (the stronger and the weaker 
ones) which merge and split during one period of oscillations 
(Fig. 6(a) ) . This is followed by oscillations of a weak reverse 
vortex attached to the lower boundary. Oscillations at Pr = 
0.015 are different. Perturbations of the stream function and the 
temperature in this case are located near the hot wall where the 
convective motion is relatively weak (Figs. 3(b) and 3(c)) . 
According to this, oscillations of the stream function, shown in 
Fig. 6(b) have larger amplitude near the hot wall. The main 
circulation, shifted toward the cold wall, remains almost under-
formable during the period of oscillations. 

Slightly supercritical oscillatory flow at A = 3 and Pr = 0 is 
shown in Fig. 7. Perturbations for Pr = 0 and 0.015 are similar 
for this aspect ratio, so the oscillations in slightly supercritical 
states look similarly. The oscillations appear as weak pulsations 
of the two local maxima of the stream function followed by 
oscillations of a weak reverse vortex attached to the lower 
boundary. This asymptotically approximated oscillatory flow is 
similar to the flow calculated for A = 4 (Gelfgat et al., 1996b), 
and is in qualitative agreement with the results of the direct 
numerical solution of the full unsteady problem (Roux, 1989; 
Pulicani et al., 1989). 

Figure 8 illustrates a slightly supercritical oscillatory flows 
at A = 8. At Pr = 0 the critical Grashof numbers for A = 3 
and 8 belong to the same branch of the neutral curve (Fig. 2) . 
So, the perturbations and the oscillations in both cases are simi­
lar (compare Figs. 4(a) and 5(a) to Figs. 7(a) and 8(fl). At 
A = 8 (Pr = 0, Fig. 8(a)) one can see oscillations of the 
clockwise meridional circulations followed by oscillations of 
two weak counter clockwise vortices attached to the lower wall. 
In the case Pr = 0.015 perturbations of i// and 9 are located in the 
central part of the cavity (Figs. 5(b) and 5(c)) . Accordingly, 
oscillations of the stream function have larger amplitudes in 
the central part of the cavity (Fig. S(b)), where one can see 
oscillations of several clockwise circulations. Oscillations of 
the weak counter clockwise vortices are much weaker than in 
the case Pr = 0. 
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Fig. 8(a) Pr = 0, Gr = 1.3 x 10' 

Fig. 8(b) Pr = 0.015, Gr = 4.5 x 10= 

Fig. 8 Instantaneous streamlines of the convective flow plotted for equal time intervals 
TIB covering the complete period. Aspect ratio A = B. 

Conclusions 
The oscillatory instability of the considered convective flow 

sets in due to Hopf bifurcation in the whole interval 1 < A < 
10 and for the considered values of the Prandtl number (Pr = 
0 and 0.015). The dependence of the critical parameters (critical 
Grashof number and the frequency of oscillations) on the aspect 
ratio and the Prandtl number is very complicated, and very 
sensitive to a small change of the control parameter. Stability 
diagrams show that using the stability features for predicting 
of other (even close) values of the control parameter is not 
always possible. In particular, the convective heat transfer is 
not negligible even at low-Prandtl-number (like Pr = 0.015) 
flows. 

The results for the asymptotic limit of an infinite fluid layer 
(A -> oo) cannot be used even for long horizontal cavities with 
the aspect ratio up to A = 10. This means that in practically 
important situations, the finite dimension of the cavity and the 
corresponding end effects should always be taken into account. 
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