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Abstract—In the last decade, Graphics Processing Units
(GPUs) have gained an increasing popularity as accelerators
for High Performance Computing (HPC) applications. Recent
GPUs are not only powerful graphics engines but also highly
threaded parallel computing processors that can achieve sus-
tainable speedup as compared with CPUs. In this context,
researchers try to exploit the capability of this architecture
to solve difficult problems in many domains in science and
engineering. In this article, we present recent advances on GPU
Computing in Operations Research. We focus in particular on
Integer Programming and Linear Programming.
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I. INTRODUCTION

Originally designed for visualization purpose, graphics

accelerators, that are many cores parallel architectures, have

recently evolved towards powerful computing accelerators

in collaboration with CPU for High Performance Computing

(HPC) applications in science and engineering. In particular,

they have been widely applied to signal processing and linear

algebra.

We note that a device like the Tesla C2050 computing

processor with Fermi architecture has 448 computing cores

and 515 Gigaflops peak double precision floating point

performance [1]. As a consequence, many computer man-

ufacturers like Dell, HP, SGI and Bull are currently using

Graphics Processing Units (GPUs) for acceleration purpose

in the clusters and systems they propose. Moreover, some

GPUs-based supercomputers like the Titan (17.6 Petaflops

with NVIDIA K20 GPUs) in the USA and Tianhe-1A (2.57

Petaflop/s with C2050 GPUs) in China are in the Top 10

supercomputers ranking. One can quote also the Nebulea

(1.27 Petalop/s with Intel X5650 processors and NVIDIA

Tesla C2050 GPUs) in China, the Tusbame 2.0 in Japan

and Roadrunner in the USA [2].

The exploitation of GPUs for HPC applications presents

many advantages:

• GPUs are powerful accelerators since they have now

hundreds of computing cores;

• GPUs are widely available and relatively chip;

• GPUs require less energy than other computing devices.

The recent interest in GPU computing and hybrid comput-

ing (which is a combination of CPU and GPU computing), is

wide-spread. Almost all domains in science and engineering

are concerned. We can quote for example astrophysics,

seismic, oil industry and nuclear industry. Most of the time,

GPUs lead to dramatic improvements in the solution time

of practical problems.

It was quite natural for the Operations Research (OR)

community whose field of interest is prolific in difficult

problems to be attracted in GPU computing. In this paper, we

present recent advances on GPU computing in this domain.

Section II deals with some aspects related to GPU pro-

gramming. Application of GPUs to OR is presented in the

sequel of the paper. In particular, contributions to Linear

Programming (LP) are presented in Section III. Section

IV deals with Integer Programming (IP). Conclusions and

Challenges are presented in Section V.

II. GPU COMPUTING AND HYBRID COMPUTING

Thanks to high-level shading languages like DirectX or

OpenGL, graphics accelerators have started to be used for

non-graphical applications in the early 2000s. By that time,

problems like stock options pricing and protein folding

have been solved on graphics accelerators showing notice-

able speedup. The acronym GPU was then introduced by

NVIDIA and people started to speak about General Purpose

computing on the GPU (GPGPU). Programming graphics

accelerators via graphics APIs turned out to be difficult since

basic programming features were missing and programs

were very complex (they had to be expressed in terms of

textures, graphics concepts and shader programs). We note

also that double precision floating point computation was

not possible in the beginning.

GPUs were reimagined as highly threaded streaming

processors when a new programming model extending C

with data-parallel constructs was proposed by Ian Buck

[3]. Concepts like kernels, streams and reduction operators

were then introduced. A new compiler and runtime system

permitted one to consider the GPU as a general-purpose

processor in a high-level language leading also to substancial

performance improvement.
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GPU # cores Clock (GHz) Memory (GB)
GeForce 7800 GTX 24 0.58 0.512
GeForce 8600 GTX 32 0.54 0.256
GeForce 9600 GT 64 0.65 0.512
GeForce GTX 260 192 1.4 0.9
GeForce GTX 280 240 1.296 1
GeForce GTX 285 240 1.476 1
GeForce GTX 295 240 1.24 1
GeForce GTX 480 480 1.4 1.536
Tesla C1060 [6] 240 1.3 4
T10 (Tesla S1070) 240 1.44 4
C2050 [1] 448 1.15 3

Table I
OVERVIEW OF NVIDIA GPUS QUOTED IN THE PAPER

The evolution of GPU’s hardware that permits one to

program more easily the device combined with the devel-

opment in 2006 of Compute Unified Device Architecture,

CUDA (a software and hardware architecture that enables

the GPU to be programmed with some high level program-

ming languages like C, C++ and Fortran) [4] or OpenCL

(a framework for writing programs that are executed across

heterogeneous platforms with CPUs, GPUs and other pro-

cessors) [5] has fostered the popularity of GPU computing.

We recall that CUDA is a parallel computing platform and

programming model designed and developed by NVIDIA. It

permits one to increase computing performance by harness-

ing the power of the GPU. CUDA greatly simplifies GPU

programming. One merely writes a serial codes intended

to the CPU that calls parallel kernels defining the codes

to be implemented by threads on the GPU cores. CUDA

is based on a hierarchy of groups of threads and permits

one to use synchronization barrier. CUDA functionalities are

permanently extended in order to facilitate programming of

GPUs. Among the many advantages of CUDA one can quote

in particular: fast local memory that can be shared by a block

of threads, double precision floating point arithmetics and

more flexibility of coding than Graphics APIs. The recent

CUDA 5.0 [4] was designed to facilitate the dynamic use of

GPUs. Moreover, data transfers can now happen via high-

speed network directly out of any GPU memory to any

other GPU memory in any other cluster without involving

assistance of the CPU.

Table I displays the characteristics of several GPUs

considered in the sequel. Up to very recently, the Fermi

architecture represented the last generation of NVIDIA GPU

architectures [7]. With 3.0 billion transistors, the Fermi

architecture features up to 512 CUDA cores; it is built

around a scalable array of multithreaded Streaming Multi-

processors (SM). The 512 CUDA cores are organized in 16

SMs. Typically, a Fermi multiprocessor consists of 32 Scalar

Processors cores. A CUDA core executes a floating point

or integer instruction per clock for a thread. Each CUDA

core or processor has a fully pipelined integer Arithmetic

Logic Unit (ALU) and Floating Point Unit (FPU). The Fermi

architecture implements the IEEE 754-2008 floating-point

standard, providing the Fused Multiply-Add (FMA) instruc-

tion for both single and double precision arithmetic. Fermi

architecture has a two-level distributed thread scheduler. The

GigaThread global scheduler distributes thread blocks to SM

thread schedulers. Concurrent threads are created, managed

and run by the SM thread scheduler without overhead. This

permits one in particular to implement data parallelism.

NVIDIA has emphasized on the Single Instruction, Multiple

Threads (SIMT) parallel programming model. The reduction

in computation time resulting from exploiting GPUs for data

parallel applications can be dramatic. However, we note

that maximizing effective memory bandwidth of the GPU

and having good thread occupancy, i.e., giving sufficient

work to the SMs as well as ensuring coalesced memory

accesses for all cores of a given SM (in particular by

avoiding divergent branches) is particularly important in

order to obtain noticeable speedup with a GPU. It is also

important to note that thanks to CUDA or OpenCL, multi-

GPU computing is possible, i.e., the possibility to exploit

several accelerators in a unique application. This leads to

massive parallelism and the use GPUs for HPC applications.

Finally, we note that some libraries like the NVIDIA

CUDA Basic Linear Algebra Subroutines (cuBLAS) [8]

have been developped to help programmers to solve large

scale problems on the GPU. The cuBLAS library is a GPU-

accelerated version of the complete standard BLAS library.

III. LINEAR PROGRAMMING

In linear programming, the variables are nominally al-

lowed to take a continuous range of values. The standard

form of such a problem can be formulated as follows:

min pTx, (1)

s.t. Ax = b, (2)

x ≥ 0, (3)

where x is the vector of real numbers to be determined, A
is a matrix whose entries are fixed real contants, b and p are

two vectors of fixed real constants.

The simplex method has been designed by George

Dantzig [9] and different variants of the method have been

proposed in the literature for the solution of problem (1) -

(3). A complete review of the simplex method and its vari-

ants can be found in [10]. Basically, the simplex algorithm

starts from a feasible solution at a vertex of the polytope and

tries to improve the solution while preserving feasibility until

optimality is reached. In this section, we focus on several

approaches that have been inplemented on the GPU. Table

II summarizes the contributions in the literature.

A. The Simplex Tableau

In the simplex tableau algorithm, data are organized in a

tableau; pivoting operations are then applied until optimality.
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Algorithm Year Authors
The Simplex Tableau 2011 Lalami et al. [11], [12]

2011 Meyer et al. [13]
The Revised Simplex 2005 Greef [14]

2009 Spampinato et al. [15]
2010 Bieling et al. [16]

The Interior Point Method 2008 Jung and O’Leary [17]

Table II
LITERATURE OVERVIEW IN LINEAR PROGRAMMING AND GPUS

This data structure is well suited to the GPU architecture: it

naturally tends to ensure efficient coalesced memory access

and does not need extra efforts for memory optimization.

In 2011, Lalami et al. have proposed a GPU implementation

of the simplex tableau algorithm via CUDA 2.3 in [11].

This implementation has been extended to the multi-GPU

context in [12]. The same year, Meyer et al. have proposed

a different multi-GPU implementation of the simplex tableau

algorithm in [13]. Both papers have dealt with a complete

implementation of the simplex algorithm on the GPUs

including the pivoting and the selection of the entering and

leaving variables in order to avoid extra communication

between the CPU and the GPUs. Multi-GPU computing

relies on problem decomposition. Several decomposition

schemes can be adopted. An horizontal decomposition dis-

tributes the constraints on the different GPUs. A vertical

decomposition distributes the variables of the LP problem on

the GPUs. Finally, one may consider also tiles. The choice of

a decompositon scheme has important consequences on the

resulting communication pattern and multi-GPU efficacy. A

decomposition based on tiles may appear scalable; it never-

theless necessitates many communications between GPUs.

In [13], the authors have adopted a vertical decomposition

in order to have less communication between GPUs. An

horizontal decomposition has been adopted in [12]. The

simplex tableau has been decomposed into parts that are

assigned to the different GPUs. An horizontal decomposition

of the simplex tableau presents the advantage to facilitate

the parallel processing of the entering variable column and

the ratio column (the leaving variable line is computed

by only one GPU at each iteration). The drawback of

this decomposition is to duplicate data. In [12], each GPU

updates only a part of the tableau. The work of each GPU

is managed by a distinct CPU thread. More precisely, CPU

threads are in charge of launching the kernels of the simplex

algorithm on each GPU, synchronising the work among

the different GPUs and sharing the results. This approach

presents the advantage to maintain the context of each CPU

thread all along the application, i.e., CPU threads are not

killed at the end of each simplex iteration. As a consequence,

communications tend to be minimized.

Lalami et al. [12] have used a server with Intel Xeon

E5640 2.66GHz processor and two NVIDIA C2050 GPUs.

They have considered instances with up to 27,000 variables

and 27,000 constraints. The computational tests have shown

significant speedups. For example, a reduction of the com-

putation time by a factor of 24.5 with two GPUs has been

observed for the largest instance. Meyer et al. [13] have used

a system with two Intel Xeon X5570 2.93GHz processor

and one NVIDIA Tesla S1070 computing system featuring

T10 GPUs. They have solved instances with up to 25,000

variables and 5,000 constraints and outperformed the open-

source solver CLP [18] of the COIN-OR project.

B. The Revised Simplex

In the revised simplex method, only data that are relative

to the basic variables are stored in a tableau. This allows a

lower memory requirement than in the simplex tableau algo-

rithm and suggests a reduction in complexity. All operations

of the simplex method can be seen as matrices operations.

Greeff [14] was the first to accelerate the revised simplex

method via GPU. He has achieved a speedup of 11.5 as

compared to an identical CPU implementation. Most of the

GPU computing drawbacks encountered by Greef in 2005

have been addressed since.

Later, Spampinato et al. [15] have tried to take benefit

from the advances in the linear algebra library cuBLAS [8].

They have used a system with Intel Core 2 Quad 2.83GHz

processor and NVIDIA GeForce GTX 280 GPU and have

reported a reduction in solution time by factor of 2.5 for

problems with 2,000 variables and 2,000 constraints when

compared to the ATLAS-based solver [19].

More recently, Bieling et al. [16] have proposed an

implementation of the revised simplex method which in-

cludes some algorithmic optimization, i.e., the steepest-edge

heuristic to select the entering variables [20] and an arbitrary

bound process in order to select the leaving variables. The

authors have reported a reduction in computation time by

a factor of 18 for instances with 8,000 variables and 2,700

constraints on a system with Intel Core 2 Duo E8400 3.0

GHz processor and NVIDIA GeForce 9600 GT GPU when

compared to results obtained with the GLPK solver [21].

C. The Interior Point Method

Interior point methods for solving problem (1) - (3) have

been considered for implementation on systems with GPUs.

We recall that these methods, also referred to as barrier

methods, reach the optimal solution of the LP by traversing

the interior of the feasible region.

Jung and O’Leary [17] have proposed a mixed precision

hybrid algorithm for solving LP using a primal-dual interior

point method. The algorithm is based on the rectangular-

packed matrix storage scheme and uses the GPU for com-

putationally intensive tasks like matrix assembly, Cholesky

factorization and forward and back substitution.

The hybrid algoritm was carried out on a system with

Intel Xeon 3.0GHz processor and NVIDIA GeForce 7800

GTX GPU. Instances with up to 4,000 variables and 1,000
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constraints have been considered; nevertheless it turns out

that the proposed hybrid algorithm has not clearly outper-

formed the sequential version on CPU due to data transfer

cost and communication latency.

IV. INTEGER PROGRAMMING

Integer Programming problems, IP, occur for example in

transportation, planning and logistics. In the standard form,

IP problems can be expressed as follows:

max pTx, (4)

s.t. Ax = b, (5)

x ≥ 0, (6)

x integer. (7)

where the entries of A, b and p are integer constants. Many

IP problems are NP-hard. Solution via dynamic program-

ming and Branch and Bound is often considered in the

literature. The resulting data structure is often irregular; thus,

it is not well suited to GPU computing and solving IP with

the help of GPUs is in many case a challenge. We can find

two types of parallel approaches:

• either IP is entirely solved on GPU(s) through a specific

or adapted parallel algorithm;

• or GPUs are used to accelerate only the most time con-

suming activities or parts of codes (hybrid algorithms).

To the best of our knowledge, four types of problems

have been studied in the GPU literature: Knapsack Problems

(KP), Scheduling Problems (SP), Assignment Problems (AP)

and Travelling Salesman Problems (TSP). The proposed

approaches and computational results are presented in the

sequel. The literature is summarized in Table III.

A. Knapsack Problems

1) Dynamic programming: The solution of KP via a

hybrid dense dynamic programming algorithm implemented

with CUDA 2.0 has been considered in [22]. At each

step, computations in the loop that processes the classical

Bellman’s dynamic programming recursion (which is time

consuming) have been implemented in parallel on the device.

A data compression technique has also been proposed

in order to deal with the high memory requirement of the

dynamic programming method. This technique has permitted

the authors to reduce the memory occupancy needed to

reconstruct the optimal solution and the amount of data

transferred between the host and device.

Computational experiments have been carried out on a

system with Intel Xeon 3.0 GHz and NVIDIA GTX 260

GPU. Randomly generated correlated problems with up to

100,000 variables have been considered. We note that dense

dynamic programmic is known to be suited to correlated

instances. Computational results have shown that these

problems can be solved within relatively small computing

time via GPU (only few hundred seconds) and memory

occupancy. Moreover, a reduction in computation time by a

factor of 26 has been observed for instances with more than

40,000 variables. We note that the reduction in matrix size

is better when the size of the problem is increased, resulting

in a more efficient compression while the overhead does not

exceed 3% of the overall processing time.

The contribution in [22] has been further extended in [23],

where a multi-GPU hybrid implementation via CUDA 2.3 of

the dense dynamic programming method has been proposed.

The approach is well suited to the case where a CPU is

connected to several GPUs. The solution presented in [23] is

based on multithreading and the concurrent implementation

of kernels on GPUs; each kernel being associated with a

given GPU and managed by a CPU thread; the context of

each host thread being maintained all allong the application,

i.e., host threads are not killed at the end of each dynamic

programming step. This technique tends also to reduce data

exchanges between host and device. A load balancing pro-

cedure has been implemented in order to maintain efficiency

of the parallel algorithm.

Computational experiments have been carried out on

a machine with Intel Xeon 3 GHz processor, 1 GB

memory and Tesla S1070 computing system. Strongly

correlated problems with up to 100,000 variables have been

considered. Preliminary results have shown a reduction in

computation time by a factor of 14 with one GPU and 28

with two GPUs (without data compression techniques).

2) Branch and Bound: A hybrid Branch and Bound

algorithm has been proposed in [25] for the solution of the

knapsack problem. The GPU is used only when the number

of Branch and Bound nodes is important. Computation is

performed on the CPU when the number of nodes is under

a certain threshold. Elimination of nonpromising nodes and

concatenation of the list of nodes is always performed on

the CPU.

Dimension and capacity of the problem are stored in the

constant memory of the GPU since they do not change

during the solution of the problem. Weights and profits

of items are stored in the texture memory of the GPU

that is larger than the constant memory; both memories

presenting low latency. When in use, the GPU takes care

of the separation phase, i.e., creation of new nodes in

parallel, it also computes bounds in parallel and the best

lower bound via atomicMax operation. Finally, the GPU

performs in parallel bounds comparison and nonpromising

nodes labelling (the later task concerns nodes with an upper

bound smaller than the best lower bound).

Computational tests have been carried out on a system

with Intel Xeon E5640 2.66GHz processor and NVIDIA

C2050 GPU. Reduction in computation time by a factor

of 20 has been observed in [25] for strongly correlated

problems with 500 variables. The reduction in computation

time has been further improved by a factor of 52 in [26],
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Problem Algorithm Year Authors
KP Dynamic Programming 2011-2012 Boyer et al. [22], [23]

Branch and Bound 2012 Boukedjar et al. [24]
2012 Lalami et El Baz [25]
2012 Lalami [26]

Genetic Algorithm 2012 Pedemonte et al. [27]
SP Tabu Search 2008 Janiak et al. [28]

2011 Czapińsky et al. [29]
2011 Luong et al. [30]
2012 Bukata [31]

2013 Bukata and S̆ucha [32]
Branch-and-Bound 2012 Chakroum et al. [33], [34]

2012 Melab et al. [35]

Genetic Algorithm 2011 Zajı́c̆ek and S̆ucha [36]
2011 Nesmachnow et al. [37]
2013 Pinel et al. [38]

AP Tabu Search 2010 Luong et al. [39]
2011 Luong [40]

Genetic Algorithm 2009 Tsutsui et Fujimoto [41]
2010 Soca et al. [42]
2011 Tsutsui et Fujimoto [43]

Deep Greedy Switching 2011 Roverso et al. [44]
TSP Ant Colonies 2007 Catala et al. [45]

2009 Li et al. [46]
2009 You [47]
2011 Cecilia et al. [48]

Max-Min Ant System 2009 Jiening et al. [49]
2009 Bai et al. [50]
2010 Fu et al. [51]

Genetic Algorithm 2011 Chen et al. [52]
Immune Algorithm 2009 Li et al. [53]
Tabu Search 2008 Janiak et al. [28]

Table III
LITERATURE OVERVIEW IN INTEGER PROGRAMMING AND GPU COMPUTING

for strongly correlated problems with 1,000 variables and

some optimization in access to the GPU memory. The

computational results have shown that the more difficult a

problem is, the larger the number of Branch and Bound

nodes and the more remarkable the reduction in time due

to GPU accelerator. The reader is also referred to [24] for

another contribution to this field.

3) Genetic Algorithm: Pedemente, Alba and Luna have

proposed in [27] a genetic algorithm specially designed to

run on GPU. The algorithm called Systolic Genetic Search

(SGS) is based on the model of systolic computation, i.e.,

the synchronous circulation of solutions through a grid

of processing units. At each iteration, the crossover and

mutation operators, the fitness function evaluation and the

elitist replacement are carried out on the GPU. The exchange

of directions operator can additionally be applied on the

GPU. The five kernels quoted above are invoked by the host.

Experiments have been carried out on a system with

Pentium D 3.0 GHz processor, 2 GB RAM and NVIDIA

GeForce GTX 480 GPU. Problems without correlation and

up to 1,000 variables have been considered. Experimental

results have shown that the SGS method produces solutions

of very good quality. GPU and CPU versions of SGS have

been carried out with the same seeds so that experimental

results were exactly the same. Numerical results have shown

that the reduction in computation time ranges from 5.09 to

35.7 times according to the size of the considered instances.

B. Scheduling Problems

1) Branch and Bound: The solution of the Flow-shop

Scheduling Problem (FSP) via parallel Branch and Bound

methods using GPU has been studied by several authors.

In [33], a selection operator based on the best-first strategy

is used until the work pool reaches a given size. Then, a

selection operator based on the depth-first strategy is used.

This technique permits one to provide enough work to the

GPU. The evaluation of bounds that is time consuming was

performed in parallel in [33]; an original technique was also

proposed to avoid divergent threads in a warp resulting from

conditional branches.

Computational experiments have been carried out via

CUDA 4.0 on a system with Intel Xeon E5520 2.27 GHz

bi-processor and NVIDIA C2050 computing system. Some

instances of flow-shop problems proposed by Taillard (see

[54]) that range from twenty jobs on twenty machines to

two hundred jobs on twenty machines have been considered.

Maximum speedup factor of 77 has been observed for

instances with two hundred jobs on twenty machines as

compared with a sequential version.

The parallel application of branching, bounding, selection

and elimination operators has been considered in [34] as well
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as exploiting higher parallelism via workload distribution on

a multi-GPU testbed. Workloads have been equally splitted

into as many groups as there are GPUs in the system and

an equal number of CPU threads has been created.

In [34], computational experiments have been carried out

via CUDA 4.0 on a system with Intel Xeon E5520 2.27 GHz

bi-processor and NVIDIA Tesla S1070 computing system.

The considered problems range from twenty jobs on ten

machines to two hundred jobs on twenty machines. Instances

have been solved on one GPU 11 to 78 times faster than with

a single CPU core. Morover, a maximum speedup factor of

105 has been observed with two GPUs.

Reference is also made to [35] for a study on a parallel

Branch and Bound method using GPU whereby the evalua-

tion of lower bounds is made on the device while generation

of subproblems, i.e., elimination, selection and branching

operations is implemented on the host.

2) Genetic algorithms: Zajı́c̆ek and S̆ucha have studied

a parallel island-based Genetic Algorithm (GA) for the

solution of the FSP in [36]. According to the proposed

homogeneous model, all computations were carried out on

the GPU in order to reduce communication between CPU

and GPU. The authors have implemented a GA whereby

islands are essentially used for migration of individuals,

i.e., specific solutions among subsets of solutions, the so-

called populations. Evaluations, mutations and crossovers of

solutions in the same subset of solutions were performed in

parallel and independently of other populations.

Experiments were performed on a system with AMD

Phenom II X4 945 3.0 GHz processor and NVIDIA Tesla

C1060 GPU. Some instances with one hundred activities and

five machines were solved 110 faster than with the AMD

CPU.

Nesmachnow and Canabé have considered the solution

of the Heterogenous Computing Scheduling Problem. A

parallel implementation of the Min-Min heuristic on GPU,

whereby the evaluation of the criteria for all machines is

made in parallel on the GPU for each unassigned task, was

proposed in [37] (a parallel version of the Sufferage heuristic

was also studied in the paper).

Computational experiments were carried out on a system

with Dell Xeon E5530 2.4 GHz processor and NVIDIA

C1060 GPU. Reduction of computational time by a factor

of 5 has been obtained for parallel Min-Min (5.5 for parallel

Sufferage).

Pinel et al. have considered the parallel solution of

scheduling of independant tasks problems in [38]. They have

also proposed implementations on GPU of the Min-Min

heuristic and GraphCell a parallel cellular genetic algorithm

(two new parallel recombination operators are also proposed

in the paper).

Computational experiments have been carried out on a

system with Intel Xeon E5440 2.83 GHz processor and

NVIDIA Tesla C2050 GPU. We note that significant speedup

has been obtained for the GPU version of the Min-Min

heuristic.

3) Tabu Search: Czapiński and Barnes have implemented

a Tabu Search (TS) metaheuristic method for the solution of

FSP via GPU in [29].

The TS method was carried out on a system with Intel

Xeon 3.0 GHz processor with 2GB memory and NVIDIA

Tesla C1060 GPU. The authors have claimed that their

implementation is 89 times faster than the CPU version.

In [30], Luong, Melab and Talbi have studied the imple-

mentation on GPU of an aggregated TS method for the FSP.

Their paper deals more generaly with the implementation

on GPU of multiobjective local search algorithms. The

generation of neighborhood was done on GPU in order

to reduce data transfers; several representations have been

considered (see also [40] and [55]).

Experiments have been carried out on two systems:

• a system with Xeon 3.0 GHz processor and GTX 285

GPU;

• a system with Core i7 3.2 GHz processor and GTX 480

GPU.

The considered problems range from twenty jobs and

ten machines to two hundred jobs and twenty machines.

The observed maximum speedup was 10 times for the first

system and 16 times for the second system.

We note that Pareto local search algorithms have also been

studied in [30]. The same instances have been considered

and the observed maximum speedup was 9.4 times for the

first system and 15.7 times for the second system.

Bukata and S̆ucha have subsequently presented a parallel

TS method for the Resource Constrained Project Scheduling

Problem (RCPSP) according to the proposed homogeneous

model whereby all computations are performed on the GPU

(see [32]). The Simple Tabu List implementation (with

constant algorithmic complexity) was specially designed for

the GPU, a new parallel algorithm for schedule evaluation

was proposed and parallel reductions were applied.

Experiments have been carried out via CUDA 3.2 on

a server with Intel Xeon E5640 2.66 GHz processor, 12

GB memory and NVIDIA Tesla C2050 GPU. Solution

interchange was performed via the global memory where

the global best solution and working set were stored. Simple

Tabu lists were also stored in the global memory. Local

memory was used for resource arrays and activities start time

values. J120 instances with 600 projects and 120 activities

have been used for performance comparison. Experimental

results have shown that the GPU is able to perform the

same number of iterations 55 times faster than the CPU in

average (see also [31]). Experiments have also shown that

the parallel TS method outperforms the CPU version on what

concerns the quality of solutions that is comparable to the

one obtained with efficient metaheuristics in the literature

(see [32]).
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C. Assignment Problems

1) Deep Greedy Switching: Roverso et al. have proposed

a GPU implementation of the Deep Greedy Switching

(DGS) heuristic for the solution of the Linear Sum Assign-

ment Problem (LSAP) in [44]. Classically, agents have to

be assigned to an equal number of jobs while maximizing

the total benefit. Basically, the DGS heuristic starts from

a random initial solution and moves to better solutions by

considering a neighborhood resulting from a restricted 2-

exchange. Each agent tries to find the best solution from

a given neighborhood. The improvement, or difference, in

the objective function between the current and new solu-

tion, called agent difference evaluations and job difference

evaluations, that are computationally expensives have been

carried out in parallel on the GPU.

Computational experiments have been carried out on a

system with Core 2 Duo 2.4 GHz processor, 4 GB memory

and NVIDIA GTX 295 GPU. Randomly generated instances

with up to 9744 jobs have been considered. Reduction of

computation time by a factor of up to 27 has been observed.

2) Tabu Search: We note also that Luong et al. have

proposed a hybrid Tabu Search method for the 3-dimensional

Quadratic Assignment Problem (QAP) in [39]. The basic TS

algorithm runs on the CPU. Evaluation and neighborhood

generation that are time consumming run on the GPU.

Computational tests were performed on a system with

Intel Core Duo 3.0 GHz processor and NVIDIA 8600 GT

GPU. A reduction of computation time by a factor of 4 was

obtained.

3) Genetic Algorithm: Tsutsui and Fujimoto have pro-

posed to solve the QAP via a parallel Ant Colony Opti-

mization method (ACO) implemented on GPU in [43]. They

have considered 2-opt local search whereby moves can be

divided into two groups that can be computed in parallel by

blocks of threads. Pheromone update and sampling are also

carried out on the device.

Computational tests have been carried out on a system

with Intel Core i7 965 3.2 GHz processor and NVIDIA

GeForce GTX 480 GPU. Real life like instances and ran-

domly generated instances of the QAPLIB library whose size

ranges from 50 to 150 have been considered. Speedups of

24.6 times have been observed as compared with a sequential

version of the method implemented on the CPU (reference

is also made to [41]).

Soca et al. [42] have proposed a framework for automatic

implementation of parallel cellular genetic algorithms on

GPU.

D. Travelling Salesman Problems

Giving a set of cities, the TSP [56] involves finding the

shortest route that visits each city exactly once. It is a

well-known NP-hard optimization problem and is used as

a standard benchmark for many heuristic algorithms. The

instances of the TSPLIB library [57] are generally used as

benchmark instances for computational tests.

In this section, we focus on the ant colony approaches

which have been given a particular attention in the literature

for the solution of the TSP via GPUs. Ant colonies [58]

are population-based metaheuristics for solving optimization

problems. They use artificial ants to construct solutions by

considering pheromone trails that reflect the search proce-

dure.

The implementation on GPU of some other metaheuristics

has been investigated for the TSP. The reader is referred

to the work of Janiak et al. on Tabu Search [28], Li et

al. on Immune Algorithm [53] and Chen et al. on Genetic

Algorithm [52]. To the best of our knowledge, no exact

approach has been addressed in the literature.

1) Ant Colonies Optimization (ACO): The first proposed

work in this area was due to Catala et al. in 2007 (see

[45]); the solution of the orienteering problem, also known

as the selective travelling salesperson problem (see [59]),

was considered. The results have shown that the proposed

approach that was implemented on a single GeForce 6600

GT GPU stood competitive with a parallel ACO running on

a GRID with up to 32 nodes.

In 2009, Li et al. [46] and You et al. [47] have proposed

GPU implementations of the ACO method with adequate

memory management.

The implementation of Li et al. is based on a fine-grain

model whereby ants are assigned to one thread.

You et al. have focused on the construction phase of

the ACO whereby each GPU thread builds a route for one

ant. Computational experiments have been carried out on

a system with Intel Core 2 Duo 2.20GHz processor and

GeForce 8600GT GPU. Problems with up to 800 cities have

been considered and a maximum speedup of 20 has been

observed.

In 2011, Cecilia et al. [48] have presented new results on

the parallelization of the ACO method on GPU. Different

strategies for the implementation of both stages of the ACO

algorithm on the GPU, i.e., the construction phase and the

pheromone update are discussed in the paper. The authors

have proposed to assign one ant to each block of threads

Moreover, each thread represents a city or a set of cities

the ant may visit. This strategy is followed in order to

overcome some drawbacks encountered by former methods

in the literature. For the pheromone update, the authors have

proposed a scatter-to-gather transformation (see [60]) which

avoids the use of atomic operations on GPU.

Computational experiments have been carried out on a

C1060 GPU. Speedup factors of 25 have been reported for

some instances with 2,396 cities.

2) Max-Min Ant System: In 2009, Jiening et al. have

proposed an implementation of a variant of the ACO method:

the Max-Min Ant System (MMAS) [49]. In this implemen-

tation, the tour construction stage is carried out on GPU,

1784



and the shortest path is computed on the CPU.

Computational experiments have been carried out on a

system with AMD 2.79Hz processor and NVIDIA Quadro

Fx 4500 GPU. On a typical test instance with thirty cities,

a reduction of computation time by a factor of 1.4 was

observed.

In 2009, Bai et al. have discussed the implementation of

all phases of MMAS on GPU [50]. For the tour construction

stage each ant colony is assigned to a thread block, whilst for

the pheromone update, each city corresponds to one thread.

Computational experiments have been carried out on a

system with AMD Athlon Dual Core Processor 3600+ and

NVIDIA GeForce 8800 GTX GPU. Processing time twice

as fast as with CPU have been reported for instances with

400 cities.

More recently, Fu et al. have proposed in [51] an im-

plementation of MMAS on GPU that makes use of the

Jacket toolbox which connects MATLAB to GPU (see [61]).

Ants share only one pseudorandom number matrix, one

pheromone matrix, one taboo matrix and one probability

matrix in order to reduce communication between CPU and

GPU. Furthermore, a variation of the traditional roulette

wheel selection (the All-In-Roulette which is well suited to

the GPU architecture) has been used.

Computational tests have been carried out on a system

with Intel i7 3.3GHz processor and Tesla C1060 GPU.

Speedups of 400 on GPU as compared with the sequential

algorithm have been observed for an instances with up to

1,002 cities.

E. Frameworks for the design of combinatorial algorithms
on GPU

We conclude this section with some optimization frame-

works that have been designed for or extended to the

transparent deployment of metaheuristics on GPU.

We can quote for example the ParadisEO-GPU framework

developed by the Dolphin team at University of Lille 1 (see

[40]). ParadisEO is a portable template-based C++ library

dedicated to the design of metaheuristics for optimization

problems. ParadisEO-GPU extends a module which is a

coupling between ParadisEO and CUDA.

Experiments carried out for the Quadratic Assignment

Problem with the ParadisEO-GPU framework and the Tabu

Search method have shown small performance degradation

as compared with the version described in subsection IV-C2.

We have seen in subsection IV-C3 that the Pugace

framework [42] was also designed for the automatic

implementation of cellular evolutionary algorithms on GPU.

V. CONCLUSIONS AND CHALLENGES

In this paper, we have concentrated on a hot topic: GPU

computing in the field of Operational Research. We have

presented important contributions to Integer Programming

and Linear Programming. We note that many OR problems

have been considered in the literature and that significant

speedups have been obtained for several exact methods or

heuristic algorithms thanks to the GPUs. At this point, it is

important to note that one cannot establish a quantitative

comparison between the proposed approaches since they

have led to implementations on several generations of GPUs.

For many applications including OR problems, the future

of GPU computing seems very promising. The new NVIDIA

Kepler architecture features teraflops of integer, single pre-

cision, and double precision performance and high memory

bandwidth [62]. Moreover, programming tools like CUDA

and OpenCL (or the recent OpenACC [63]) always tend to

facilitate programming and improve efficiency of this type

of architecture by hiding programming difficulties. We note

in particular that OpenACC is a set of high-level pragmas

that enables C/C++ and Fortran programmers to exploit

highly parallel processors with much of the convenience of

OpenMP. In this case, pragma are code annotations which

inform the compiler of structured loop or succeeding block

of code as a good candidate for parallelization.

We believe that OR industrial codes in the future will be

able take a great benefit from GPUs and to propose very

attractive and fast solutions to their users. An important

challenge remains in the exact solution of industrial

problems of significant size via GPUs.
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