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Abstract. It is customary to assess the reliability of underground oil
and gas pipelines in the presence of excessive loading and corrosion ef-
fects to ensure a leak-free transport of hazardous materials. The main
idea behind this reliability analysis is to model the given pipeline sys-
tem as a Reliability Block Diagram (RBD) of segments such that the
reliability of an individual pipeline segment can be represented by a ran-
dom variable. Traditionally, computer simulation is used to perform this
reliability analysis but it provides approximate results and requires an
enormous amount of CPU time for attaining reasonable estimates. Due
to its approximate nature, simulation is not very suitable for analyzing
safety-critical systems like oil and gas pipelines, where even minor anal-
ysis flaws may result in catastrophic consequences. As an accurate alter-
native, we propose to use a higher-order-logic theorem prover (HOL) for
the reliability analysis of pipelines. As a first step towards this idea, this
paper provides a higher-order-logic formalization of reliability and the
series RBD using the HOL theorem prover. For illustration, we present
the formal analysis of a simple pipeline that can be modeled as a series
RBD of segments with exponentially distributed failure times.

Keywords: Reliability Block Diagrams, Formal Methods, Theorem
Proving, Oil and Gas pipeline.

1 Introduction

On April 20, 2010, methane gas leakage on the Deepwater Horizon oil rig op-
erated by Transocean, a subcontractor of British Petroleum (BP), caused a big
explosion [1]. This leakage not only killed 11 workers instantly but destroyed
and sank the rig, and caused millions of gallons of oil to pour into the Gulf of
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Mexico. The gushing well, about a mile under the sea, was finally brought un-
der control after more than three months of frenetic attempts. The spill, which
is considered to be the largest accidental marine oil spill in the history of the
petroleum industry, caused extensive damage to marine and wildlife habitats as
well as the Gulf’s fishing and tourism industries and its impact still continues.
Just like the BP pipeline, there are tens of thousands of miles long oil and gas
pipelines around the world. All of these pipelines are aging and are becoming
more and more susceptible to failures, which may lead to disasters like the BP
one. Hence, it is very important to do rigorous reliability analysis of oil and gas
pipelines to detect and rectify potential problems.

The reliability analysis of a pipeline system involves a three-step process: (i)
partitioning the given pipeline into segments and constructing its equivalent
reliability block diagram (RBD), (ii) assessing the reliability of the individual
segments and (iii) evaluating the reliability of the complete pipeline system based
on the RBD and the reliability of its individual segments. The reliability of an
individual segment is usually expressed in terms of its failure rate λ and a random
variable, like exponential [2] or Weibull random variable [3], which models the
failure time. A single oil or gas pipeline can be simply modeled as a series
RBD [2]. However, in many cases, these pipeline systems have either reserved
components or subsystems and such pipeline systems exhibit a combination of
series and parallel RBDs [4].

The reliability analysis of oil and gas pipelines has predominantly been ac-
complished by first gathering data from in-line inspection tools to detect cracks,
corrosion or damage [5, 6]. This information is then manipulated using the paper-
and-pencil based analytical analysis and computer simulations to deliver diag-
nostics and insightful pipeline integrity reports (e.g. [2, 4, 7]). However, due
to the complex nature of large pipeline system analysis, paper-and-pencil proof
methods are error prone and the exhaustive testing of all possible system be-
haviors using simulation is almost impossible. Thus, these traditional analysis
techniques cannot guarantee accurate results, which is a severe limitation in the
case of oil and gas pipelines as an uncaught system bug may endanger human
and animal life or lead to a significant financial loss.

The inaccuracy limitations of traditional analysis techniques can be overcome
by using formal methods [8], which use computerized mathematical reasoning to
precisely model the system’s intended behavior and to provide irrefutable proof
that a system satisfies its requirements. Both model checking and theorem prov-
ing have been successfully used for the precise probabilistic analysis of a broad
range of systems (e.g. [9–13]). However, to the best of our knowledge, no formal
analysis approach has been used for the reliability analysis of oil and gas pipelines
so far. The foremost requirement for conducting the formal reliability analysis
of underground oil and gas pipelines is the ability to formalize RBDs recur-
sively and continuous random variables. Model checking is a state-based formal
method technique. The inherent limitations of model checking is the state-space
explosion problem and the inability to model complex datatypes such as trees,
lists and recursive definitions [14]. On the other hand, higher-order logic [15] is a
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system of deduction with a precise semantics and can be used to formally model
any system that can be described mathematically including recursive definitions,
random variables, RBDs, and continuous components. Similarly, interactive the-
orem provers are computer based formal reasoning tools that allow us to verify
higher-order-logic properties under user guidance. Higher-order-logic theorem
provers can be used to reason about recursive definitions using induction meth-
ods [16]. Thus, higher-order-logic theorem proving can be used to conduct the
formal analysis of oil and gas pipelines.

A number of higher-order-logic formalizations of probability theory are avail-
able in higher-order logic (e.g. [17–19]). Hurd’s formalization of probability the-
ory [17] has been utilized to verify sampling algorithms of a number of commonly
used discrete [17] and continuous random variables [20] based on their proba-
bilistic and statistical properties [21, 22]. Moreover, this formalization has been
used to conduct the reliability analysis of a number of applications, such as mem-
ory arrays [23], soft errors [24] and electronic components [25]. However, Hurd’s
formalization of probability theory only supports having the whole universe as
the probability space. This feature limits its scope and thus this probability the-
ory cannot be used to formalize more than a single continuous random variable.
Whereas, in the case of reliability analysis of pipelines, multiple continuous ran-
dom variables are required. The recent formalizations of probability theory by
Mhamdi [18] and Hölzl [19] are based on extended real numbers (including ±∞)
and provide the formalization of Lebesgue integral for reasoning about advanced
statistical properties. These theories also allow using any arbitrary probability
space that is a subset of the universe and thus are more flexible than Hurd’s
formalization. However, to the best of our knowledge, these foundational theo-
ries have not been used to formalize neither reliability and RBDs nor continuous
random variables so far.

In this paper, we use Mhamdi’s formalization of probability theory [18], which
is available in the HOL theorem prover [26], to formalize reliability and the com-
monly used series RBD, where its individual segments are modeled as random
variables. Our formalization includes various formally verified properties of re-
liability and series RBD that facilitate formal reasoning about the reliability of
some simple pipelines using a theorem prover. To analyze more realistic models of
pipelines, it is required to formalize other RBDs, such as parallel, series-parallel
and parallel-series [27]. In order to illustrate the utilization and effectiveness of
the proposed idea, we utilize the above mentioned formalization to analyze a
simple pipeline that can be modeled as a series RBD with an exponential failure
time for individual segments.

2 Preliminaries

In this section, we give a brief introduction to theorem proving in general and
the HOL theorem prover in particular. The intent is to introduce the main
ideas behind this technique to facilitate the understanding of the paper for the
reliability analysis community. We also summarize Mhamdi’s formalization of
probability theory [18] in this section.
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2.1 Theorem Proving

Theorem proving [28] is a widely used formal verification technique. The system
that needs to be analysed is mathematically modelled in an appropriate logic
and the properties of interest are verified using computer based formal tools.
The use of formal logics as a modelling medium makes theorem proving a very
flexible verification technique as it is possible to formally verify any system that
can be described mathematically. The core of theorem provers usually consists
of some well-known axioms and primitive inference rules. Soundness is assured
as every new theorem must be created from these basic or already proved axioms
and primitive inference rules.

The verification effort of a theorem in a theorem prover varies from trivial to
complex depending on the underlying logic [29]. For instance, first-order logic
[30] utilizes the propositional calculus and terms (constants, function names and
free variables) and is semi-decidable. A number of sound and complete first-
order logic automated reasoners are available that enable completely automated
proofs. More expressive logics, such as higher-order logic [15], can be used to
model a wider range of problems than first-order logic, but theorem proving
for these logics cannot be fully automated and thus involves user interaction to
guide the proof tools. For reliability analysis of pipelines, we need to formalize
(mathematically model) random variables as functions and their distribution
properties are verified by quantifying over random variable functions. Hence-
forth, first-order logic does not support such formalization and we need to use
higher-order logic to formalize the foundations of reliability analysis of pipelines.

2.2 HOL Theorem Prover

HOL is an interactive theorem prover developed at the University of Cambridge,
UK, for conducting proofs in higher-order logic. It utilizes the simple type the-
ory of Church [31] along with Hindley-Milner polymorphism [32] to implement
higher-order logic. HOL has been successfully used as a verification framework
for both software and hardware as well as a platform for the formalization of
pure mathematics.

The HOL core consists of only 5 basic axioms and 8 primitive inference rules,
which are implemented as ML functions. Soundness is assured as every new
theorem must be verified by applying these basic axioms and primitive inference
rules or any other previously verified theorems/inference rules.

We utilized the HOL theories of Booleans, lists, sets, positive integers, real
numbers, measure and probability in our work. In fact, one of the primary mo-
tivations of selecting the HOL theorem prover for our work was to benefit from
these built-in mathematical theories. Table 1 provides the mathematical interpre-
tations of some frequently used HOL symbols and functions, which are inherited
from existing HOL theories, in this paper.
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Table 1. HOL Symbols and Functions

HOL Symbol Standard Symbol Meaning

∧ and Logical and

∨ or Logical or

¬ not Logical negation

:: cons Adds a new element to a list

++ append Joins two lists together

HD L head Head element of list L

TL L tail Tail of list L

EL n L element nth element of list L

MEM a L member True if a is a member of list L

λx.t λx.t Function that maps x to t(x)

SUC n n+ 1 Successor of a num

lim(λn.f(n)) lim
n→∞

f(n) Limit of a real sequence f

2.3 Probability Theory and Random Variables in HOL

Mathematically, a measure space is defined as a triple (Ω,Σ, μ), where Ω is a
set, called the sample space, Σ represents a σ-algebra of subsets of Ω, where
the subsets are usually referred to as measurable sets, and μ is a measure with
domain Σ. A probability space is a measure space (Ω,Σ, Pr), such that the
measure, referred to as the probability and denoted by Pr, of the sample space
is 1. In Mhamdi’s formalization of probability theory [18], given a probability
space p, the functions space and subsets return the corresponding Ω and Σ,
respectively. This formalization also includes the formal verification of some of
the most widely used probability axioms, which play a pivotal role in formal
reasoning about reliability properties.

Mathematically, a random variable is a measurable function between a proba-
bility space and a measurable space. A measurable space refers to a pair (S,A),
where S denotes a set and A represents a nonempty collection of sub-sets of
S. Now, if S is a set with finite elements, then the corresponding random vari-
able is termed as a discrete random variable and else it is called a continuous
one. The probability that a random variable X is less than or equal to some
value x, Pr(X ≤ x) is called the cumulative distribution function (CDF) and it
characterizes the distribution of both discrete and continuous random variables.
Mhamdi’s formalization of probability theory [18] also includes the formaliza-
tion of random variables and the formal verification of some of their classical
properties using the HOL theorem prover.

3 Reliability

In reliability theory [27], reliability R(t) of a system or component is defined as
the probability that it performs its intended function until some time t.

R(t) = Pr(X > t) = 1− Pr(X ≤ t) = 1− FX(t) (1)
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where FX(t) is the CDF. The random variableX , in the above definition, models
the time to failure of the system. Usually, this time to failure is modeled by the
exponential random variable with parameter λ that represents the failure rate
of the system. Now, the CDF can be modeled in HOL as follows:

Definition 1: Cumulative Distributive Function

� ∀ p X x. CDF p X x = distribution p X {y | y ≤ Normal x}
where p represents the probability space, X is the random variable and x repre-
sents a real number. The function Normal converts a real number to its corre-
sponding value in the extended−real data-type, i.e, the real data-type including
the positive and negative infinity. The function distribution accepts a proba-
bility space p, a random variable X and a set and returns the probability of X
acquiring all the values of the given set in the probability space p. Now, Defini-
tion 1 can be used to formalize the reliability definition, given in Equation 1, as
follows:

Definition 2: Reliability

� ∀ p X x. Reliability p X x = 1 - CDF p X x

We used the above mentioned formal definition of reliability to formal verify
some of the classical properties of reliability in HOL. The first property in this
regard relates to the fact that the reliability of a good component is 1, i.e.,
maximum, prior to its operation, i.e., at time 0. This property has been verified
in HOL as the following theorem.

Theorem 1: Maximum Reliability

� ∀ p X. prob space p ∧ (events p = POW (p space p)) ∧
(∀ y. X y �= NegInf ∧ X y �= PosInf) ∧
(∀ z. 0 ≤ z ⇒ (λx. CDF p X x) contl z) ∧
(∀ x. Normal 0 ≤ X x) ⇒
(Reliability p X 0 = 1)

The first two assumptions of the above theorem ensure that the variable p rep-
resents a valid probability space based on the formalization of Mhamdi’s prob-
ability theory [18]. The third assumption constraints the random variable to
be well-defined, i.e., it cannot acquire negative or positive infinity values. The
fourth assumption states that the CDF of the random variable X is a continuous
function, which means that X is a continuous random variable. This assumption
utilizes the HOL function contl, which accepts a lambda abstraction function
and a real value and ensures that the function is continuous at the given value.
The last assumption ensures that the random variable X can acquire positive
values only since in the case of reliability this random variable always models
time, which cannot be negative. The conclusion of the theorem represents our
desired property that reliability at time=0 is 1.

The proof of the Theorem 1 exploits some basic probability theory axioms
and the following property according to which the probability of a continous
random variable at a point is zero.
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The second main characteristic of the reliability function is its decreasing
monotonicity, which is verified as the following theorem in HOL:

Theorem 2: Reliability is a Monotone Function

� ∀ p X a b. prob space p ∧ (events p = POW (p space p)) ∧
(∀ y. X y �= NegInf ∧ X y �= PosInf) ∧
(∀ x. Normal 0 ≤ X x) ∧ a ≤ b ⇒
(Reliability p X (b)) ≤ (Reliability p X (a))

The assumptions of this theorem are the same as the ones used for Theorem 1
except the last assumption, which describes the relationship between variables a
and b. The above property clearly indicates that the reliability cannot increase
with the passage of time.

The formal reasoning about the proof of Theorem 2 involves some basic axioms
of probability theory and a property that the CDF is a monotonically increasing
function.

Finally, we verified that the reliability tends to 0 as the time approaches
infinity. This property is verified under the same assumptions that are used for
Theorem 1.

Theorem 3: Reliability Tends to Zero As Time Approaches Infinity

� ∀ p X. prob space p ∧ (events p = POW (p space p)) ∧
(∀ y. X y �= NegInf ∧ X y �= PosInf) ∧ (∀ x. Normal 0 ≤ X x) ⇒

(lim (λn. Reliability p X (&n)) = 0)

The HOL function limmodels the limit of a real sequence. The proof of Theorem
3 primarily uses the fact that the CDF approches to 1 as its argument approaches
infinity.

These three theorems completely characterize the behavior of the reliability
function on the positive real axis as the argument of the reliability is time and
thus cannot be negative. The formal verification of these properties based on our
definition ensure its correctness. Moreover, these formally verified properties also
facilitate formal reasoning about reliability of systems, as will be demonstrated in
Section 5 of this paper. The proof details about these properties can be obtained
from our proof script [33].

4 Formalization of Series Reliability Block Diagram

In a serially connected system [27], depicted in Figure 1, the reliability of the
complete system mainly depends upon the failure of a single component that
has the minimum reliability among all the components of the system. In other
words, the system stops functioning if any one of its component fails. Thus,
the operation of such a system is termed as reliable at any time t, if all of its
components are functioning reliably at this time t. If the event Ai(t) represents
the reliable functioning of the ith component of a serially connected system
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with N components at time t then the overall reliability of the system can be
mathematically expressed as [27]:

Rseries(t) = Pr(A1(t) ∩ A2(t) ∩ A3(t) · · · ∩ AN (t)) (2)

Fig. 1. System with a Series Connection of Components

Using the assumption of mutual independence of individual reliability events of
a series system [27], the above equation can be simplified as:

Rseries(t) =
N∏

i=1

Ri(t) (3)

Moreover, an intrinsic property of a series system is that its overall reliability
is always less than or equal to the reliability of the sub-component with the least
reliability.

Rseries(t) ≤ min(Ri(t)) (4)

We proceed with the formalization of the series RBD by first formalizing the
notion of mutual independence of more than two random variables, which is
one of the most essential prerequisites for reasoning about the simplified expres-
sions for RBD. Two events A and B are termed as mutually independent iff
Pr(A ∩ B) = Pr(A)Pr(B). All the events involved in reliability modeling are
generally assumed to be mutually independent. Since we often tackle the relia-
bility assessment of systems with more than two components, we formalize the
mutual independence of a list of random variables in this paper as follows:

Definition 3: Mutual Independence of Events

� ∀ p L. mutual indep p L =

∀ L1 n. PERM L L1 ∧ 2 ≤ n ∧ n ≤ LENGTH L ⇒
prob p (inter set p (TAKE n L1)) =

list prod (list prob p (TAKE n L1))

The function mutual indep takes a list of events or sets L along with the prob-
ability space p as input and returns True if the given list of events are mutually
independent in p. The formal definitions for the HOL functions used in the
above definition are given in Table 1. The predicate PERM ensures that its two
list arguments form a permutation of one another, the function LENGTH returns
the length of a list, the function TAKE returns a list that contains the first n
elements of its argument list, the function inter set performs the intersection
of all the sets in a list of sets and returns the probability space in case of an
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empty list argument, the function list prob returns a list of probabilities as-
sociated with the given list of events in the given probability space and the
function list prod recursively multiplies all the elements of its argument list
of real numbers. Thus, using these functions the function mutual indep ensures
that for any 2 or more elements n, taken in any order, of the given list of events
L, the property Pr(

⋂n
i=0 Li) =

∏n
i=0 Pr(Li) holds.

Table 2. HOL Functions used in Definition 3

Function Name HOL Definition

PERM � ∀ L1 L2. PERM L1 L2 =

∀ x. FILTER ($= x) L1 = FILTER ($= x)L2

LENGTH � (LENGTH [] = 0 ) ∧
∀ h t. LENGTH (h::t) = SUC (LENGTH t)

TAKE � (∀ n. TAKE n [] = []) ∧
∀ n x xs. TAKE n (x::xs) = if n = 0 then [] else

x::TAKE (n - 1) xs

inter set � (∀ p. inter set p [] = p space p ) ∧
∀ p h t. inter set p (h::t) = h ∩ inter set p t

list prod � (∀ list prod [] = 1) ∧
∀ h t. list prod (h::t) = h * list prod t

list prob � (∀ p. list prob p [] = []) ∧
∀ p h t. list prob p (h::t) =

prob p (h ∩ p space p) * list prob p t

min � ∀ x y. min x y = if x ≤ y then x else y

min rel � (∀ f. min rel f [] = 1) ∧
∀ f h t. min rel f (h::t) = min (f h) (min rel f t)

Next, we propose to formalize the RBDs in this paper by using a list of
events, where each event models the proper functioning of a single component
at a given time based on the corresponding random variable. This list of events
can be modeled as follows:

Definition 4: Reliability Event List

� ∀ p x. rel event list p [] x = [] ∧
∀ p x h t. rel event list p (h::t) x =

PREIMAGE h {y | Normal x < y} ∩ p space p :: rel event list p t x

The function rel event list accepts a list of random variables, representing
the time to failure of individual components of the system, and a real number
x, which represents the time index where the reliability is desired, and returns
a list of sets corresponding to the events that the individual components are
functioning properly at the given time x. This list of events can be manipulated,
based on the structure of the complete system, to formalize various RBDs.

Similarly, the individual reliabilities of a list of random variables can be mod-
eled as the following recursive function:
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Definition 5: Reliability of a List of Random Variables

� ∀ p x . rel list p [] x = [] ∧
∀ p h t x. rel list p (h::t) x =

Reliability p h x :: rel list p t x

The function rel list takes a list of random variables and a real number x,
which represents the time index where the reliability is desired, and returns a list
of the corresponding reliabilities at the given time x. It is important to note that
all the above mentioned definitions are generic enough to represent the behavior
of any RBD, like series, parallel, series-parallel and parallel-series.

Now, using Equation (2), the reliability of a serially connected structure can
be defined as:

Definition 6: System with a Series Connection of Components

� ∀ p L. rel series p L = prob p (inter set p L)

The function rel series takes a list of random variables L, representing the
failure times of the individual components of the system, and a probability space
p as input and returns the intersection of all the events corresponding to the
reliable functioning of these components using the function inter set, given in
Table 2. Based on this definition, we formally verified the result of Equation (2)
as follows:

Theorem 4: Reliability of a System with Series Connections

� ∀ p L x. prob space p ∧ (events p = POW (p space p)) ∧
0 ≤ x ∧ 2 ≤ LENGTH (rel event list p L x) ∧

mutual indep p (rel event list p L x) ⇒
(rel series p (rel event list p L x) = list prod (rel list p L x))

The first two assumptions ensure that p is a valid probability space based on
Mhamdi’s probability theory formalization [18]. The next one ensures that the
variable x, which models time, is always greater than or equal to 0. The next two
assumptions of the above theorem guarantee that we have a list of at least two
mutually exclusive random variables (or a system with two or more components).
The conclusion of the theorem represents Equation (2) using Definitions 4 and 6.
The proof of Theorem 4 involves various probability theory axioms, the mutual
independence of events and the fact that the probability of any event that is in
the returned list from the function rel event list is equivalent to its reliability.
More proof details can be obtained from our proof script [33].

Similarly, we verified Equation (4) as the following theorem in HOL:

Theorem 5: Reliability of a System depends upon the minimum reliability of
the connected components

� ∀ p L x. prob space p ∧ (events p = POW (p space p)) ∧
0 ≤ x ∧ 2 ≤ LENGTH (rel event list p L x) ∧
mutual indep p (rel event list p L x) ⇒
(rel series p (rel event list p L x) ≤

min rel (λ L. Reliability p L x) L)
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The proof of the Theorem 5 uses several probability theory axioms and the
fact that any subset of a mutually independent set is also mutually independent.

The definitions, presented in this section, can be used to model parallel RBD
[27] and formally verify the corresponding simplified reliability relationships as
well. The major difference would be the replacement of the function inter set

in Definition 6 by a function that returns the union of a given list of events.

5 Reliability Analysis of a Pipeline System

A typical oil and gas pipeline can be partitioned into a series connection of
N segments, where these segments may be classified based on their individual
failure times. For example, a 60 segment pipeline is analyzed in [2] under the
assumption that the segments, which exhibit exponentially distributed failure
rates, can be sub-divided into 3 categories according to their failure rates (λ),
i.e., 30 segments with λ = 0.0025, 20 segments with λ = 0.0023 and 10 segments
with λ = 0.015. The proposed approach for reliability analysis of pipelines allows
us to formally verify generic expressions involving any number of segments and
arbitrary failure rates. In this section, we formally verify the reliability of a simple
pipeline, depicted in Figure 2, with N segments having arbitrary exponentially
distributed failure times.

Fig. 2. A Simple Pipeline

We proceed with the formal reliability analysis of the pipeline, shown in Figure
2, by formalizing the exponential random variable in HOL.

Definition 7: Exponential Distribution Function

� ∀ p X l. exp dist p X l =

∀ x. (CDF p X x = if 0 ≤ x then 1 - exp (-l * x) else 0)

The predicate exp dist ensures that the random variable X exhibits the CDF
of an exponential random variable in probability space p with failure rate l.
We classify a list of exponentially distributed random variables based on this
definition as follows:

Definition 8: List of Exponential Distribution Functions

� ∀ p L. list exp p [] L = T ∧
∀ p h t L. list exp p (h::t) L =

exp dist p (HD L) h ∧ list exp p t (TL L)

The list exp function accepts a list of failure rates, a list of random variables
L and a probability space p. It guarantees that all elements of the list L are
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exponentially distributed with corresponding failure rates given in the other list
within the probability space p. For this purpose, it utilizes the list functions HD
and TL, which return the head and tail of a list, respectively.

Next, we model the pipeline, shown in Figure 2, as a series RBD as follows:

Definition 9: Reliability of Series Pipeline System

� ∀ p L . pipeline p L = rel series p L

Now, we can use Definition 8 to guarantee that the random variable list argument
of the function pipeline contains exponential random variables only and thus
verify the following simplified expression for the pipeline reliability.

Theorem 6: Series Pipeline System

� ∀ p L x C. prob space p ∧ (events p = POW (p space p)) ∧
0 ≤ x ∧ 2 ≤ LENGTH (rel event list p L x) ∧
mutual indep p (rel event list p L x) ∧
list exp p C L ∧ (LENGTH C = LENGTH L) ⇒
(pipeline p (rel event list p L x) = exp (-list sum C * x))

The first five assumptions are the same as the ones used in Theorem 5. The sixth
assumption list exp p C L ensures that the list of random variable L contains
all exponential random variables with corresponding failure rates given in list
C. The next assumptions guarantees that the lengths of the two lists L and C
are the same. While the conclusion of Theorem 6 represents desired reliability
relationship for the given pipeline model. Here the function list sum recursively
adds the elements of its list argument and is used to add the failure rates of all
exponentially distributed random variables, which are in turn used to model the
individual segments of the series RBD of the pipeline. The proof of Theorem 6 is
based on Theorem 4 and some properties of the exponential function exp. The
reasoning was very straightforward (about 100lines of HOL code) compared to
the reasoning for the verification of Theorem 4 [33], which involved probability-
theoretic guidance. This fact illustrates the usefulness of our core formalization
for conducting the reliability analysis of pipelines.

The distinguishing features of this formally verified result include its generic
nature, i.e., all the variables are universally quantified and thus can be specialized
to obtain the reliability of the given pipeline for any given parameters, and its
guaranteed correctness due to the involvement of a sound theorem prover in its
verification, which ensures that all the required assumptions for the validity of
the result are accompanying the theorem. Another point worth mentioning is
that the individual failure rates of the pipeline segments can be easily provided
to the above theorem in the form of a list, i.e., C. The above mentioned benefits
are not shared by any other computer based reliability analysis approach for
oil and gas pipelines and thus clearly indicate the usefulness of the proposed
approach.
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6 Conclusions

Probabilistic analysis techniques have been widely utilized during the last two
decades to assess the reliability of oil and gas pipelines. However, all of these
probability theoretic approaches have been utilized using informal system anal-
ysis methods, like simulation or paper-and-pencil based analytical methods, and
thus do not ensure accurate results. The precision of results is very important in
the area of oil and gas pipeline condition assessment since even minor flaws in
the analysis could result in the loss of human lives or heavy damages to the en-
vironment. In order to achieve this goal and overcome the inaccuracy limitation
of the traditional probabilistic analysis techniques, we propose to build upon our
proposed formalization of RBDs to formally reason about the reliability of oil
and gas pipelines using higher-order-logic theorem proving.

Building upon the results presented in this paper, the formalization of other
commonly used RBDs, including parallel, series-parallel and parallel-series, and
the Weibull random variable is underway. These advanced concepts are widely
used in the reliability analysis of pipelines. However, their formalization requires
some advanced properties of probability theory. For example, for formalizing the
reliability block diagrams of the series-parallel and parallel-series structures, we
need to first formally verify the principle of inclusion exclusion [34]. We also plan
to formalize the underlying theories to reason about more realistic series pipeline
systems, such as multi-state variable piping systems, where each subcomponent
of the pipeline system consists of many irreversible states from good to worst. We
also plan to investigate artificial neural networks in conjunction with theorem
proving to develop a hybrid semi-automatic pipeline reliability analysis frame-
work. Besides the pipeline reliability analysis, the formalized reliability theory
foundation presented in this paper, may be used for the reliability analysis of a
number of other applications, including hardware and software systems.

Acknowledgments. This publication was made possible by NPRP grant #
[5 - 813 - 1 134] from the Qatar National Research Fund (a member of Qatar
Foundation). The statements made herein are solely the responsibility of the
author[s].

References

1. BP Leak the World’s Worst Accidental Oil Spill, London Telegraph (August 03,
2010), http://www.telegraph.co.uk/finance/newsbysector/energy/oilandgas
/7924009/bp-leak-the-worlds-worst-accidental-oil-spill.html (2014)

2. Zhang, Z., Shao, B.: Reliability Evaluation of Different Pipe Section in Different
Period. In: Service Operations and Logistics, and Informatics, pp. 1779–1782. IEEE
(2008)

3. Kolowrocki, K.: Reliability and Risk Analysis of Multi-State Systems With De-
grading Components. Electronic Journal of International Group on Reliability 2(1),
86–104 (2009)

http://www.telegraph.co.uk/finance/newsbysector/energy/oilandgas/7924009/bp-leak-the-worlds-worst-accidental-oil-spill.html
http://www.telegraph.co.uk/finance/newsbysector/energy/oilandgas/7924009/bp-leak-the-worlds-worst-accidental-oil-spill.html


Towards the Formal Reliability Analysis of Oil and Gas Pipelines 43

4. Soszynska, J.: Reliability and Risk Evaluation of a Port Oil Pipeline Transportation
System in Variable Operation conditions. International Journal of Pressure Vessels
and Piping 87(2-3), 81–87 (2010)

5. Pipeline Integrity Solution GE-Energy (2014), http://www.ge-energy.com/
products and services/services/pipeline integrity services/

6. Pipecheck - Pipeline Integrity Assessment Software (2014), http://www.
creaform3d.com/en/ndt-solutions/pipecheck-damage-assessment-software

7. Pandey, D.: Probabilistic Models for Condition Assessment of Oil and Gas
Pipelines. Independent Nondestructive Testing and Evaluation International 31(3),
349–358 (1998)

8. Boca, P., Bowen, J., Siddiqi, J.: Formal Methods: State of the Art and New Direc-
tions. Springer (2009)

9. Hasan, O., Tahar, S.: Performance Analysis of ARQ Protocols using a Theorem
Prover. In: International Symposium on Performance Analysis of Systems and
Software, pp. 85–94. IEEE Computer Society (2008)

10. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic Model Checking for Sys-
tems Biology. In: Symbolic Systems Biology, pp. 31–59. Jones and Bartlett (2010)

11. Elleuch, M., Hasan, O., Tahar, S., Abid, M.: Formal Analysis of a Scheduling
Algorithm for Wireless Sensor Networks. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 388–403. Springer, Heidelberg (2011)

12. Hasan, O., Patel, J., Tahar, S.: Formal Reliability Analysis of Combinational Cir-
cuits using Theorem Proving. J. Applied Logic 9(1), 41–60 (2011)

13. Fruth, M.: Formal Methods for the Analysis of Wireless Network Protocols. PhD
thesis, Oxford University, UK (2011)

14. Kaufman, M.: Some Key Research Problems in Automated Theorem Proving for
Hardware and Software Verification. Revista de la Real Academia de Ciencias
Exactas, F́ısicas y Naturales. Serie A: Matemáticas 98(1), 181 (2004)
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