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An algorithm is presented which generates pairs of oscillatory random time

series which have identical periodograms but differ in the number of oscillations.

This result indicate the intrinsic limitations of spectral methods when it comes

to the task of measuring frequencies. Other examples, one from medicine and

one from bifurcation theory, are given, which also exhibit these limitations of

spectral methods. For two methods of spectral estimation it is verified that the

particular way end points are treated, which is specific to each method, is, for

long enough time series, not relevant for the main result.
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1 Introduction

Nearly everywhere in science we encounter the problem of determining the fre-

quency of oscillation of some autonomously oscillating system from which a

signal has been measured over a finite time period. Most commonly, spectral

methods are used: From the squared modulus of the Fourier transform of the sig-

nal (the periodogram) its expectation value (the power spectrum) is estimated,

and the frequency is determined by some characterization of the position of a

peak in the power spectrum (see, e.g., Mo et al., 1988; Muzi & Ebert, 1993;

Timmer et al., 1996; Méndez et al., 1998; Godano & Capuano, 1999; Korhonen

et al., 2002; Slavic et al., 2002). For linear systems driven by white noise it is

easily seen that the periodogram or, equivalently, the empirical autocorrelation

function do, in fact, contain all relevant information (Brockwell & Davis, 1991;

Priestley, 1981).

For nonlinear oscillators, this is generally not the case. As was shown re-

cently (Rossberg, 2002), the power spectrum of a noisy or chaotic (i.e., not

perfectly periodic) nonlinear oscillator which oscillates with a given average fre-

quency , i.e. the number of cycles per unit time, can be completely arbitrary.

In particular, the power spectrum is unrelated to the frequency. The number of

oscillation cycles is here defined by the number of transition of the trajectory of

the signal in delay space through a Poincaré section. Since this corresponds to

a purely topological relation between the trajectory and the Poincaré section,

the corresponding measure of frequency was named topological frequency ωtop.

Of course, intuition and experience suggest that, for typical experimental time

series, the result of using some standard method to determine the oscillation

frequency from the power spectrum would not differ too much from the topo-

logical frequency. But from the power spectrum alone no upper limit for this

difference can be derived. Nor seems any other efficient method to be known

which would allow to determine an upper limit for this difference.

After giving some examples for oscillations which exhibit this unrelatedness

of topological frequency and power spectrum in Section 2, a result is presented
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which is in some sense stronger than the result cited above. A precise determi-

nation of frequency is not only impossible from the power spectrum of a time

series, but also from the periodogram. Since the power spectrum is, in one

way or another, estimated from the periodogram by an averaging procedure,

the estimated power spectrum contains less information than the periodogram.

One might conjecture that from the additional information contained in the

periodogram, such as higher order correlations between the amplitudes of in-

dividual Fourier modes, frequency information can be extracted. As is shown

in Section 3, this is not the case: Examples for time series are given which

obviously have different topological frequencies, but, by construction, identi-

cal periodograms. The use of the periodograms of the raw data is justified for

spectral estimation only if end effects can be neglected, for example, when the

time series are long enough. In Section 4 it is shown that, in fact, for long

enough time series the result holds valid also when end effects are explicitly

taken account by spectral estimators.

2 Oscillation frequencies and power spectra of

some nonlinear oscillators

As a first example, consider the noisy, weakly-nonlinear oscillator described by

a complex amplitude A(t) with dynamics given by the noisy Landau-Stuart

equation (Risken, 1989)

Ȧ = (ε + iω0)A − (1 + igi)|A|2A + η(t), (1)

where ε, ω0, and gi are real and η(t) denotes complex, white noise with correla-

tions

〈η(t)η(t′)〉 = 0, 〈η(t)η(t′)∗〉 = 4δ(t − t′) (2)

[∗ ≡ complex conjugation, 〈·〉 ≡ expectation value]. In a certain sense (Arnold,

1998), this system universally describes noisy oscillations in the vicinity of a

3



Hopf bifurcation. In general (i.e., with gi 6= 0) the linear frequency ω0, the

spectral peak frequency ωpeak, i.e. the position of the maximum of the power

spectrum SA(ω), the average frequency or phase frequency

ωph,A := 〈ωi〉 , ωi := Im {Ȧ/A} , (3)

and the mean frequency of A(t)

ωmean,A :=

〈

ωi|A|2
〉

〈|A|2〉
=

Im 〈ȦA∗〉

〈|A|2〉
=

∫

ωSA(ω)dω
∫

SA(ω)dω
, (4)

are all different; see Fig. 1. [Definitions (3,4) are sometimes restricted to an-

alytic signals, characterized by SA(ω) = 0 for ω ≤ 0, which are in one-to-one

correspondence with the zero-mean, real-valued signals Re{A(t)}. See Boashash

(1992) for the history.]

The phase frequency measures the average number of circulations around

the point A = 0 in phase space per unit time (decompose A(t) = a(t)eiφ(t)

to see this). Thus, with the natural assumption that a circulation around the

origin of phase space corresponds to a cycle of oscillation – which is justified by

symmetry considerations – the phase frequency measures cycles per unit time,

i.e., the oscillation frequency. Although this concept of an oscillation cycle

is slightly different from that used for the definition of topological frequency,

both frequency measures often give identical results, in particular when the

oscillation amplitude does not come too close to zero. For a discussion of the

effect of filtering on the phase frequency, see Rossberg (2002). In contrast to the

phase frequency, the spectral peak frequency ωpeak,A and the mean frequency

ωmean,A are frequency measures which can be obtained directly from the power

spectrum. As can be seen from Eqs. (3) and (4), ωph,A = ωmean,A if and only

if ωi and |A|2 are uncorrelated. This is always the case for linear, noise-driven

oscillators, but for general nonlinear oscillators it is not.

When it is known that the dynamics of A(t) is of the form of Eqs. (1) and

(2) and the power spectrum SA(ω) of A(t) is precisely determined, then it is of

course possible to obtain the free parameters of Eq. (1) from a fitting procedure

and to use these to determine ωph,A. But none of these assumptions is typically
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satisfied in practice. Equations (1) and (2) are exact only in a particular limit,

and SA(ω) is usually biased by some nontrivial transfer function inherent in the

measurement process. Then the information about ωph,A cannot be extracted

from the power spectrum anymore. The situation becomes aggravated by the

fact that, as was shown by Seybold & Risken (1974), SA(ω) is always well

approximated by a Lorenzian, uniformly for all ε.

As a second example, an experimental time series from the hand tremor of

a subject diagnosed with Parkinson’s disease shall be examined. The data was

recorded by an accelerometer attached to the hand. It consists of 10240 samples

recorded at a rate of 300 Hz. The data is available on the internet1.

Figure 2a shows part of the time series. In order to obtain an estimate of

the power spectrum (Fig. 2b), the periodogram of the (tapered) time series was

smoothed using a window of width h = 10 with weights w(i) = max(0, 1−i2/h2).

Its peak frequency is at ωpeak/2π = 9.49 Hz, corresponding to 324 oscillations

over the time series. In order to determine the phase frequency, the (band-

pass filtered) analytic signal corresponding to the time series is obtained by

convoluting it with the Morlet wavelet

w(t) =
1

π
exp

(

iω0t −
1

2
(∆ωt)2

)

(5)

with ω0 = ωpeak and ∆ω = ωpeak/6. The resulting phase frequency ωph =

9.58 Hz (Fig. 2b) is robust under large variations of the filter width ∆ω and

mid frequency ω0. It is also identical to the topological frequency obtained

by band-pass filtering the time series by a convolution with Re{w(t)} and a

successive 2D delay embedding, e.g., with delay τ = (23/300) s. Unfortunately,

the investigated time series is too short to yield the observed difference between

peak frequency and topological frequency significant in a statistical sense, as a

careful statistical analysis using the method of Timmer et al. (1997) shows: The

95% confidence interval for the peak frequency extends from 9.40 Hz to 9.61 Hz.

It would be desirable to repeat the analysis on longer samples.

It should be emphasized that the point of Rossberg (2002) is that the topo-

1http://webber.physik.uni-freiburg.de/∼jeti/tremordaten/park/0308-2-ali.dat
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logical or phase frequency cannot be derived from the power spectrum as a

whole. Determination of the spectral peak frequency is only the most obvious

attempt to do so. The failure of this particular approach has been noticed

before, see, e.g., Pikovsky et al. (1997).

3 Does the periodogram help?

Is it possible to identify a relative shift between spectral peak frequency and

topological or phase frequency by using a different method to evaluate the peri-

odogram? As mentioned before, the answer to be given here is negative: there is

no general way to tell from the periodograms (or the empirical autocorrelation

functions) of time series that they oscillate with different frequencies.

For simplicity, only real valued time series x(t) shall be considered here for

which the number of oscillations in a given time interval of length T can be de-

termined by a simple 2D delay embedding. If there is a delay ∆t, such that the

trajectory of the delay vector (x(t), x(t − ∆t)) encircles the origin of the coor-

dinate system at finite distance, the number of circulations m gives the number

of oscillations in the time series. The resulting frequency is then 2πm/T . This

is the definition of topological frequency restricted to 2D embedding. It is very

similar to the one that can be obtained from of the definition of instantaneous

phase φ(t) by Pikovsky et al. (1997) when defining ω as the temporal average

of dφ/dt. However, their definition is based on the actual phase space of a dy-

namical system and not on its approximate reconstruction from a time series by

delay embedding. This distinction becomes particularly relevant when random

time series, as they are modeled by the method described here, are evaluated.

We shall now outline an iterative algorithm that randomly generates pairs of

time series x1(t), x2(t) of the type described above. The two time series gener-

ated by this algorithm have identical periodograms but differ in the number of

oscillation cycles. (The algorithm can also be considered as a source of random

time series X1(t), X2(t) which have identical power spectra but different expec-

tation values for the oscillation frequencies – in fact, the frequencies are fixed).
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The algorithm uses some ideas from an algorithm of Schreiber & Schmitz (1996)

that generates time series with periodograms nearly identical and distributions

of values identical to a given times series.

The main part of our algorithm generates two complex-valued random time

series y1(t), y2(t) with N samples at t = 0, . . . , N − 1. When continued peri-

odically [yl(t) = yl(t + N)], the distribution of the output is invariant under

translation in time. The periodograms of the two time series are identical. The

moduli |yl(t)| follow a predetermined narrow distribution with values near one,

i.e., the values of yl(t) lie near the unit circle in the complex plane. y1(t) and

y2(t) encircle the origin of the complex plane k1 and k2 (k1 6= k2) times re-

spectively. Using these time series, the oscillatory, real-valued time series x1(t),

x2(t) (xl(t) = Re{exp(iω0t)yl(t)) with identical periodograms are constructed.

In order to obtain the final time series yl(t), the following two basic steps are

performed iterative, starting with two time series which encircle the origin of the

complex plane k1 respectively k2 (k1 6= k2) times, but do not yet have identical

periodograms: In Fourier space, the magnitudes of the Fourier modes of the

two time series are adjusted, such that the magnitudes of the Fourier modes

at the same frequencies approach each other, while the phases of the Fourier

modes are kept constant (Steps 4 and 5 in the detailed description below).

Then, back in physical “space”, i.e., using the actual time series, a nonlinear,

monotonously increasing transformation of the magnitudes of the values for each

time is applied in such a way that the desired distribution of the complex time

series near the unit circle (see above) is enforced (Step 10 below). If the phases

were kept constant in this second basic step, the algorithm would (as numerical

experiments show) typically converge to a trivial solution with y1(t) = y2(t).

Obviously, the number of circulations of the origin of the complex plane would

then have changed with respect to the initial condition – at least for one of

the two time series. In order to avoid these phase slips, the difference in phase

angle between successive values is, for both time series, enforced to lie within

a certain, small rage, by adjusting, at each iteration, also the phase angles

(Steps 1,6-9). The details of these manipulations of the phases, as well as the
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precise choice of the initial time series (Steps 2 and 3), contain random elements,

as will be explained below. Experience shows that convergence of the algorithm

is, although not guaranteed, with appropriate choices of the tuning parameters

of the algorithm (see below), highly probable.

This is a step-by-step description of this algorithm. We give the values of

tuning parameters as they were used to generate the sample Pair A shown in

Fig. (3), which consists of two time-series with N = 256 points, in parenthesis.

1. Generate two random permutations Πl : (0 . . . (N − 1)) → (0 . . . (N − 1))

(l = 1, 2) of length N , with equal probability 1/N ! for each permutation,

to be used later.

2. Initialize the series y1(t) and y2(t) as yl(t) = exp(2πiklt/N) at t =

0, . . . , N − 1 with small integer kl (e.g., k1 = 0 and k2 = 1).

3. In order to excite also the remaining Fourier modes, add some noise to

y1(t) and y2(t) (e.g., complex Gaussian with variance 2 × 10−4).

Now the main loop (steps 4-10) starts.

4. Calculate the discrete Fourier transforms ỹl(ω) of the time series yl(t).

Increase or decrease the values of |ỹl(ω)| such that the distance between

|ỹ1(ω)| and |ỹ2(ω)| decreases by a fixed percentage (e.g., 20%) while keep-

ing arg(ỹl(ω)) and |ỹ1(ω)|+|ỹ2(ω)| fixed. In this step the two periodograms

are forced to approach each other. Notice, however, that the manipula-

tions in steps 6-10 may have an adversary effect. In order to have the

algorithm as a whole converge, some balancing of the tuning parameters

is therefore required.

5. Obtain the inverse Fourier transforms of the results and assign them to

y1(t) and y2(t).

6. Calculate the increments of arg(yl(t)) between successive samples. Apply

the permutations Πl to the sequences of phase increments (see below for

an explanation).
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7. For phase increments of absolute value larger than some threshold (e.g.,

0.4) distribute part of the increment (e.g., 1%) symmetrically over the pre-

ceeding and succeeding increments such that the sum of the three remains

unchanged. Do this step with parallel update for all increments.

8. Repeat step 7 until no phase increment exceeds the threshold.

9. Obtain the inverse permutations Π−1
l of these phase increments, and sum

them up to obtain two new time series for the phases arg(yl(t)).

10. For each series, find a polynomial Pl(·) of low order (e.g., 9th order), such

that the distribution of Pl(|yl(t)|) fits best with the desired distribution

of the arguments (we use a Gaussian with mean m = 1 and variance

σ2 = 0.04).2,3 Construct two new complex-valued time series by using the

arguments Pl(|yl(t)|) and the phases from step 9, and assign them to y1(t)

and y2(t).

11. Repeat steps 4–10 until the periodograms of y1(t) and y1(t) converge to

the same values, i.e., δ := N−1
∑

ω(|ỹ1(ω)| − |ỹ2(ω)|)2 < ε, with some

small ε > 0 (e.g., ε = 10−6). For larger N convergence is substantially

improved by judiciously choosing new permutations Πl from time to time

(see below).

2Pl(·) is determined such that

min =

N−1�
s=0

�
Pl (|yl (Ql(s))|) − m − 21/2 σ erf−1 � 2s + 1

N
− 1 ��� 2 , (6)

where Ql(·) is the permutation which rank orders the sequence {|yl(t)|}t and erf−1(·) denotes

the inverse error function given by

x =
2√
π � erf−1(x)

0
e−u2

du for all −1 < x < 1. (7)

3Schreiber & Schmitz (1996) achieve a similar result by using, instead of Pl(·), functions

M(·) which map the sets of values of the time series (e.g.,{|y1(t)|}t) onto a given target set of

values in such a way that rank ordering is preserved. The method used here has the advantage

over their method that the periodograms can be matched to arbitrary accuracy.
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12. Multiply random phases exp(iφl) to y1(t) and y2(t) in order to make the

distributions of x1(t) and x2(t) obtained in the next step time-translation

invariant.

13. Calculate the real-valued time series xl(t) = Re{exp(iω0t)yl(t)} with some

not too small ω0 (e.g., ω0 = 5π/32).

14. As in steps 4 and 5, remove the small differences in the periodograms of

x1(t) and x2(t) resulting from the Re{·} operation in step 13. But now,

do it in a single (100%) step.

A typical result of running this algorithm is shown in Fig. 3. With a high enough

frequency of the fast modulation ω0, the algorithm guarantees that the origin

of delay space [∆t ≈ π/(2ω0)] is encircled at finite distance (see Fig. 4).

Now, some details concerning the manipulation of phases (Steps 6-9) shall

be explained. The permutations of the phase increments prior to the relaxation

of large phase jumps in steps 7 and 8 prevent the algorithm from running into

solutions with localized regions of fast drift of phase, which do not occur in

typical experimental time series. However, it turns out that, with permutations

selected with equal probability from the set of all permutations, the algorithm

has difficulties to converge for large N , while without any permutation it readily

does. This dilemma can be solved by slowly interpolating from fully random

permutations to the identity permutation: Execution of the main loop (steps

4-10) is dived into blocks of, e.g., 200 iterations. After terminating a block,

the yl(t) are reset to the pair of series with the lowest δ so far, and the ran-

dom permutations Πl are replace by the permutations which rank order the

sequences {(t + hνl(t)) mod N}t (t = 0, . . . , N − 1). Here {νl(t)}t are sequences

of independent random numbers distributed equally between 0 and 1 which are

renewed after each block and, as usual, u modN := u − m N , where m is the

largest integer with u − m N ≥ 0. The parameter h controls the interpolation

between fully random permutations (h → ∞) and the identity (h = 0). Succes-

sively smaller values of h are used after each block. As an example for a pair

of long time series (N = 8192, −k1 = k2 = 24), Pair B was generated using
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h = 400, 200, 100, 0, 0 (convergence is reached after 5 blocks) and all other pa-

rameters as for Pair A. For these long time series the fluctuations of the phases

are clearly superimposed by a linear drift of the phase difference (Fig. 5). For

Pair A this is not obvious, and one might be tempted to attribute the difference

in frequency there to a “mere fluctuation”. A Matlab code that implements the

algorithm in the form used to generate Pair B is available on the internet4.

4 The influence of end-point effects for two spec-

tral estimators

Calculating the periodogram of a time series (and the empirical autocorrelation

function as the Fourier transform thereof) is the correct first step toward esti-

mating its power spectrum only if end-point effects can be neglected. This is

the case when the time series allows a meaningful periodic continuation (which

the algorithm presented here guarantees), or if the time series are sufficiently

long. For two methods of spectral estimation it shall here be demonstrated

that the condition of sufficient length can also be met by the generated pairs of

time series – without making used of periodic continuation. That is, although

the two methods differ in the way endpoints are treated, in the way the pe-

riodograms are averaged, and also slightly in their results, each of them gives

virtually identical results for the two time series of a pair.

First consider Welch’s method (Welch, 1967). Both time series of Pair B are

split into 126 segments of 192 samples length with 2/3 overlap. The segments

are tapered using a Hamming window and, in order to interpolate the resulting

power spectra, extended to length 2048 by appending zeros. The periodograms

of all segments of a time series are averaged. As is shown in Fig. 6, the estimated

power spectra are nearly identical for both series. The differences are much

smaller than then the difference of the oscillation frequencies.

Next, autoregressive spectral estimation is used. Applying Burg’s method

4http://www.fdm.uni-freiburg.de/∼axel/onthelimits/
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(Marple, 1987), a p-th order autoregressive process

x(t) =

(

p
∑

k=1

akx(t − k)

)

+ e(t) (8)

with uncorrelated, identically distributed e(t), is fitted to the two time series

of Pair B. The resulting estimates for the coefficients (a1, ..., ap) for p = 10 are

listed in Table 1. No attempt was made to find the “optimal” model order p,

since for all reasonable values of p the same observation is made: The power

spectra of the two fitted autoregressive processes are virtually indistinguishable.

For example, with p = 10 the spectral maxima are both located at the angular

frequency ω := 2πf = 0.4887. They differ only by ∆ω = 2 × 10−6. In order to

get an estimate for the errors of the autoregressive spectral estimates, the first

and second half of the two time series are fitted separately. Then the enforced

property of having equal periodograms is lost and the estimated spectra differ

slightly. The maxima of the resulting power spectra are located at ω = 0.4876

and 0.4897 for x1(t), and 0.4890 and 0.4884 for x2(t). For comparison, the

oscillation frequencies of x1(t) and x2(t) are ω = 0.4725 and 0.5093 respectively

(see inset of Fig. 6). Hence, it is not possible to explain the undetectability

of the difference in frequency between x1(t) and x2(t) of Pair B by a lack of

spectral resolution.

5 Conclusion

Several examples were given that demonstrate that the power spectra of time

series alone do not contain sufficient information to ensure that the oscillation

frequencies (cycles per unit time) of the time series could precisely be deter-

mined. These examples illustrate a corresponding general theorem (Rossberg,

2002). Furthermore, it was shown that this result does not depend on the partic-

ular method of spectral estimation, as long as it is functional in the periodogram

or the empirical autocorrelation function, respectively. There is also no other

method of evaluating the periodogram which would yield the oscillation fre-

quency. This is shown by introducing a general iterative method to generate
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pairs of time series of arbitrary length which have identical periodograms but

different frequencies of oscillation.
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a1 a2 a3 a4 a5

x1(t) 1.1631 -0.3064 -0.1892 -0.0787 -0.0563

x2(t) 1.1632 -0.3065 -0.1892 -0.0788 -0.0558

a6 a7 a8 a9 a10

x1(t) -0.0198 -0.0304 0.0006 -0.0072 -0.0200

x2(t) -0.0198 -0.0311 0.0008 -0.0067 -0.0203

Table 1: The autoregressive coefficients in Eq. (8) with p = 10 estimated for

Pair B (see text) using Burg’s method. The variance of e(t) is estimated as

var(e) = 0.0409 for both time series.
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Figure 1: The power spectrum SA(ω) of A(t) given by Eqs. (1,2) with ε = 2 and

gi = 1, obtained from a numerical simulation, and ωpeak,A [see Seybold & Risken

(1974) for analytic results], compared to the mean frequency ωmean,A = ω0 −

gi

〈

|A|4
〉

/
〈

|A|2
〉

[
〈

|A|2n
〉

= 2n N−1 dnN/dεn, where N := π1/2 exp(ε2/4)(1 +

erf(ε/2)), see Risken (1989)] and the phase frequency ωph,A = ω0 − gi

〈

|A|2
〉

,

defined by Eqs. (3,4), and the linear frequency ω0.
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Figure 2: Power spectrum and oscillation frequency (b) of a human hand-tremor

time series (a). In part (b), the vertical line corresponds to the phase frequency

of the time series, the horizontal bar shows the 95% confidence interval for the

spectral peak frequency.
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Figure 3: (a) A pair of random time series x1(t), x2(t) (Pair A) with frequencies

f = 20/256 and f = 21/256 respectively. It was generated using the algorithm

described in this report with the proposed parameters. (b) The periodogram,

which is identical for both time series.
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Figure 4: The trajectory of x1(t) in delay space with ∆t = 3. By the fact that

it is winding 20 times around the origin at a finite distance, the frequency is

sharply defined.
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Figure 5: The phase angles of the complex time series y1(t) (lower) and y2(t)

(upper) that were used to generate x1(t) and x2(t) of Pair B (see text). The

two time series differ by 48 cycles, and so do the time series x1(t) and x2(t).

Notice that y1(t)× exp(iω0t) and y2(t)× exp(iω0t) can be approximated by the

analytic signals corresponding to x1(t) and x2(t).
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Figure 6: Estimated power-spectral densities (PSD, in units of power per radians

per sample) for Pair B. The two estimates (dash-dotted) using autoregressive

modeling (see text) are indistinguishable. When using Welch’s Method (see

text), the differences between the estimates corresponding to x1(t) (solid) and

x2(t) (dotted) are hardly visible. The blowup of the peak region in the inset also

shows the oscillation frequencies of x1(t) and x2(t) (vertical dashed lines) and,

as an estimate of the nominal error of the autoregressive spectral estimates, the

interval covered by the maxima of the spectra estimated by using only half the

data of each time series (vertical solid lines near ω axis). Notice that the inset

has all-linear axes, while the large graph is semi-logarithmic.
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