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We develop a systematic self-consistent perturbative expansion for the self-energy of Hubbard-like models.
The interaction lines in the Feynman diagrams are dynamically screened by the charge fluctuations in the
system. Although the formal expansion is exact—assuming that the model under the study is perturbative—
only if diagrams to all orders are included, it is shown that for large-on-site-Coulomb-repulsgystems
weak-coupling expansions to a few orders may already converge. In order to test the approximation at
intermediate-to-high temperatures, we use the exact charge-fluctuation susceptibility from quantum Monte
Carlo (QMC) simulation studies as input, which determines the exact screened interaction, and compare our
results for the self-energy to the QMC results. We also make comparisons with fluctuation-exchange approxi-
mation. We show that the screened interaction for the largasstem can be vanishingly small at a certain
intermediate electron filling, and it is found that our approximation for the imaginary part of the one-particle
self-energy agrees well with the QMC results in the low-energy scales at this particular filling. But the
usefulness of the approximation is hindered by the fact that it has the incorrect filling dependence when the
filling deviates from this value. We also calculate the exact QMC Fermi surfaces for the two-dimei(2@nal
Hubbard model for several fillings. Our results near half filling show extreme violation of the concepts of the
band theory; in fact, instead of growing, the Fermi surface vanishes when doped toward the half-filled Mott-
Hubbard insulator. Sufficiently away from half filling, noninteractinglike Fermi surfaces are recovered. These
results combined with the Luttinger theorem might show that diagrammatic expansions for the nearly-half-
filled Hubbard model are unlikely to be possible; however, the nonperturbative part of the solution seems to be
less important as the filling gradually moves away from one half. Results for the 2D one-band Hubbard model
for several hole dopings are presented. Implications of this study for the high-temperature superconductors are
also discussed.
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[. INTRODUCTION high temperatures little information can be obtained about

The basic Hamiltonian for the simplest description of in- possible low-temperature instabilities such as superconduc-
teracting electrons in a periodic potential of fixed lattice ions tivity. But it should be reminded that QMC studies have led
the one-band Hubbard model, was widely investigated afteto a fairly good understanding of the insulating antiferromag-
the discovery of high-temperature superconductdrstwo  netic behavior of the half-filled model which corresponds to
dimensions, this model is widely accepted to have an antithe undoped parent compounds of the high-temperature su-
ferromagnetic ground state at half filling of its tight-binding perconductors.
band, although the temperature evolution and the relation To overcome the lattice size or temperature limitations of
with the antiferromagnetism of its insulating electron spec-the available exact methods, approximate methods are
trum are poorly understoddBut there is still ongoing debate needed. An important class of such approximations use dia-
about the nature of this model; in fact, there are variouggrammatic formalisms. Since these approximations are weak
mysteries, at band fillings close but not equal to one-halfcoupling in nature, it is important that the approximation
The model may have a superconducting ground state or beum up the physically important diagrams that constitute the
close to such an instability at these fillings; therefore, underexact infinite perturbative expansion. For example, self-
standing the Hubbard model seems to be crucial for an urconsistent approximations like the fluctuation-exchange
derstanding of the high-temperature superconductors. (FLEX) approximation, generalize the physically important

There have been numerous approaches to the solution éfartree-Fock approximation by adding electron-hole and
the two-dimensiona(2D) Hubbard model. Exact diagonal- electron-electron pair scattering events to the bare Coulomb
ization studies are limited to very small lattices and mainlyinteraction®
for this reason they are inconclusiV@ecause of statistical In order to go beyond Hartree-Fock- or FLEX-type ap-
errors, exact quantum Monte Carll@MC) studies at band proximations, one has to employ additional diagrams. A nice
fillings corresponding to that of the high-temperature superformal approach to this is to renormalize, i.e., replace with a
conductorgabout 15% doped away from one-hadfre lim-  perturbative expansion, the bare-interaction lines in the dia-
ited to temperatures no less than about a quarter of thgrams. But this can cause an enormous numerical-
electron-hopping energy of the modeAt such moderately calculational challenge, because now the interaction lines, in
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principle, can depend on the momentum and frequency of (@)
the incoming and outgoing electrons, whereas for the bare —~
Coulomb interaction, they do not. ‘W“QM = - + v \CiPs -
In this article, we present a self-consistent diagrammatic s
expansion for the electron self-energy, in which the interac-
tion lines are renormalized. The systematic perturbative ex- F— @ ..... @. ...... NI
pansion sums up the skeleton diagrams which exclude elec- 14 14 14
tron loops that represent a contribution to the charge
fluctuations. Renormalization of the interaction lines is there-
fore achieved by the screening of the bare Coulomb interac- C)
tion by the charge fluctuations. Although the approximation
is exact, assuming that the model under the study is pertur- @ = Q + @ o

bative, only if the diagrams to all orders are included, it may

converge rapidly if the screened interaction is considerably FIG. 1. (a) Exact screened interactiovis. HereV is the bare

weaker than the bare Coulomb interaction. For the large-oncoulomb interaction(b) Exact polarization insertiof.

site-Coulomb-repulsioty 2D Hubbard model, we evaluate

the exactscreened interaction from the QMC data and show V(Q)

that this is indeed the case near, but sufficiently doped away Vd(Q)= 1-P(Q)V(Q)’ )

from, half filling. Then, by using this exact screened interac-

tion, we evaluate the electron self-energy up to third ordetvhereQ=(Q,i(2). Figure 1b) shows the zeroth- and first-

and compare to the QMC results. We find that the imaginaryprder diagram contributions 8, expressed in terms of .

part of the self-energy at low energies almost converges tdhis form of expression is useful because it allows one to

the exact QMC results at third order. write down a self-consistent approximation fot and P,
This article is organized as follows: In Sec. Il we formu- given a one-particle Green’s function.

late our approximation. In Sec. Il we present and discuss our These two simply related quantities are also similarly re-

results for the one-particle self-energy along with the exactated to a physical quantity easily measurable in QMC stud-

QMC and approximate FLEX calculations. We also calculatges, the charge susceptibilijy. The expression for this two-

the exact QMC Fermi surfaces of the 2D Hubbard model angbarticle correlation function as a thermodynamic expectation

discuss them in Sec. IV. And finally, we summarize our mainvalue is

findings in Sec. V.

1 B
XdQi)=5 X J dr eI RTRI(Ani(7)An;(0)),
7 Jo
II. METHOD ! (3)
We will develop our diagrammatic expansion for the elec-yheren,(r)== ¢/ (7)c;,(7) andAn;(7)=n;(7) —(ni(7)).

adiod

tron self-energy for the case of the 2D one-band extended |, principle, the definition of a polarization insertiéhis

Hubbard model. The expansion is valid in other dime“SiO”%rbitrary and so is of a screened interactisnthrough Eq.

as well and is easily generalizable to multiband models. Thep) p defined in this article through the diagrammatic expan-

Hamiltonian is sion in Fig. 1b) actually corresponds to the polarization in-
sertion of the charge susceptibilify.. The exacty. is ex-
pressible as a geometric series in terms of the eRastich

1
HZZ _2 tijCiTg-Cjo'dl— E E Vijnio.nja.r y (1) that
1] o go’

P
. S —_ (@

wherec/ creates an electron with spin at siteR; on an 1-P(Q)V(Q)
N=LXL sguare lattice yvith periodic poundary conditions, (see also Fig. 2 Combining Eqs(2) and (4), we obtain an
and n;,=c;,Ci, . The lattice constana is set to be 1. The jmportant expression for the screened interactigin terms

Coulomb matrix elementV;;=V(R;—R;) comprises the of the physicalcharge susceptibility of the system, :
Hubbard on-site repulsio=V(0) and an extended part

V(AR) for nonzeroAR. For the calculations done in this V{(Q)=V(Q)—V(Q)x(Q)V(Q). (5)
article, we include only a first-neighbor hybridizatibrand At this point, we are ready to calculate the ex¥Gtby

the chemical potentigk in t;j, and the on-sit&J in V(AR).  ysing the exacl. obtained by QMC. Using/(Q)=U for
For the high-temperature-superconducting cuprates, it is eshe Hubbard model, we have

timated thatt~0.3—-0.5 eV andJ/t~8-12%" We will use

U/t=8 in all our calculations.

In Fig. 1(a), we show the generic form of thexact Xe = @ + ®V® toe
screened interactioW expressed in terms of the bare Cou-
lomb interactionV and theexactpolarization insertiorP. In FIG. 2. The charge susceptibility, expanded in terms of the
momentum-frequency space, polarization insertiorP. HereV is the bare Coulomb interaction.
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FIG. 3. V(AR=0,iQ=0) as a function of the hole dopirg
=1—(n) obtained from QMC for the 2D Hubbard model. Param-
eters areU/t=8; T/t=1/3, whereT is the temperature; and the
lattice size is & 8.

V{(Q)=U-U?x(Q). (6)

One can also Fourier transforvh(Q) to real space by using

1 _
VIAR,iQ)= 1 > €¢4RV(QiiQ). (7)
Q
Again, for the Hubbard model,
VJ(AR,iQ)=US8(AR)—U?y(AR,iQ), (8)

whered is the Kronecker delta. In Fig. 3, we plot the on-site
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FIG. 4. All the contributing self-energy diagrams in the fifat
second(b), and third orderc) of the screened-interactiorV{) ex-
pansion. The weak-coupling expansion would become efasst
suming the model under study is perturbatiwhen carried out to
all orders.

tially weaker than the bare interaction, the Hubblkdone
can expect that an expansion in terms/gfshould converge
much more rapidly than a brute-force expansion in terms of
U. As a matter of fact, it is not difficult to pick up the dia-
grams which contribute to this expansion. Keeping in mind
that our approximation for the self-energy will be self-
consistent in the sense that all one-particle-Green’s-function
lines will correspond to the full Green’s function, we should
allow only the skeleton diagrams in which none of these

and time-independent component of the exact screened intdines have any self-energy diagrams explicitly attached to

action obtained from QMCY{(AR=0,i()=0), for different
hole dopingsx=1-—(n), measured with respect to half fill-
ing. Although the bardéunscreenedCoulomb interactiorlJ

is equal to 8, strikingly, the corresponding component of the

them. As a second step, bearing in mind the fact that the
interaction lines in our diagrams, which corresponadvig
already include the polarization diagrams in thigfig. 1(a)],
we omit any self-energy diagram in which an interaction line

exact screened interaction is substantially weaker for internas a polarization diagrafsee Fig. 1b)] inserted. These are

mediate hole dopings, actually vanishing and changing
sign, i.e., becoming attractive, at-15%. We will refer to
this effect as “overscreening”and explain below why it
happens.

From Eq.(8), because of th&J? term, one can suspect
that for sufficiently largeU, this term will dominate and
V{(AR=0,iQ1=0) will become negativéattractive, since

basically the only rules needed in the diagram selection. If all
the diagrams to infinite order are included, exactpertur-
bation series will result, like in any other rigorous perturba-
tive expansion. Note that the interaction lines in our dia-
grams, orVg, represent the bare Coulomb interaction
screened by the charge fluctuatiops[Eq. (5)]. Therefore,

we have derived a diagrammatic expansion in terms of the

x[(AR=0,iQ)=0) is always positive and approaches a non-charge fluctuations, which is exact if carried out to all orders.

zeroU-independent limifof O(x/t) by a simpleU =« scal-
ing argument for U>t. On the other hand, at half filling,
charge fluctuations are suppressed; so @AR,iQ)=0)
~O(t?/U3% and V(AR=0,i0=0)=U, for U>t. Hence,
the presence of a sufficiently large and finite hole doping

Moreover, because of the overscreening effect discovered by
the analysis of the interaction line¥§) obtained by QMC
exactly, a weak-coupling expansion to a first few orders is
expected to converge in a rapid, controlled fashion.

In Fig. 4, we show all the self-energy diagrams up to third

off half filling, x, is necessary for overscreening. Also, noteorder. The Hartree diagram in Fig(a} is written separately
that overscreening is not restricted to the on-site componerih terms of the bare interactiorJ(in this casg to prevent
of the Coulomb interaction; the nearest-neighbor compodouble counting; for the one-band Hubbard model, it is a
nents, and so forth, can also become attractive because of tinvial constant which is equal td(n). The other first-order

overscreening effeét.
At this point, we are ready to write down a controlled

diagram in Fig. 4a) is like the Fock diagram with the bare-
interaction line replaced by the screened interaction. This

perturbative expansion for the one-particle self-energy. Sincdiagram combines the bare-interaction Fock diagtamich

the exact screened interactidy was shown to be substan-

is again equal to a trivial constant,U(n)/2, in this casg
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FIG. 6. The polarization insertioR(Q) (a) and the one-particle

-2 0 2 4 6 8 10 self-energy2. (k) (b) in terms of the three-point irreducible vertex
Q1 A(Q,k). Here G(k) is the one-particle Green's functiorQ
=(Q,iQ), andk=(k,iw). V and V, are the bare and screened
FIG. 5. The exact screened interactid{Q,iQ)), calculated by  interactions, respectively.
the QMC method, shown as a function of the frequefiyThe
momentum point i€)=(7/2,0) on an &8 lattice. Parameters are ceptibility itself, which is the actual physical quantity. In
U/t=8; T/t=1/3, whereT is the temperature; and=14.0%, fact, from Eq. (4), P(Q)=< simply implies thaty.(Q)
wherex=1—(n). =1N(Q). Although this divergence is not a worry from a
physics point of view, it imposes technical difficulties on the
with the charge-fluctuation self-energy diagram found in€xPansion oP(Q) [see Fig. 1b)] along these singularities;
FLEX-like approximations, because the screened interactioff Overcome this difficulty in an actual calculation B{Q),
is the sum of the bare interaction and the charge-fluctuatiof Would be more appropriate to expand its inverse(Q)
propagatofsee, e.g., Eq5) or (6)]. In second order, there is rather than to expanB(Q) itself directly.

only one diagram contributing to the self-enef@jg. 4(b)] Both the polarization insertion and the self-energy can be
and in third order, the number of all the contributing dia- gxpressed in terms of a three-point irreducible vertex func-

grams is §Fig. 4(c)]. tion A(Q,k) by the exact relationtsee Fig. 6

At this point, we would like to discuss the fact that the oT
screened-interaction expansion developed here is a low- P(Q)= -2, G(k)G(k—Q)A(Q,k) (9)
energy approximation. In Fig. 5, we plot the exact screened N %
interactionV4(Q,iQ)), which was obtained by QMC simula-
tion, as a function of the frequend®. For the choserQ
point, Vg is actually attractive and small at zero frequency, T
and vanishes at a slightly higher frequency. But as we ap- 3 (k)=V(Q=0)(n)— N 2 A(Q,K)V{(Q)G(k—Q),
proach the first Matsubara frequend rapidly grows, and Q
it is already more than half of the bare, unscreened Coulomb (10
repulsion. As the frequency increases furthéyfinally ap-  where G(k) is the one-particle Green’s function ard
proaches to the bare repulsive interactibhz8t. It is now = (k,iw). Equation(9) immediately implies that for a given
clear that the high-energy part of thg is not weak, and our @, if P(Q)=c0, thenA(Q,k) ==, becausez(k) is always
approximation is limited to the low-energy scales. Thereforefinite. Even thoughA (Q,k) in Eq. (10) may diverge, the
for the temperature studied hefg<t/3), the calculated self- one-particle self-energy (k), which is the actual physical
energy is expected to be accurate only for the first Matsubarguantity, remains finite, because #(Q,k) diverges at a
frequency,7T~t, a small-enough fraction of the width of givenQ, thenV(Q) will vanish, therefore canceling the di-
the tight-binding band, which governs the energy scale fojergence. But there is still a concern that a weak-coupling
V. expansion forA in Fig. 6b), which generates the diagrams
Before finishing this section, we would like to discuss ajp Fig. 4, may not be sufficient because of this diverging

peculiar property of the irreducible polarization insertion andpehavior. We will put our theory to numerical testing in the
the associated three-point vertex function. As we discusseflext section.

earlier, the exact screened interactidp, as obtained from
QMC simulation, vanishes at particulahR,i Q) points, and
it will vanish at particular Q,i{)) points likewise; this was
the motivation behind developing a weak-coupling expan- We perform our numerical calculations for the self-energy
sion in terms ofV{(Q). But from Eq.(2), V{Q)=0 imme-  on periodic discrete lattices of sizes4l and 8< 8, so that

diately implies thaP(Q) =« at the sam&)=(Q,i}) point.  they can be compared with the QMC results. We use the
This divergence in the polarization insertion of the chargeMatsubara-frequency representation and employ a fermion
susceptibility does not imply a divergence in the charge susfrequency cutoff of~35t. All the QMC calculations were

and

Ill. ONE-PARTICLE SELF-ENERGY
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done at a temperature=t/3, and with the cutoff employed 2
here, this corresponds to 16 positive Matsubara frequencies. @
Note that QMC calculations are performed in imaginary sk PN

time, and a time discretization is made for numerical pur-
poses. The number of time slices[i8,8=1/T] used in the

QMC calculations was 80, which is equivalent to using 40 = s

positive Matsubara frequencies—even larger a cutoff than * P s

our diagrammatic calculations. We chose a smaller cutoff for A 05 k,/#,_.—_.—k
g U - ]

our diagrammatic calculations to avoid the high-frequency
errors in theVg obtained from the QMC method, which goes
directly into the calculations. We vary the chemical potential 0
w in order to match the fillingn) with that of the QMC
method. In order to calculatén), the one-particle Green’s
function G(k,iw) has to be summed over the Matsubara >0 > 1 p 3 10
frequencies, and to prevent cutoff effects in this relatively- ®/1
slow-converging sum, we effectively extend the sum to in-
finity by using the standard—replace the high-frequency part 0
of the sum with the result for the noninteracting case—trick. (b
In Fig. 7, we plot the real and imaginary parts of the
self-energy as a function of Matsubara frequencies along
with the results from QMC calculations. We chose a particu-
lar momentum point close to the Fermi surfakes (,0), -1l
but thek dependence of both the QMC and the screened-
interaction-expansion calculations near the Fermi surface is
small. QMC error bars are omitted in all but one plot in this -5
article for clarity, but the estimated QMC error bar for the
real and imaginary parts of the self-energy at the first fre- ol
qguency is about:0.1t. The corresponding error bar for the
QMC Green’s function is about0.02 1. Also, the error
bars for the self-energy grow with frequency, whereas, they =25
are roughly constant for the Green’s function. Note that the
temperature in these calculationsTis=t/3, and the second
Matsubara frequency#T, is already about 5t2 which is a FIG. 7. The one-particle self-energy as a function of the Mat-
substantial fraction of thénoninteracting bandwidth of our  subara frequency, shown for the screened-interaction expansion
model, &. For the reasons we explained in the previous sec¢solid lines and solid symbolsalong with exactexcept for statis-
tion, our approximation is a low-energy approximation, tical errors QMC results(dashed lines with open symbplghek
which is unable to capture this regime. But the first Matsub-point is (,0). Hole dopings=1—(n) are 10.0%squares 14.2%
ara frequencymT~1.0t is low enough compared to the (circles, and 17.5%(triangles. Other parameters atd/t=8 and
bandwidth, and remarkably, at the 14% hole doping, Wherél’_/tzl/& Lattice sizes are_>44 fo_r the screened-interaction expan-
the screened interaction almost vanistiese Fig. 3, our sion an_d &8 for QMC simulations. Hole dopings for both the
approximation for the imaginary part of the self-energy al-€XPansion and the QMC correspond to averages #a k-space
most converges to the QMC result within the error fiéig. ~ Meshes. ACtualo QMC 0h°|e dOp'n%S averaged on88k-space
7(b)]. This shows that our expansion may indeed be converggeshes are 9.7%, 14.0%, and 17.1%. The @aind imaginary(b)

. . . ) . arts.[We use &8 QMC results in these comparisons because
ing very rapidly at the hole doping at which the on-site com- ; ;

. . QMC calculations were performed only orx® lattices for most
ponent of the screened interaction at zero frequenc

. . T Yhole dopings, but the difference betweex4 and 8<8 QMC
VS(_AR:O"Q:O)' Va_nlshe_s. But Whe_n th_e hole dopm_g IS results is well within the error barsee Fig. 10 and the associated
varied away from this point, I varies in the opposite yiscussion at the end of this sectidn

direction with respect to exact QMC results. Naturally, hav-
ing the correct doping dependence is one of the most desiretlird order. But the real part seems to be going in the wrong
aspects of any approximation, which, therefore, substantiallgirection with increasing order.
limits the usefulness of this expansion. It is quite possible The real part of the self-energy which was calculated by
that the reason for this failure may be intimately related tothe screened-interaction expansion actually does not do very
the vertex divergence problem discussed in the previous sewvell against the exact QMC resultgig. 7(a)] at all, but as
tion. we will analyze below, this is not a failure of the expansion
In Fig. 8, we show the evolution of the self-energy with itself. In fact, this is merely the quantity which determines
the order of the diagrams included. The imaginary part, irnthe location of the Fermi surface. The Luttinger theotem
fact, seems to be converging to the QMC result at the lowesdtates that, for any diagrammatic expansion, the total volume
frequency with increasing order, and it is about the same agrea in 2D enclosed by the Fermi surface is equal to the
the QMC result within the QMC error basee Fig. 1D at  total filling (n); therefore, our approximation will obey this

ImZXZ/¢

W/t
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FIG. 9. The one-particle self-energy as a function of the Mat-

FIG. 8. The one-particle self energy as a function of the Mat'subara frequency, shown for the FLEX approximatisolid lines

subare_l freq_uency, shown for the f|_r$ur4ang_le9, second{squa_re}; and solid symbolsalong with exact(except for statistical errors
and third-(circles order screened-interaction expansisalid lines QMC results(dashed lines with open symbplsThe k point is
and solid symbolsalong with exact(except for statistical erroys (m,0). Hole dopingsx=1—(n) are 10.0% (squarel 14.2%
QMC results(dashed lines and open circle¥hek point is (,0). (circles, and 17.5%triangles. Other parameters ald/t=8 and
Hole dopingx=1—(n) is 14.2%. All parameters are the same as iN1/;_ 1/3 | attice sizes are ¥4 for FLEX and 8<8 for QMC.

Fig. 7. The real@ and imaginary(b) parts. Hole dopings for both the FLEX and the QMC correspond to aver-
ages on K4 k-space meshes. Actual QMC hole dopings averaged

statement. But then this simply implies that the exact QMCon 8x 8 k-space meshes are 9.7%, 14.0%, and 17.1%. Théaeal

results may not obey the Luttinger theorem for the volume ofind imaginary(b) parts.

the Fermi surface. To investigate this further, we calculated

the exact QMC Fermi surfaces for various dopings, whichScreened-interaction expansion, probably becausk for
will be discussed later. FLEX is somewhat bigger, indicating that FLEX results are

Figure 9 shows results for the FLEX calculations in com-More distant to their zero- or low-temperature valfresm-

parison with the QMC. The FLEX approximation employed pare Figs. 1) and 9b)]. Im3. is expected to vanish at zero

here uses exchange of charge and spin fluctuations, i.e., tl];'_%mperature and zero frequency also according to the Lut-

particle-hole channel, but omits the particle-particle fluctua-"9er theorem. FLEX results for the [l show a correct

. . ualitative behavior at high frequencies. Although they also
tions (for the Hubbard model there would only be particle- q : ;
particle fluctuations of the singlet typeThe results for the capture the doping dependence correctly, the magnitude of

T : . the doping dependence is smaller by an order of magnitude.
real part are very similar to the screened-interaction expa

Th addition, they do not do well quantitatively at any particu-
sion. FLEX has a somewhat better qualitative behavior aj, doping. y a y ye

high frequencies. The low-frequency behaviors of the real The screened-interaction-expansion calculations per-
part for FLEX and screened-interaction expansions are €Xprmed in this article are computationally very time consum-

pected to be very similar because they are both expected {ag. The reason for this is the requirement for the summation
obey the Luttinger theorem. The real part for FLEX at theover many frequency and momentum variables for the third-
lowest frequency is doing somewhat worse than theand higher-order diagrams. In order to go to fourth order, one
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2 - - - - IV. EXACT QMC FERMI SURFACE

@ In this section, we will discuss the exact QMC Fermi

surfaces calculated. Although there are several equivalent
definitions for the Fermi surface, the definition which locates
the Fermi surface as the zero-frequency poles of the Green'’s
function is most suitable for finite temperatures. One finds
the solution ofe(k)+ReX (k,w=0)=u in order to locate
such poles$. For a Fermi liquid, these poles correspond to
quasiparticles at the Fermi surface. But the definition is gen-
eral and can also be used at finite temperatures. Note that the
Luttinger theorem, which relates the volume enclosed by the
Fermi surface to the total electron filling, is strictly valid
—0.5 s s s s only at zero temperature, but as long as the temperature is
0 2 4 6 8 10 not unreasonably high, one finds that the Luttinger theorem
o/t is satisfied in an approximate manner, and the only change to
0 , , ' ' the quasiparticle picture is some temperature broadening due
(b) to the finite ImX(k,w=0). As mentioned in the previous
section, the quantity IR (k,w=0) is indeed a good indica-
tion of how close one is ta =0, which should actually
vanish atT=0 for a system obeying the Luttinger theorem.
In order to numerically calculate the Fermi surface on a finite
8X8 QMC lattice, we first find the solution ok(k)
+ReX (k,w=0)=u by interpolating between thle points.
Moreover, % (k,w=0), which is very close in value to the
one at the lowest available frequend(k,w=i=T), is
found by linear extrapolation using the lowest-two frequen-
cies. Due to this numerical approximation procedures, the
systematic interpolation and extrapolation errors up to a few
25 . . . . percent are possible.
0 2 4 6 8 10 Figure 11a) shows the exact QMC Fermi surfaces for
/1 actual hole dopingg=1-(n) ranging from 5.0% to 33.5%.

FIG. 10. The one-particle self-energy plotted as a function of theThese actual hole dopings in decreasing order are

Matsubara frequency for the purpose of evaluating lattice-size ef-_ 33(‘)5% [sngallest %urface ocenterid arouric=(0,0)],
fects. Results for QMQsquarey screened-interaction expansion 23-5%, 20.3%, 17.1%, 14.0%, 9.7%, and 5.Qe arcs

(circles, and FLEX approximatior(triangles are shown. The  centered around the Brillouin-zone cornerd/e found the
point is (,0). Solid lines and solid symbols represent8 lattices ~ areas enclosed by the Fermi surfaces by numerical integra-
for QMC and 4x 4 otherwise. Dashed lines and open symbols rep1ion, and calculated the hole dopings implied by the Lut-
resent 4< 4 lattices for all. Parameters até/t=8 andT/t=1/3.  tinger theorem corresponding to these areas. Note that, due
Hole dopingsx=1—(n) averaged on %4 k-space meshes are to the curve-fitting procedures employed for the discrete
14.2% (solid lines and solid symbolsind 13.8%(dashed lines and (k,w) space, these areas are uncertain within a few percent.
open symbols Actual, (8% 8)-mesh-averaged hole doping for the The results in the same order as the actual hole dopings are
8X8 QMC lattice is 14.0%(solid line with solid squargs Note 33.5%, 20.5%, 14.1%, 7.1%-4.3%, —19.8%, and
that the (4x 4)-mesh-averaged hole-doping values for all data sets- 32.8%. We plot these values against the actual doping in
match each other among the solid and the dashed lines. Th@real Fig. 11(b). Considering the fact that we are at a moderately
and imaginaryb) part_s. Also shown are the QMC error bars for the high temperaturd =t/3 and accounting for the curve-fitting
ImX on the 8<8 lattice. errors, the Luttinger theorem seems to be satisfied at least
qualitatively for hole dopingx=17%, i.e., the so-called
would probably need Monte Carlo summation techniquesoverdoped region in the context of high-temperature super-
Even at third order, we were able to perform our calculationsonductivity. On the other hand, in the underdoped region,
on 4X 4 lattices only. In Fig. 10 we make some comparisonsQMC Fermi surfaces start deviating from the Luttinger theo-
of the calculations on different lattice sizes<x4 and 8<8 rem in a systematic qualitative matter. As one proceeds to-
QMC results are compared to the screened-interactionwards half filling, Fermi surface starts shrinking towards the
expansion results. FLEX results are shown as well. The difk=(, ) point, looking like an electron-doped system. This
ference between the results for the two lattice sizes seems t® completely inconsistent with the concepts of the band
be very small. Estimated QMC error bars for thednon the  theory and Fermi liquid. Fermi surface of the Hubbard model
8% 8 lattice are also shown. These are the approximate uppgradually gets smaller and disappears when the hole doping
bounds to the statistical errors associated with the QMC calgets smaller in the underdoped region. Therefore, this seems
culations. to be a doping-induced transition between a Fermi-liquid
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-1 -0.5 0 0.5 1
ki/m
50 : ; ‘ : . ‘ ’
40 f ® -5 FIG. 12. The FLEX Fermi surface at the temperatilife=1/3
‘ (long-dashed lineand at a lower temperatur€/t=1/16 (solid
30 line). This is the lowest available temperature for the lattice size
20 studied (16<16) at this doping. Parameters dgét=8 andx=1
R 10 0 —(n)=5.0%. Hole dopingx deduced from the areas according to
) - the Luttinger theorem are 7.6%T{t=1/16) and 9.5% T/t
£ 0p =1/3). Note that the low-temperature FLEX Fermi surface is al-
§ 10k ] most the same as the noninteractijoy Hartree-Fock Fermi sur-
= face (not shown.
-20
=30 ¢ ] determine the existence of such “hole pocket8Ih order to
_40 © ] rule out temperature effects one might also study lower tem-
50 , ‘ ‘ , , ‘ peratures, which could be accessible for such dopings very
0 5 10 15 20 25 30 35 close to half filling. This figure also shows the results for
x (actual) (%) FLEX calculations at the same temperature. Since FLEX is

, , expected to satisfy the Luttinger theorem at low tempera-

FIG. 11. (8) The exact QMC Fermi surfaces for various hole y,re5 the deviations in this case are known to be mainly
dopings. Parameters at/t=8 andT/t=1/3. Actual hole dopings  \o.5.5e of temperature effects. But these deviations are
x=1—(n) in decreasing order ave= 33.5%[smallest surface cen- :
much more reasonable, and the FLEX results show approxi-

tered arounde=(0,0)], 23.5%, 20.3%, 17.1%, 14.0%, 9.7%, and mately correct slope for all dopings. Doping deducedp?rom

0, ; [y .

5.0% (the arcs centered around the Brillouin-zone comeTée the Luttinger theorem for FLEX calculations also have the

lattice size is & 8. (b) The hole dopings deduced from the areas . . .
enclosed by the Fermi surfaces according to the Luttinger theore ’orrect sign for all dopings. We show the FLEX Fermi sur-

plotted against the actual hole dopings 1—(n) (circles and the aces at 5.0% _d°p'ng for the temperature .StUd'ed a_bm? (
solid line). Also shown are the FLEX results at the same tempera-_ t/3) @long with a low-temperature Fermi surface in Fig.
ture (squares and the dashed lindhe long-dashed line without 12. The low- and intermediate-temperature Fermi surfaces
symbols corresponds to the Luttinger theorem. The lattice size fofor FLEX look very similar, and the low-temperature case is
the FLEX calculations is 18 16. almost identical to the noninteracting ca$er the Hubbard
model, which is also the same as the Hartree-Fock)cake
metal and a strongly correlated insulator. This extreme viocomprehensive results we obtained for the Fermi surface are
lation of the Luttinger theorem may imply that there is no also qualitatively consistent with the other recent QMC study
asymptotically convergent diagrammatic expansion for theof the Hubbarfland high-temperature expansion study-df
Hubbard model in the underdoped region. But it looks like,(Ref. 1) models.
as the hole doping increases past the optimal doping

(_~ 15%), th(_a system Iqoks more like a conventional Fermi V. SUMMARY AND CONCLUSIONS
liquid, and diagrammatic expansions seem more likely to be
possible. In Fig. 1(b), we plot the hole dopings deduced In this article, we studied an approximation for the one-

from the area enclosed by the Fermi surface according to thearticle self-energy of the largg-Hubbard-like models. An
Luttinger theorem against the actual hole dopings. A systemexpansion was written out in terms of a screened interaction,
atic deviation towards half filling is clearly seen. Note thatwhich is nonlocal and retarded, although it acts between lo-
the line is only a guide to the eye; it is quite possible that thecal and instantaneous charge densities. The screening is
area of the QMC Fermi surface at dopings very close to halfichieved by the charge fluctuations. The expansion is an ex-
filling gets vanishingly small. We do not have data for suchact perturbative expansion, although this does not necessarily
dopings at the point, so further investigation is necessary toean that it is an exact solution because of the possibility of
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nonperturbative nature of the large-systems. We carried showed extreme violation of the Luttinger theorem near half
out the expansion up to the third order. The screened inteffilling, which might be because of a doping-induced metal-
action was determined by QMC calculations exactly andnsulator transition arising from strong-coupling effects. The
then directly put into the expansion calculations. The localFermi surface of the Hubbard model seemed to be reducing
component of the exact screened interaction, which screens hole pockets centered arouke (77, 7r) at small hole dop-
the bare HubbardJ, was found to be vanishing at certain ings near half filling. Further QMC investigation at smaller
small frequencies at hole dopings near 15%. This is a verjiole dopings and lower temperatures might bring more evi-
encouraging behavior for a weak-coupling expansion, whicldence into this.
indicates that such expansions might be possible at low- As far as the high-temperature superconductors are con-
enough frequencies where the screened interaction is vegerned, exact QMC results might be indicating that the un-
small. However, the analysis of the three-point vertex func-derdoped region of these materials is a transition between a
tion, which together with the screened interaction determinestrong-coupling Mott-Hubbard insulator and a Fermi metal.
the one-particle self-energy, showed that it diverges at th@he disappearance of the Fermi surface with the decreasing
same frequency-momentum points where the screened inténole doping can also be viewed as an opening of a
action vanishes. The expansion for the self-energy had onlgseudogap? For the full investigation of this region at low
limited success against the exact QMC results. Although théemperatures, other nonperturbative treatments might be nec-
expansion gave excellent results for the low-energy part oéssary. However, the partial success of the screened-
Im near 15% hole doping, where the screened interactioiteraction expansion developed here shows that it might be
vanishes, it had the wrong doping dependence around thisseful near optimal doping, as well as other diagrammatic
same value. Moreover, the real part of the QMC results werexpansions in the optimally doped and overdoped regions.
not consistent with a diagrammatic expansion which should
obey the Luttinger theorem, although we cannot rule out the
possibility of temperature effects. If it were because of tem-
perature effects, this would also mean that our approximation G.E. acknowledges useful discussions with Richard T.
does not work for R& at all, since with increasing order Scalettar and Andrew K. McMahan. This work was partially
results for the expansion moved in the wrong direction. Insupported by the National Science Foundation under Grant
contrast, In®, showed a converging behavior near 15% dop-No. DMR-92-15123 and No. DMR-99-70291. Work at the
ing, as mentioned above. We also calculated FLEX selfUniversity of California, Davis, was supported in part by an
energies, which had the correct qualitative doping depenAccelerated Strategic Computing Initiative Grant and by the
dence and high-frequency behavior, but did actually worséaterials Research Institute of Lawrence Livermore Na-
quantitatively near 15% doping. tional Laboratory. Computing support from the University
In order to investigate the QMC Reresults, we numeri- Computing and Networking Services at the University of
cally calculated the exact QMC Fermi surfaces. The result&eorgia is gratefully acknowledged.
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