
Hardware/Software Partitioning of Floating Point Software
Applications to Fixed-Pointed Coprocessor Circuits

Lance Saldanha, Roman Lysecky
Department of Electrical and Computer Engineering

University of Arizona
{saldanha, rlysecky}@ece.arizona.edu

ABSTRACT
While hardware/software partitioning has been shown to provide
significant performance gains, most hardware/software partitioning
approaches are limited to partitioning computational kernels
utilizing integers or fixed point implementations. Software
developers often initially develop an application using built-in
floating point representations and later convert the application to a
fixed point representation – a potentially time consuming process.
In this paper, we present a hardware/software partitioning
approach for floating point applications that eliminates the need for
developers to rewrite software applications for fixed point
implementations. Instead, the proposed approach incorporates
efficient, configurable floating point to fixed point and fixed point to
floating point hardware converters at the boundary between the
hardware coprocessors and memory. This effectively separates the
system into a floating point domain consisting of the
microprocessor and memory subsystem and a fixed point domain
consisting of the partitioned hardware coprocessors, thereby
providing an efficient and rapid method for implementing fixed
point hardware coprocessors.

Categories and Subject Descriptors
C.3 [Computer Systems Organization] Special-Purpose and
Application-Based Systems - Real-time and Embedded Systems.

General Terms
Design, Performance.

Keywords
Hardware/software partitioning, floating point to fixed conversion,
floating point, fixed point.

1. INTRODUCTION
Field programmable gates arrays (FPGAs) are becoming
increasingly popular, having moved from primarily being utilized
for hardware prototyping and debugging to being incorporated into
many computing domains and consumer electronics. An FPGA can
implement any hardware circuit simply by downloading bits for the
hardware circuit, much in the same way that microprocessors can
execute any software program simply by downloading a new
application binary. With the continuing evolution of FPGAs, new
devices have emerged that integrate one or more microprocessors
and configurable FPGA resources onto a single chip with support
for fast communication. Such devices, available from Xilinx,

Altera, and Atmel, are ideally suited for hardware/software
partitioning.

Hardware/software partitioning is the process of dividing an
application between software executing on a microprocessor and
hardware implemented within an FPGA or ASIC. Significant
previous research has demonstrated the performance and energy
benefits of hardware/software partitioning over software execution
alone with typical performance gains of 10-100X
[1][4][11][14][17][19]. Hardware/software partitioning can also
provide reductions in energy consumption of up to 95%
[9][18][20].

Most hardware/software partitioning approaches are typically
limited to partitioning computational kernels utilizing integers or
fixed point computations. During initial software development,
single and double precision floating point representations are often
utilized to represent real numbers due to the convenience provided
by built-in support within most programming languages, including
C/C++/Java. However, directly implementing floating point
operations within hardware requires significant area resources and
potentially large power requirements. In addition, to provide
acceptable performance, hardware implemented floating point
implementations are typically very highly pipelined, thereby
requiring multi-cycle latencies. On a related note, many embedded
microprocessors do not provide hardware support for floating point
operations and must rely on slow software based floating point
calculations.

Fortunately, many applications do not need floating point
representations to support real numbers. Instead, a fixed point
representation is a viable alternative that can be implemented
efficiently in hardware. A floating point number is stored in what
can be referred to as a binary scientific notation using a sign-
magnitude format that allows for a floating position of the radix
point. For example, an IEEE 754 [10] single precision floating
point number consists of a sign bit (S), an 8-bit exponent (E), and a
23-bit mantissa (M). The resulting decimal value can be computed
as follows:

() 127
2 2*.1*1 −−= ES MValue

For both single and double precision floating point representations,
the mantissa provides the number’s precision and the exponent
controls the number’s range. In comparison, a fixed point
representation is directly stored as a two’s complement binary
number with a fixed radix point. Unlike floating point arithmetic,
fixed point operations can be very efficiently performed using
integer operations. Fixed point additions directly map to integer
additions, and fixed point multiplication can be performed using an
integer multiplication followed by a fixed shift by the radix
position. For a fixed point representation all bits directly affect the
number’s precision, but the range of the number is determined by
the fixed radix position. While a fixed point representation can
provide greater precision than a floating point representation, a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10...$5.00.

49

floating point representation provides a much greater dynamic
range of numbers that can be represented. For example, the smallest
possible positive single precision floating point number is 1.2e-38,
whereas the smallest possible positive number that be represented
by any 32-bit fixed point representation is only 2.3e-10.

For those applications that do not require the dynamic range
supported by floating point representations, a fixed point
implementation is often the best approach. However, one of the
biggest challenges of using fixed point arithmetic is that of software
development. Again, due to the lack of built-in support for fixed
point representations in most programming languages, software
developers will often initially develop an application using floating
point representations and later convert the application to a fixed
point representation.

In an attempt to ease such development efforts, several research
efforts have provided tools to assist in converting software
programs using floating point values into fixed point
implementations [2][5][12][15][16]. FRIDGE [12] is a system level
fixed point design methodology in which a designer initially
provides localized annotations for the critical fixed point operands
using the fixed-C extension to the C programming language
followed by simulation to verify correctness and automatically
determine the fixed point representation needed throughout the
remainder of the software application. The fixify environment,
presented in [3], initially utilizes simulation to determine the ideal
fixed point representation followed by a design space exploration
step that analyzes the tradeoffs between numeric degradation, cost,
and performance. As digital signal processors (DSPs) typically
incorporate dedicated support for fast fixed point computations, in
[15], researchers present an automated methodology for optimizing
the application performance executing on a DSP while meeting a
designer specific accuracy constraint. These existing automated
conversion approaches are primarily targeted at the compilation
phase of software development, for which the resulting output is a
fixed point software implementation in which all floating point
operations have been converted to a fixed point implementation.

Similar challenges are encountered within hardware/software
partitioning. For applications using floating point computations, a
designer must minimally convert the floating point operation to a
fixed point implementation for the critical kernels of the application
that will be partitioned to hardware. While dedicated hardware for
floating point operations may be needed for some applications, the
significant area requirements and multi-cycle latencies preclude its

use for most. Whether a designer manually converts the critical
kernels to a fixed point representation or relies on an automated
methodology, the end result is that the initial software application
must be modified before partitioning.

In this paper, we present an automatable hardware/software
partitioning approach for floating point software applications that
eliminates the need for developers to rewrite software applications
utilizing fixed point implementations before partitioning. Instead,
the proposed approach incorporates efficient, configurable floating
point to fixed point and fixed point to floating point hardware
converters at the boundary between the hardware coprocessors and
memory. This effectively separates the system into a floating point
computing domain consisting of the microprocessor and memory
subsystem and a fixed point computing domain consisting of the
partitioned hardware coprocessors. Within the proposed approach,
no modifications are needed for the software application.
Furthermore, the hardware coprocessor development, whether
automated or manually performed, can treat floating point
computations much in the same way as integer computations,
thereby providing excellent hardware performance with minimal
hardware requirements. We examine the performance
improvements and hardware requirements of the proposed
hardware/software partitioning approach for several embedded
applications from the MiBench [8] and MediaBench [13]
benchmark suites.

2. HARDWARE/SOFTWARE
PARTITIONING OF FLOATING POINT
APPLICATIONS
Figure 1 provides an overview of the proposed
microprocessor/coprocessor architecture for hardware/software
partitioning of floating point applications to fixed point hardware
implementations. The partitioned application execution is separated
into a floating point computing domain and a fixed point computing
domain. The floating point domain encompasses the normal
software execution and includes the microprocessor, caches, and
memory subsystems. After partitioning the application between
hardware and software, the software portion may continue to utilize
floating point numbers. As such, all real numbers stored within the
memory will utilize single or double precision floating point.

The fixed point domain consists of the hardware coprocessors
implemented using a fixed point representation and configurable
Float-to-Fixed and Fixed-to-Float hardware converters that
interface between the hardware coprocessors and microprocessor or
memory. All floating point values read from memory will be
converted by the Float-to-Fixed converter to the target fixed point
representation. Similarly, all fixed point values written back to
memory will be converted by the Fixed-to-Float converter to a
floating point representation.

By separating the partitioned application execution into floating
point and fixed point domains, the software implementation does
not need to be developed using, or converted to, a fixed point
implementation. Instead, floating point operations may be used as
needed by the application, requiring no modification to the initial
floating point application, thereby reducing designer effort. After
partitioning, the software partition will continue to utilize floating
point operations. On the other hand, the hardware partition will
utilize a fixed point representation in which arithmetic operations
are only marginally more complex than their integer counterparts,
providing fast, small, and power efficient hardware support for real
numbers.

Figure 1: Overview of proposed microprocessor/coprocessor
architecture with configurable Float-to-Fixed and Fixed-to-Float

converters.

Fixed Point Domain

Floating Point Domain

µP Mem

HW Coprocessors

Fixed-to-Float Float-to-Fixed

50

We note that while technically possible, converting between
floating point and fixed point numbers in software – a process
requiring tens to hundreds of instructions for each such conversion
– incurs considerable overhead that would severely impact
performance, even leading to performance slowdowns.

Figure 2 presents an overview of the proposed
hardware/software partitioning methodology. Initially, the software
application is profiled to determine the application’s critical kernels
that are the potential candidates for hardware implementation. The
partitioning process will then determine which critical kernels to
implement in hardware, creating an initial annotated hardware
description for the partitioned kernels.

During this partitioning process, all floating point data types are
treated as integers – single precision as a 32-bit integer, double
precision as a 64-bit integer – in creating the partitioned hardware
coprocessors. However, as the floating point values will eventually
be replaced by the required fixed point representations, the resulting
hardware description includes synthesis annotations indicating
which registers and computations are floating point operations that
must be converted to a fixed point representation.

Floating point profiling can then be performed to determine the
fixed point representation required by each critical kernel.
However, if the required precision and dynamic range are already
known, a designer can directly specify the required fixed point
representation. Otherwise, automated fixed point profiling tools,
such as those previously described, can be used to determine the
required fixed point representation. Finally, the fixed point
conversion process will convert the annotated hardware
implementation into the final fixed point implementation by
replacing the annotated floating point registers and operations with
the provided fixed point representation and utilizing the
configurable Float-to-Fixed and Fixed-to-Float converters.

Because different application kernels may require varying fixed
point representations, the floating point profiling is performed for
all candidate kernels considered for partitioning to hardware. The
resulting hardware implementation may require a Float-to-Fixed
and a Fixed-to-Float converter for each distinct fixed point
representation needed by the hardware coprocessors. Although, if
only a single fixed point representation is needed for all hardware

coprocessors, a single set of Float-to-Fixed and Fixed-to-Float
converters is sufficient.

3. FLOATING POINT TO FIXED POINT
CONVERSION
The Float-to-Fixed converter is a combinational logic design that
converts the incoming floating point values into the defined fixed
point representation. The Float-to-Fixed converter is implemented
as a configurable Verilog hardware description that can be
configured through a set of parameters to specify both the input
floating point representation and the output fixed point
representation. The configurable parameters include:

 FloatSize – specifies the total number of bits within the
floating point representation. A single precision floating
representation requires 32 bits, whereas a double
precision floating point representation requires 64 bits.

 MantissaBits – specifies the number of bits within the
floating point representation allocated to the mantissa. A
single precision floating point representation uses 23 bits
for the mantissa and a double precision representation
uses 52 bits.

 ExponentBits – specifies the number of bits within the
floating point representation allocated to the exponent.
The exponent is specified as 8 bits for a single precision
floating point representation and as 11 bits for a double
precision representation.

 FixedSize – specifies the total number of bits within the
fixed point representation.

 RadixPointSize – specifies the number of bits needed to
represent the RadixPoint.

 RadixPoint – specifies the fixed location of the radix
point. The fixed radix position also corresponds to the
number of bits allocated for the fractional portion of a

Figure 2: Hardware/software partitioning methodology for floating
point applications.

Figure 3: Hardware architecture for radix point parameter
implementation of Float-to-Fixed converter.

Software

Application
(C/C++)Application Profiling

Critical Kernels

Floating Point Profiling
(Optional)

Fixed Point
Representation

Partitioning

HW SW

Fixed Point
Conversion

Normal Cases

Special
Cases

Zero

FloatSize

Float

Fixed

Normal

Shift Calc
Shifter

Overflow
Calc

Overflow Exception

FixedSize

S E M

Dir
Amount

-

NormalCases

51

fixed point number. As such, the integer portion of a
fixed point representation can be calculated as FixedSized
minus RadixPoint.

Figure 3 presents an overview of the Float-to-Fixed converter
design consisting of a NormalCases component for handling
normal floating point to fixed point conversion and a SpecialCases
component for detecting several special representations defined
within the IEEE 754 standard, including positive zero, negative
zero, denormalized numbers, positive infinity, negative infinity, and
not-a-number (NaN).

A fixed point representation does not support representing
special cases for infinity or NaN. Thus, if a floating point input is
infinity or NaN, the SpecialCases component will assert an
Exception signal indicating that an exception has occurred. On the
other hand, if the floating point input is the special case for
representing either a positive or negative zero, the SpecialCases
component will assert the Zero output signal. Finally, if the floating
input is the special case for a denormalized number, the
SpecialCases component will deassert the Normal output signal. A
denormalized floating point number is a floating point number in
which mantissa directly specifies the corresponding value, for
which the resulting decimal value can be computed as follows:

() 0
2 2*.0*1 MValue S−=

The NormalCases component converts the input floating point
value to the target fixed point representation assuming the input is
not a special case and that no overflow will occur. In addition, the
NormalCases component will also calculate an Overflow output
that corresponds to the numbers of additional bits needed within the
fixed point representation to avoid an overflow for the current
conversion. Given the specified fixed point representation,
incoming floating point representation, the exponent of the floating
point input, and the Normal input from the SpecialCases
component, the NormalCases component computes the required
shift direction and amount needed to align the floating point
number’s mantissa with the fixed point representation. Once
aligned, the NormalCases component will calculate the two’s
complement of the aligned value if the sign bit indicates the input is
negative. Finally, all bits are and’ed with the inverse of the Zero
input from the SpecialCases component to generate an output of
zero if the input is one of the special cases for zero.

For designs that require multiple fixed point representations or
designs for which the final fixed point representation may not be
known a priori, the specification of the radix point for the fixed
point representation can be provided as an input to the Float-to-
Fixed converter, instead of as a parameter. With a radix point input,
the modified Float-to-Fixed converter will incur some area and
performance overhead compared to the parameter based
implementation.

4. FIXED POINT TO FLOATING POINT
CONVERSION
The Fixed-to-Float converter is a combinational logic design for
converting a fixed point representation into the target floating point
representation. The Fixed-to-Float converter can be configured
through the same set of parameters used to specify the Float-to-
Fixed converter. Since the fixed point representation does not
support special cases for infinity or NaN, the Fixed-to-Float
converter need only handle the special case for representing zero. If
an input fixed point number is zero, the Fixed-to-Float converter
will output the special floating point representation for a positive

zero. Although a representation for negative zero is possible within
the floating point representation, there is no such distinction in the
fixed point representation. Hence, we chose to store the value of
zero as a positive zero. If the fixed point input is not zero, the
Fixed-to-Float converter first determines the sign of the fixed point
number, outputting the numbers sign bit. If the number is negative,
the converter will calculate the number’s two’s complement. The
Fixed-to-Float converter then utilizes a priority encoder to
determine the position of the most significant bit of the fixed point
input whose value is one. The position of this leading one is used to
determine the shift direction and amount required to shift the fixed
point number into a binary scientific notation, thus obtaining the
required exponent and mantissa for the floating point
representation.

Again, for designs that require multiple fixed point
representations or designs for which the final fixed point
representation may not be known a priori, the specification of the
radix point can be provided as an input to the Fixed-to-Float
converter, instead of as a parameter.

5. FIXED POINT HARDWARE
COPROCESSOR
The Float-to-Fixed and Fixed-to-Float converters allow for a
straightforward fixed point coprocessor implementation. Figure 4
presents an overview of the hardware coprocessor interface to
memory encapsulating the integration of the Float-to-Fixed and
Fixed-to-Float converters. The memory interface utilized within
this illustration includes a memory address (Addr) input, separate
read (Rd) and write (Wr) control inputs, a byte enable (BE) control
input which enables writing individual bytes in a word addressable
memory, and separate data inputs (DataIn) and data outputs
(DataOut).

The hardware coprocessor can directly interface with the
memory’s Addr, BE, and Rd inputs. Memory reads include both
reading floating point values as well as reading integer values. To
provide a clear distinction between floating point and integer data,
separate inputs for integer and converted fixed point values are
provided to the coprocessor. For reading integer data from memory,
the coprocessor’s IntDataIn input provides the unaltered value read
from memory. Alternatively, for reading floating point values from

Figure 4: Hardware coprocessor interface with configurable
Float-to-Fixed and Fixed-to-Float converters.

HW Coprocessor

Fixed-to-
Float

Float-to-
Fixed

Ad
dr

BE

D
at

aO
ut

Rd

D
at

aI
n

W
rF

ix
ed

In
tD

at
aO

ut

W
r

Fi
xe

dD
at

aO
ut

In
tD

at
aI

n

Fi
xe

dD
at

aI
n

To/From Memory

W
rI

nt

52

memory, the FixedDataIn input is connected to the output of the
Float-to-Fixed converter providing the converted value to the
coprocessor.

Similarly, the hardware coprocessor interface includes separate
data outputs for writing integer (IntDataOut) and fixed point
(FixedDataOut) values to memory. The WrFixed control output is
utilized by the coprocessor to indicate the current value being
written to memory is a fixed point value that needs to be converted
to floating point. The WrFixed controls a multiplexer that either
connects the IntDataOut output or converted floating point output
of the Fixed-to-Float converter to the memory’s data input. The
WrInt control output is utilized by the coprocessor to indicate the
current value being written to memory is an integer value. The
coprocessor’s WrFixed and WrInt outputs are connected via an OR
gate to the memory’s Wr input.

6. EXPERIMENTAL RESULTS
We implemented the configurable Float-to-Fixed and Fixed-to-
Float converters using the Verilog hardware description language,
in which the radix point can be specified as a parameter within the
converter description or provided as an input to the converters.
Three implementations for the Float-to-Fixed and Fixed-to-Float
converters are needed for the various software applications
considered within this paper. The first set of converters (12.20) is
needed for converting between a single precision floating point
representation and a 32-bit fixed point representation with a radix
point of 20. The second set of converters (21.30) converts between
a single precision floating point representation and a 51-bit fixed
point representation with a radix point of 30. Finally, the third set of
converters (17.47) converts between a single precision floating
point representation and a 64-bit fixed point representation with a
radix point of 47. The Float-to-Fixed and Fixed-to-Float converters
were synthesized to a Xilinx Virtex-5 FPGA using the Xilinx ISE
9.2 synthesis tools with speed as the main optimization goal.

Table I presents the area (lookup tables (LUTs)), and delay
(nanoseconds) for the three Float-to-Fixed and Fixed-to-Float
converter pairs described above. On average, the radix point
parameter implementation of the Float-to-Fixed converter is 9%
faster with 10% fewer LUTs than the input based implementation.
On the other hand, the radix point parameter implementation of the
Fixed-to-Float converter is 25% faster, but that increase in speed
comes at the expense of increased area – requiring 30% more
LUTs.

Using the Float-to-Fixed and Fixed-to-Float converters and the
proposed hardware/software partitioning approach, we partitioned
the mpeg2dec, mpeg2enc, and epic applications of the MediaBench
benchmark suite [13] and fft and ifft applications on the MiBench
benchmark suite [8], all of which required extensive floating point
calculations. The target architecture includes a 250 MHz MIPS
processor with support for floating point calculations and a Xilinx

Virtex-5 FPGA executing at the maximum frequency as determined
by synthesizing the resulting fixed point coprocessors using Xilinx
ISE 9.2 for both the parameter based and input based converter
alternatives.

As determined by application profiling, the majority of
execution time for mpeg2dec is spent computing the inverse
discrete cosine transform (IDCT) that is implemented in software
using a single precision floating point representation. Floating point
profiling indicated that a 32-bit fixed point representation with a
radix point of 20 provides the required dynamic range and accuracy
to ensure the final results of the IDCT computation are identical to
that of the floating point implementation.

For mpeg2enc, the partitioned critical kernels consist of the
forward discrete cosine transfer (DCT) and a sum of absolute
differences computation performed during motion estimation of the
encoding process. While the DCT operation requires a 32-bit fixed
point representation with a radix point of 20, the sum of absolute
differences computation only consists of integer calculations. Thus,
the resulting hardware implementation includes both integer and
fixed point computations that can be efficiently enabled through the
hardware coprocessor interface.

For the application epic, the execution is predominantly spent
executing a convolution filter. The convolution filter internally
utilizes a double precision floating point representation to compute
the intermediate results, where the values read from and written to
memory are stored using a single precision floating point
representation. To provide the required dynamic range and
accuracy needed for the calculation of intermediate results, floating
point analysis determined that a 64-bit fixed representation with a
radix point of 47 is required. We note that the Float-to-Fixed and
Fixed-to-Float converters needed for this application do not need to
convert from/to a double precision floating point representation
because all values stored within memory are single precision
floating point values.

Finally, both the fft and ifft applications of the MiBench
benchmark suite resulted in almost identical hardware coprocessor
implementations needed to compute Fast Fourier Transformation
(FFT) and Inverse Fast Fourier Transformation (IFFT). The FFT
and IFFT both utilized a double precision floating point
representation to compute the intermediate results, where the values
read from and written to memory are stored using a single precision
floating point representation. To provide the required dynamic
range and accuracy needed for the calculation of intermediate
results, floating point analysis determined that a 51-bit fixed
representation with a radix point of 30 is required.

Table II presents the application execution time before and after
hardware/software partitioning and application speedup for the
mpeg2dec, mpeg2enc, epic, fft, and ifft applications for both the
radix point parameter and radix point input versions of the Float-to-
Fixed and Fixed-to-Float converters. Utilizing the radix point

Table I: Area (LUTs) and delay (nanoseconds) requirements for
Float-to-Fixed and Fixed-to-Float converters implemented using

the Xilinx Virtex-5 FPGA.

Table II: Application execution time and speedup for mpeg2dec,
mpeg2enc, epic, fft, and ifft applications.

DELAY AREA DELAY AREA

Float-to-Fixed (SP»12.20) 4.56 357 5.04 401
Float-to-Fixed (SP»21.30) 5.12 386 5.62 421
Float-to-Fixed (SP»17.47) 5.38 421 5.85 468
Fixed-to-Float (12.20»SP) 4.81 251 5.60 206
Fixed-to-Float (21.30»SP) 5.74 418 8.01 342
Fixed-to-Float (17.47»SP) 6.38 571 9.03 417

Radix Point InputRadix Point Parameter SW
(s) MHz

HW/SW
(s) S MHz

HW/SW
(s) S

mpeg2dec 1.02 101 0.31 3.3 77 0.34 3.0
mpeg2enc 17.02 101 5.52 3.1 77 5.66 3.0
epic 0.32 88 0.18 1.8 69 0.20 1.6
fft/ifft 2.88 82 0.35 8.2 74 0.39 7.5
Average: 4.9 4.5

Radix Point Parameter Radix Point Input

53

parameter converters, the proposed hardware/software partitioning
approach achieves a speedup ranging from 1.8X to 8.2X, with an
average speedup of 4.9X across all five applications. Alternatively,
with the radix point input converters, the proposed
hardware/software partitioning approach achieves an average
speedup of 4.5X, with a maximum speedup of 7.5X for fft and ifft.

7. CONCLUSIONS
By integrating configurable Float-to-Fixed and Fixed-to-Float
converters at the boundary between hardware and software, the
proposed hardware/software partitioning approach for a floating
point application provides application speedups of 4.9X on average
without requiring any designer effort to re-implement software with
a fixed point representation. The proposed approach provides an
efficient method for partitioning floating point applications both in
terms of design time and hardware requirements. In addition, the
resulting hardware coprocessor interface provides a simple method
for reading and writing both integer and floating point values from
and to memory and can be efficiently integrated into the proposed
design methodology.

By eliminating the need to re-implement floating point
applications using a fixed point representation, the proposed
approach can significantly reduce the development time for
hardware/software partitioning. However, a designer must still
profile the application to determine the appropriate fixed point
representation. To further reduce the development effort, we are
currently investigating a dynamically adaptable Float-to-Fixed and
Fixed-to-Float approach in which the hardware coprocessor is
implemented with an adaptive fixed point representation that can be
adjusted at run time to avoid potential fixed point overflows by
trading off accuracy.

8. REFERENCES
[1] Balboni, A., W. Fornaciari and D. Sciuto. Partitioning and

Exploration in the TOSCA Co-Design Flow. In Proceedings of
the International Workshop on Hardware/Software Codesign
(CODES), pp. 62-69, 1996.

[2] Banerjee, P., D. Bagchi, M. Haldar, A. Nayak, V. Kim, and R.
Uribe, Automatic Conversion of Floating-point MATLAB
Programs into Fixed-point FPGA based Hardware Design. In
Proceedings of the Design Automation Conference (DAC), pp.
484-487, 2004.

[3] Belanovíc, P., M. Rupp. Automated Floating-point to Fixed-
point Conversion with the fixify Environment. International
Workshop on Rapid System Prototyping (RSP), 2005.

[4] Chen, W., Kosmas, P., Leeser, M., Rappaport, C. An FPGA
Implementation of the Two-Dimensional Finite-Difference
Time-Domain (FDTD) Algorithm. In Proceedings of the
International Symposium on Field-Programmable Gate Arrays
(FPGA), pp. 97-105, 2004.

[5] Cmar, R., L. Rijnders, P.Schaumont, S. Vernalde, I. Bolsens.
A methodology and design environment for DSP ASIC fixed
point refinement. In Proceedings of the Design Automation
and Test in Europe Conference (DATE), 1999.

[6] Gajski, D., F. Vahid, S. Narayan, J. Gong. SpecSyn: An
Environment Supporting the Specify-Explore-Refine
Paradigm for Hardware/Software System Design. IEEE
Transactions on VLSI Systems, Vol. 6, No. 1, pp. 84-100,
1998.

[7] Guo, Z., Buyukkurt, B., Najjar, W., Vissers, K. Optimized
Generation of Data-Path from C Codes. In Proceedings of the
Design Automation and Test in Europe Conference (DATE),
pp. 112-117, 2005.

[8] Guthaus, M., J. Ringenberg, D. Ernst, T. Austin, T. Mudge, R.
Brown. MiBench: A free, commercially representative
embedded benchmark suite. IEEE International Workshop on
Workload Characterization (WWC), 2001.

[9] Henkel, J. A low power hardware/software partitioning
approach for core-based embedded systems. In Proceedings of
the Design Automation Conference (DAC), pp. 122-127,
1999.

[10] IEEE. IEEE 754: Standard for Binary Floating-Point
Arithmetic. http://grouper.ieee.org/groups/754/.

[11] Keane, J., C. Bradley, C. Ebeling. A Compiled Accelerator for
Biological Cell Signaling Simulations. In Proceedings of the
International Symposium on Field-Programmable Gate Arrays
(FPGA), pp. 233-241, 2004.

[12] Keding, H., M. Willems, M. Coors, and H. Meyr. FRIDGE: A
Fixed-Point Design And Simulation Environment. In
Proceedings of the Design Automation and Test in Europe
Conference (DATE), 1998.

[13] Lee, C., M. Potkonjak, W. Mangione-Smith. MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and
Communications Systems. In Proceedings of the International
Symposium on Microarchitecture (MICRO), pp. 330-335,
1997.

[14] Lysecky, R., G. Stitt, F. Vahid. Warp Processors. ACM
Transactions on Design Automation of Electronic Systems
(TODAES), Vol. 11, No. 3, pp. 659 - 681, 2006.

[15] Menard, D., D. Chillet, F. Charot, O. Sentieys. Automatic
Floating-point to Fixed-point Conversion for DSP Code
Generation. In Proceedings of the International Conference on
Compilers, Architectures and Synthesis for Embedded
Systems (CASES), pp. 270–276, 2002.

[16] Shi, C. R. W. Brodersen. Automated Fixed-Point Data-Type
Optimization Tool for Signal Processing and Communication
Systems. In Proceedings of the Design Automation
Conference (DAC), 2004.

[17] Stitt, G., F. Vahid, G. McGregor, B. Einloth.
Hardware/Software Partitioning of Software Binaries: A Case
Study of H.264 Decode. In Proceedings of the International
Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pp. 285-290, 2005.

[18] Stitt, G., F. Vahid, S. Nematbakhsh. Energy Savings and
Speedups from Partitioning Critical Loops to Hardware in
Embedded Systems. ACM Transactions on Embedded
Computing Systems (TECS), Vol. 3, No. 1, pp. 218-232,
2004.

[19] Venkataramani, G., W. Najjar, F. Kurdahi, N. Bagherzadeh,
W. Bohm. A Compiler Framework for Mapping Applications
to a Coarse-grained Reconfigurable Computer Architecture. In
Proceedings of the International Conference on Compiler,
Architecture and Synthesis for Embedded Systems (CASES),
2001.

[20] Wan, M., Y. Ichikawa, D. Lidsky, L. Rabaey. An Energy
Conscious Methodology for Early Design Space Exploration
of Heterogeneous DSPs. In Proceedings of the ISSS Custom
Integrated Circuits Conference (CICC), 1998.

54

