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Heat and Mass Transfer in
Power-Law Nanofluids Over a
Nonisothermal Stretching Wall
With Convective Boundary
Condition
A boundary layer analysis that has been presented for the heat and mass transfer in power-
law nanofluids over a stretching surface with convective boundary condition are investi-
gated numerically. The surface nanoparticle concentration is kept constant. A power-law
model is used for non-Newtonian fluids, whereas Brownian motion and thermophoresis
effects are incorporated in the nanofluid model. A similarity transformation is used to
reduce mass, momentum, thermal energy, and nanoparticles concentration equations into
nonlinear ordinary differential equations which are solved numerically by using a finite
difference method. The effects of nanofluid parameters, suction/injection, and convective
parameters and generalized Pr and Le numbers on dimensionless functions, skin friction,
local Nusselt, and Sherwood numbers are shown graphically. The quantitative comparison
of skin friction and heat transfer rates with the published results for special cases is shown
in tabular form and is found in good agreement. [DOI: 10.1115/1.4007138]
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1 Introduction

The flow of generalized Newtonian fluids over a stretching sur-
face can be found in many engineering processes with applica-
tions in industries, such as extrusion, the hot rolling, wire
drawing, melt-spinning, glass-fiber production, manufacture of
plastic and rubber sheets, cooling of a large metallic plate in a
bath, etc. The boundary layer flow of a generalized Newtonian
fluid caused by the stretching of an elastic flat sheet has been stud-
ied by a number of researchers and a good amount of literature
exists on this problem, e.g., [1–13].

The boundary layer flow of a Newtonian based nanofluid past a
stretching sheet is gaining interest in industries due to higher ther-
mal conductivity of nanofluids. A comprehensive survey of con-
vective transport in nanofluids was made by Buongiorno [14].
Recently, Kuznetsov and Nield [15] have examined the influence
of nanoparticles on natural convection boundary-layer flow past a
vertical plate, using a model in which Brownian motion and ther-
mophoresis are accounted for. Later on, Khan and Pop [16]
extended their work for the flow over a stretching surface in a
nanofluid. Vajravelu et al. [17] investigated the convective heat
transfer in a nanofluid flow over a stretching surface. They
focused on Ag–water and Cu–water nanofluids, and investigated
the effects of the nanoparticle volume fraction on the flow and
heat transfer characteristics under the influence of thermal buoy-
ancy and temperature dependent internal heat generation or
absorption. ’Makinde and Aziz [18] studied the boundary layer
flow induced in a nanofluid due to a linearly stretching sheet by
using a convective heating boundary condition.

The above literature review reveals that in most of the previous
investigations, Newtonian fluids were used as base fluids. Non-
Newtonian nanofluids (non-Newtonian fluids with dispersed nano-
particles) have been used by only few researchers including Chen
et al. [19], Ding et al. [20,21], and Chen et al. [19,22]. More work
is needed to investigate the characteristics of nanofluids and the
mechanism of the forced convective heat transfer of nanofluids
[23]. To the best of our knowledge, there is no study related to
heat and mass transfer in power-law nanofluids over a stretching
surface with convective boundary condition.

The objective of the present study is to extend the work of Has-
sanien et al. [13] to analyze the behavior of power-law nanofluids
over a stretching surface in a nanofluid with convective boundary
condition and uniform surface nanoparticle concentration. A simi-
larity solution is obtained that depends upon different power-law
nanofluid parameters, such as the generalized Prandtl and Lewis
numbers, a Brownian motion number Nb, a thermophoresis num-
ber Nt, and the convective parameter hc. The dependency of the
skin friction, the local Nusselt, and the Sherwood numbers on
these parameters is investigated numerically. To the best of our
knowledge, the results of this paper are new and they have not
been published before.

2 Basic Equations

Consider the steady two-dimensional boundary layer flow of a
power-law nanofluid past a stretching surface with the linear ve-
locity uwðxÞ ¼ Bx, where B is a constant and x is the coordinate
measured along the stretching surface. The surface is heated by
flowing fluid at a temperature Tf with variable heat transfer coeffi-
cient hðxÞ ¼ A 1� xð Þ�n=ðnþ1Þ

, where A is the constant and n is the
power-law index. The flow model and coordinate system are
shown in Fig. 1. The flow takes place at y � 0, where y is the
coordinate measured normal to the stretching surface. A steady
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uniform stress leading to equal and opposite forces is applied
along the x-axis so that the sheet is stretched keeping to origin
fixed. Robin boundary condition is applied at the stretching sur-
face. It is assumed that at the stretching surface, the nanoparticle
fraction C take constant value Cw, respectively. The ambient val-
ues of temperature and nanoparticle fraction are denoted by T1
and C1, respectively as y!1. The power-law model is used for
the non-Newtonian fluid, according to which the relationship
between the shear stress and the strain rate is given as follows:

sxy ¼ l
@u
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When n ¼ 1, Eq. (1) represents a Newtonian fluid with dynamic
coefficient of viscosity l and when n 6¼ 1, Eq. (1) represent dilat-
ant or shear-thickening (n > 1) and a pseudoplastic or shear-
thinning (n < 1) fluids with l as the fluid consistency.

Using scale analysis, the governing mass, momentum, thermal
energy, and nanoparticles concentration equations for power-law
nanofluids can be written in Cartesian coordinates x and y as in
Kuznetsov and Nield [15],
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subject to the boundary conditions

y ¼ 0 : u ¼ Bx; v ¼ vw; �k
@T

@y
¼ hðTf � TÞ; C ¼ Cw

y!1 : u! 0; T ! T1; C! C1 (6)

Here u and v are velocity components along the axes x and y,
respectively, p is the fluid pressure, qf is the density of the base
fluid, a is the thermal diffusivity, t is the kinematic viscosity, a is
a positive constant, k is the temperature parameter, DB is the
Brownian diffusion coefficient, DT is the thermophoretic diffusion
coefficient, and s ¼ ðqcÞp=ðqcÞf with qf is the density of the fluid,

cf is the specific heat of the fluid, and qp is the density of the
particles.

Following Hassanien and Gorla [11] and Hassanien et al. [13],
we use the following transformations:

g ¼ B2�nx1�n

v

� �1=ðnþ1Þ
y; w ¼ vB2n�1x2n

� �1=ðnþ1Þ
f ðgÞ;

hðgÞ ¼ T � T1
Tf � T1

; /ðgÞ ¼ C� C1
Cw � C1

(7)

where w is the stream function and is defined as u ¼ @w=@y and
v ¼ �@w=@x, with u and v as the horizontal and vertical compo-
nents of the velocity, given by

u ¼ Bxf 0 and

v ¼ � �B2n�1xn�1
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Using transformations (7), Eqs. (3)–(5) can be written as
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subject to the boundary conditions

f ð0Þ ¼ R; f 0ð0Þ ¼ 1; h0ð0Þ ¼ �hcð1� hð0ÞÞ; /ð0Þ ¼ 1

f 0ð1Þ ¼ 0; hð1Þ ¼ 0; /ð1Þ ¼ 0 (12)

where primes denote differentiation with respect to g and the five
parameters are defined by
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Here R is the suction/injection parameter which is positive for
injection and negative for suction, Prand Le are the generalized
Prandtl and Lewis numbers for power-law fluids, Nb and Nt are
the generalized Brownian motion and the thermophoresis parame-
ters for power-law nanofluids, respectively, and hc is the convec-
tive parameter. It is important to note that as the convective
parameter hc increases, the heat transfer rates approaches the iso-
thermal case. This statement is also supported by the first thermal
boundary condition of (12), which gives hð0Þ ¼ 1 as hc !1. It
is worth mentioning that for Newtonian fluids (n ¼ 1), Eq. (9) sat-
isfies the analytical solution, given by Crane [1]

Fig. 1 Flow model and coordinate system
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f ðgÞ ¼ 1� e�g (15)

The dimensionless quantities of practical interest are the fric-
tion factor Cf , local Nusselt number Nux, and the local Sherwood
number Shx, which are defined as

Re1=ðnþ1Þ
x Cf ¼ 2 f 00ð0Þ½ �n

Re�1=ðnþ1Þ
x Nu ¼ �h0ð0Þ

Re�1=ðnþ1Þ
x Sh ¼ �/0ð0Þ

(16)

where Rex is the local generalized Reynolds number based on the
stretching velocity Bx and is given by

Rex ¼
ðBxÞ2�nxn

�
(17)

Following Kuznetsov and Nield [15], Re�1=ðnþ1Þ
x Nux and

Re�1=ðnþ1Þ
x Shx can be referred to as the reduced local Nusselt num-

ber Nur and reduced local Sherwood number Shr for power-law
nanofluids, and are represented by �h0ð0Þ and �/0ð0Þ, respec-
tively. It is worth mentioning that Eq. (8) with the boundary con-
ditions (11) has the analytical solution, first obtained by Crane [1].

3 Results and Discussion

The system of transformed governing nonlinear coupled differ-
ential equations (9)–(11) with the boundary conditions (12) is
solved numerically using an implicit finite-difference scheme with
has second-order accuracy with arbitrary spacing. The trans-
formed differential equations and the boundary conditions are first
written as a first-order system, which are then converted to a set
of finite-difference equations using central differences. Then the
nonlinear algebraic equations are linearized by Newton’s method
and the resulting system of linear equations is then solved by the
block tridiagonal elimination technique. A uniform grid of
Dg ¼ 0:001 is satisfactory in obtaining sufficient accuracy with an
error tolerance less than 10�6. In practice, g ¼ 1 must be
replaced by an approximation g ¼ gmax, where gmax is arbitrary as
long as it is chosen large enough so that the solution shows little
further change for g larger than gmax.

Neglecting the effects of Nb and Nt numbers, the results for the
dimensionless wall shear stress and the wall heat transfer rate are
compared with those obtained by Hassanien et al. [13] for differ-
ent values of n;R; and hc in Tables 1 and 2. We notice that the
comparison shows good agreement for each generalized Newto-
nian fluid. Therefore, we are confident that the present results are
very accurate. Table 1 shows the dimensionless wall shear stress
values for pseudoplastic, Newtonian, and dilatant fluids for suc-
tion and injection cases. It is clear that the dimensionless wall

Table 1 Comparison of dimensionless wall shear stress f 00(0) for different power-law flu-
ids with Nt 5 Nb 5 1025

n ¼ 0:5 n ¼ 1 n ¼ 1:5

R
Present
results

Hassanien
et al. [13]

Present
results

Hassanien
et al. [13]

Present
results

Hassanien
et al. [13]

�1.5 0.63296 0.633301 0.5 0.500005 0.46014 0.462494
�1 0.759 0.759826 0.61803 0.618042 0.58577 0.586938
�0.5 0.92924 0.931104 0.78078 0.780781 0.75128 0.759664
0 1.16136 1.165235 1 1 0.98001 0.980902
0.5 1.47815 1.485498 1.28078 1.280777 1.22987 1.233108
1 1.90665 1.919345 1.61803 1.618034 1.49989 1.500926
1.5 2.47585 2.495832 2 2 1.77 1.770192

Table 2 Comparison of wall heat transfer 2h ’(0) for different power-law fluids, temperature, and suction/injection parameters with
Nt 5 Nb 5 1025 and Pr 5 0.72

n
hc !
R # 1 100 200 300 400 500 1000

Hassanien
et al. [13] k ¼ 0

0.5 �1.5 0.06215 0.06655 0.06625 0.06625 0.06626 0.06626 0.06626 0.06643
�1 0.12121 0.13827 0.13784 0.13787 0.13788 0.13789 0.13791 0.13744
�0.5 0.19562 0.24321 0.24289 0.24299 0.24304 0.24307 0.24313 0.42229

0 0.27472 0.37796 0.37806 0.3783 0.37842 0.37849 0.37863 0.37776
0.5 0.35022 0.53667 0.53754 0.53802 0.53827 0.53841 0.5387 0.53801
1 0.41798 0.71356 0.71559 0.71644 0.71687 0.71713 0.71764 0.71728
1.5 0.47689 0.90386 0.9075 0.90887 0.90956 0.90998 0.9108 0.91088

1.0 �1.5 0.04711 0.04907 0.04942 0.04943 0.04943 0.04943 0.04943 0.05044
�1 0.11409 0.1284 0.1287 0.12873 0.12875 0.12875 0.12877 0.12961
�0.5 0.2105 0.26585 0.26627 0.26639 0.26645 0.26648 0.26655 0.26701

0 0.31654 0.46101 0.46208 0.46244 0.46262 0.46272 0.46294 0.46325
0.5 0.41466 0.70343 0.70591 0.70674 0.70716 0.70741 0.70791 0.6315
1 0.49736 0.97981 0.98463 0.98625 0.98706 0.98755 0.98853 0.89312
1.5 0.56428 1.27848 1.28671 1.28947 1.29086 1.29169 1.29336 1.17729

1.5 �1.5 0.0403 0.04131 0.04198 0.04199 0.04199 0.04199 0.04199 0.03489
�1 0.10604 0.11799 0.11854 0.11857 0.11858 0.11859 0.1186 0.10537
�0.5 0.20773 0.26136 0.26185 0.26196 0.26202 0.26205 0.26212 0.25277

0 0.32267 0.47412 0.47526 0.47564 0.47583 0.47594 0.47617 0.48923
0.5 0.42815 0.78315 0.78592 0.78685 0.78731 0.78759 0.78815 0.79669
1 0.51495 1.05049 1.05603 1.0579 1.05883 1.05939 1.06051 1.14831
1.5 0.58344 1.48124 1.49084 1.49408 1.4957 1.49667 1.49863 1.52843
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shear stress decreases as the suction parameter increases for each
generalized Newtonian fluid, whereas the dimensionless wall
shear stress increases with an increase in the injection parameter
for each generalized Newtonian fluid. The dimensionless wall
shear stress values are found to be highest for pseudoplastic or
shear-thinning fluids (n < 1), whereas the values are the lowest
for dilatant or shear-thickening fluids (n > 1). Table 2 shows the
dimensionless wall heat transfer rates for each generalized Newto-
nian fluid (pseudoplastic, Newtonian, and dilatant) for suction and
injection cases corresponding to different convective parameters.
It is observed that dimensionless wall heat transfer rates approach
the constant wall temperature case (k ¼ 0 [13]) as hc !1. They
increase in the case of injection and decrease in the case of
suction.

The effects of suction/injection parameter R on dimensionless
velocity are shown in Fig. 2 for different generalized Newtonian
fluids. There is no effect of convective and nanofluid parameters
on the dimensionless velocity. As expected, the dimensionless ve-
locity is higher in the case of suction. As a result, the velocity
boundary layer thickness is larger for the suction case. Due to the
shear-thinning effect of power-law fluids, the dimensionless ve-
locity for pseudoplastic fluids is higher than Newtonian fluids,
whereas, for the dilatant fluids the dimensionless velocity is lower
than the Newtonian fluids. The variation of the dimensionless wall
shear stress with suction/injection parameter is illustrated in Fig. 3
for different power-law fluids. It is clear that the dimensionless
wall shear stress increases with an increase in suction/injection

parameter. The dimensionless wall shear stress is found to be
larger for pseudoplastic fluids than dilatant fluids. This is due to
the shear thinning effect of the power-law fluids.

The effect of generalized Prandtl numbers, suction/injection,
convective, and non-Newtonian nanofluid parameters on dimen-
sionless temperature is depicted in Figs. 4 and 5 for different
power-law nanofluids. Figure 4(a) shows the effect of injection on
dimensionless temperature for different power-law nanofluids. It
can be seen that, in case of no injection, the dimensionless temper-
ature is higher for each power-law nanofluid. As the injection pa-
rameter increases, the dimensionless temperature decreases for
each power-law nanofluid. An increase in the injection parameter
also decreases the thickness of the thermal boundary layer. The
effect of convective parameter on the dimensionless temperature
is illustrated in Fig. 4(b) for different power-law fluids. As the
convective parameter increases, the dimensionless temperature
increases and approaches the isothermal condition. The dimen-
sionless temperature of pseudoplastic fluids is found to be higher
than Newtonian and dilatant fluids. The effect of generalized
Prandtl numbers on dimensionless temperature for different
power-law nanofluids is shown in Fig. 5(a). As expected, the ther-
mal boundary layer thickness decreases with an increase in the
generalized Prandtl number. The effect of the generalized thermo-
phoresis parameter is to increase the dimensionless temperature
which is shown in Fig. 5(b) for different power-law nanofluids.
The effect of generalized Brownian motion parameter on the

Fig. 2 Effect of injection parameter R on dimensionless velocity
for different non-Newtonian fluids

Fig. 3 Variation of dimensionless wall shear stress with
suction/injection parameter R for different generalized Newtonian
fluids

Fig. 4 Effect of injection and convective parameters on dimensionless temperature
for different non-Newtonian nanofluids
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dimensionless temperature (not shown here) is found to be the
same for different power-law nanofluids. It was observed that the
dimensionless temperature increases with an increase in the gener-
alized Brownian motion parameter.

The effects of different parameters on the dimensionless nano-
particle concentration are shown in Figs. 6(a) and 6(b) for several
power-law nanofluids. Figure 6(a) illustrates the effects of gener-
alized Lewis numbers on the dimensionless nanoparticle concen-
tration for pseudoplastic, Newtonian, and dilatant fluids. Like
generalized Prandtl numbers, an increase in the generalized Lewis
numbers decreases the nanoparticle concentration boundary layer
thickness. The dimensionless nanoparticle concentration is found

to be higher for pseudoplastic fluids than the dilatant fluids. The
effect of generalized Brownian motion parameter Nb on dimen-
sionless nanoparticle concentration is shown in Fig. 6(b) for dif-
ferent power-law nanofluids. It can be seen that the nanoparticle
concentration decreases with an increase in the generalized
Brownian motion parameter Nb. The same effect of generalized
thermophoresis parameter Nt on the nanoparticle concentration
was observed, which is not shown here.

The variation of the local dimensionless heat transfer rates with
different parameters is shown in Figs. 7(a) and 7(b). In the pres-
ence of injection, the variation of the local dimensionless heat
transfer rates with convective parameter is shown in Fig. 7(a) for

Fig. 5 Effect of generalized Prandtl number Pr and thermophoresis parameter on
dimensionless temperature for different non-Newtonian nanofluids

Fig. 6 Effect of generalized Lewis number Le and Brownian motion parameter on
dimensionless nanoparticle concentration for different non-Newtonian nanofluids

Fig. 7 Variation of dimensionless heat transfer rates with convective parameter
and generalized Prandtl number for different power-law nanofluids
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three power-law nanofluids with two different values of general-
ized Brownian motion parameter. It can be seen that the local
dimensionless heat transfer rates increase with the convective pa-
rameter and approaches the isothermal values as hc !1. It is
observed that the local dimensionless heat transfer rates decrease
with an increase in the generalized Brownian motion parameter.
For dilatant fluids, the local dimensionless heat transfer rates are
found to be higher than pseudoplastic fluids for the selected pa-
rameters. Figure 7(b) shows the variation of the local dimension-
less heat transfer rates with the generalized Prandtl numbers for
two different values of the generalized thermophoresis parameter.
It can be seen that the local dimensionless heat transfer rates
increase with the generalized Prandtl numbers. This is only due to
a decrease of thermal boundary layer thickness with the general-
ized Prandtl numbers. The local dimensionless heat transfer rates
decrease with an increase in the generalized thermophoresis pa-
rameter and increase with an increase in the power-law index.
Again, the local dimensionless heat transfer rates are found to be
higher for dilatant fluids than pseudoplastic fluids.

The variation of the local dimensionless mass transfer rates with
different parameters is shown in Figs. 8(a) and 8(b) for different
power-law nanofluids. Figure 8(a) illustrates the variation of the
local dimensionless mass transfer rates with generalized Lewis
numbers and the generalized Brownian motion parameter for differ-
ent power-law nanofluids. It is clear from Fig. 8(a) that local
dimensionless mass transfer rates increase with Le and with the
generalized Brownian motion parameter. Like the local dimension-
less heat transfer rates, the local dimensionless mass transfer rates
are also higher for dilatant fluids than pseudoplastic fluids. The var-
iation of the local dimensionless mass transfer rates with general-
ized Lewis numbers and thermophoresis parameter is shown in Fig.
8(b) for different power-law nanofluids. The local dimensionless
mass transfer rates decrease with an increase in Nt. It is important
to note that the generalized Lewis numbers have strong effects on
the local dimensionless mass transfer rates.

4 Conclusions

The work of Hassanien et al. [13] is extended to analyze the
behavior of non-Newtonian nanofluids over a stretching surface
with convective boundary condition and uniform surface nanopar-
ticle concentration. A similarity solution is obtained that depends
on different power-law nanofluid suction/injection, temperature,
and nanofluid concentration parameters. The dependency of the
skin friction, the local Nusslelt, and the Sherwood numbers on
these parameters is investigated numerically. It is found that the

(i) Dimensionless velocity, temperature, and nanofluid con-
centration are higher for pseudoplastic fluids than dilatant
fluids.

(ii) Skin friction is higher for pseudoplastic fluids than dilatant
fluids.

(iii) As the convective parameter increases, the dimensionless
temperature and the heat transfer rates approaches the iso-
thermal values.

(iv) Local dimensionless heat and mass transfer rates are
higher for dilatant fluids than pseudoplastic fluids.

Nomenclature

B ¼ constant
C ¼ nanoparticle volume fraction

Cf ¼ skin friction
Cw ¼ nanoparticle volume fraction at the stretching surface
C1 ¼ ambient nanoparticle volume fraction
DB ¼ Brownian diffusion coefficient
DT ¼ thermophoretic diffusion coefficient

f ðgÞ ¼ dimensionless stream function
f 0ðgÞ ¼ dimensionless velocity as function of stream function
f 0ð0Þ ¼ dimensionless velocity at the surface

hc ¼ convective parameter
K ¼ thermal conductivity

Le ¼ generalized Lewis number
Nb ¼ generalized Brownian motion parameter
Nt ¼ generalized thermophoresis parameter

Nux ¼ local Nusselt number
n ¼ power-law parameter

Pr ¼ generalized Prandtl number
R ¼ suction/injection parameter

Rex ¼ local generalized Reynolds number
Shx ¼ local Sherwood number

Tf ¼ fluid temperature
Tw ¼ temperature at the stretching surface
T1 ¼ ambient temperature
u; v ¼ velocity components along x- and y-axes

uwðxÞ ¼ velocity of the stretching sheet
x; y ¼ Cartesian coordinates (x-axis is along the stretching sur-

face and y-axis is normal to it)

Greek Symbols

a ¼ thermal diffusivity
g ¼ similarity variable

/ðgÞ ¼ rescaled nanoparticle volume fraction
k ¼ temperature parameter
l ¼ dynamic viscosity of the fluid
� ¼ kinematic viscosity of the fluid
qf ¼ fluid density
qp ¼ nanoparticle mass density

Fig. 8 Variation of dimensionless mass transfer rates with generalized Lewis
number, Brownian motion, and thermophoresis parameters for different non-
Newtonian nanofluids
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qcð Þf ¼ heat capacity of the fluid
qcð Þp ¼ effective heat capacity of the nanoparticle material

w ¼ stream function
s ¼ ratio between the effective heat capacity of the nanopar-

ticle material and heat capacity of the fluid
hðgÞ ¼ dimensionless temperature
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