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Abstract

In this paper, we address the problem of preconditioning sequences of large sparse non-
symmetric systems of linear equations and present two new strategies to construct approxi-
mate updates of factorized preconditioners. Both updates are based on the availability of an
incomplete LU (ILU) factorization for one matrix of the sequence and differ in the approxi-
mation of the so-called ideal updates. The first strategy is an approximate diagonal update
of the ILU factorization; the second strategy relies on banded approximations of the factors
in the ideal update. The efficiency and reliability of the proposed preconditioners are shown
in the solution of nonlinear systems of equations by preconditioned inexact Newton-Krylov
methods. Matrix-free implementations of the updating strategy are provided and numerical
experiments are carried out on application problems.

Keywords: Preconditioning, incomplete factorizations, factorization updates, inexact Newton-
Krylov methods, matrix-free environment.

1 Introduction

The need to solve large, sparse nonsymmetric systems of linear equations is frequent in numerical
optimization. Such sequences are generated by Newton-type methods for the nonlinear systems
appearing in equilibrium systems, macroeconometric models and the discretization of partial
differential equations and integro-differential equations, see e.g. [15, 16, 17]. In this context,
Newton-type methods coupled with preconditioned Krylov subspace methods and procedures to
enhance convergence from arbitrary starting point are extensively used, see e.g. [1, 4, 14, 17, 22,
23].

Let F (x) = 0 be a system of nonlinear equations where F : IRn 7→ IRn is continuously
differentiable and let J be the Jacobian matrix of F . Each iteration of a globally convergent
Newton-Krylov method comprises the solution of the linear system

Jks = −Fk, (1)
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where xk is the current iteration, Fk = F (xk), Jk = J(xk), and a phase dedicated to a global-
ization procedure. In general, the dominant cost of the whole procedure is constituted by the
solution of the sequence of linear systems (1) generated through the iterations. This observation
motivates the recent growing interest in improving the solution of the overall sequence of systems
by sharing some of the computational effort throughout the sequence. In fact, the cost of solving
subsequent systems may be reduced by using information available from earlier systems.

Some alternative ideas have been proposed for handling the solution of a sequence of large
nonsymmetric linear systems effectively. A first possibility is to recycle selected Krylov subspaces
generated from previous systems, [21]. A second possibility is to improve an existing incomplete
LU (ILU) preconditioner progressively within the solution of the sequence, [10]. A third possi-
bility is to update a preconditioner computed for some specific system by inexpensive strategies;
this can be done by Broyden-type rank-one updates ([8]) or by fully-algebraic procedures like
those in [2, 9, 12, 13].

The preconditioner updates in [2, 9, 12, 13] are inspired by the attempt to cheaply approx-
imate the ideal update to an existing preconditioner. Let Js be the Jacobian matrix at some
iteration of the Newton-Krylov method, and let

Ps = LDU, (2)

be an ILU factorization of Js where D is diagonal and L and U are lower and upper triangular
matrices, respectively, with unit main diagonal. If Js ≈ LDU , then using the equality Jk =
Js + (Jk − Js) we get

Jk ≈ L(D + L−1(Jk − Js)U
−1)U. (3)

Then, the matrix
P I
k = L(D + L−1(Jk − Js)U

−1)U, (4)

represents the ideal updated preconditioner in the sense that, for any matrix norm ‖ · ‖, its
accuracy ‖Jk − P I

k ‖ for Jk is equal to the accuracy ‖Js − Ps‖, [12].
It is evident that the ideal update is not suitable for practical use. In general, the matrix

L−1(Jk −Js)U
−1 is expensive to build; moreover P I

k is dense and its factorization is impractical.
Updating strategies are based on simple approximations to L−1(Jk − Js)U

−1 and give rise to
preconditioners which are products of matrices easy to invert.

In this paper, by using structured approximations of the factors in P I
k , we propose two

techniques to form updated preconditioners. The first one is based on the approximation of
Jk − Js by its diagonal. This yields to a diagonal modification of the ILU factorization and to
a new strategy to form an approximate cheap factorization of the resulting matrix. The second
technique employs structured approximations of Jk − Js, L−1 and U−1; in this context, we
propose an algorithm to compute a fixed number of diagonals, below and above the main one,
in L−1 and U−1 without the need of a complete inversion of L and U .

Unpreconditioned Newton-Krylov methods do not require forming or storing the Jacobians
as their action on vectors required by the Krylov solver can be approximated by finite differences.
On the other hand, the computation of an algebraic preconditioner at each nonlinear iteration
is no longer a matrix-free procedure. However, a preconditioning strategy is considered to be
nearly matrix-free if it has the following properties: a few full Jacobians are formed; in most
Newton iterations, matrices that are reduced in complexity with respect to the full Jacobians are
required; matrix-vector product approximations by finite differences can be used; see [13, 17]. It
deserves to be mentioned that our approximate updating strategies, as well as those proposed in
[2, 13], share these properties which are valuable for real applications.

The paper is organized as follows. In Section 2 we describe the updating proposals given in
[2, 12]. In Section 3 we present and analyze our new strategies. In Section 4 we discuss how these
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techniques can be implemented and finally, we present the results of numerical experiments in
Section 5.

Notations

Unless explicitly stated, ‖ · ‖ denotes an arbitrary vector norm and induced matrix norm. The
entries of a matrix A ∈ IRn×n are denoted either as aij or (A)ij . Given a nonnegative integer γ,
[A]γ ∈ IRn×n indicates the banded matrix obtained extracting from A the main diagonal and γ
upper and lower diagonals. If γ = 0, [A]0 is the diagonal matrix formed from the elements of the
diagonal of A. The off-diagonal part A− [A]0 of A si denoted by the symbol off (A). If A is lower
(upper) triangular, [A]γ is obtained extracting from A the main diagonal and γ lower (upper)
diagonals. Similarly, off (A) is formed by the lower (upper) extra diagonals of A. Finally, we
borrow notations used by Matlab in linear algebra: diag, tril, triu, eye, zeros.

2 Preliminaries

Let Js and Ps be the matrices introduced in §1; hereafter, we will refer to them as the seed
Jacobian and seed preconditioner, respectively. Thus, we are assuming that an incomplete fac-
torization process of Js can be carried out without breakdowns; this is guaranteed when the
matrix has a strong diagonal, [6, 12]. For the rest of the paper we also assume that the Jacobian
matrices Jk in (1) are invertible.

We now overview the approximate updating of Ps proposed in the papers [2, 12] and point
out the sources of errors introduced in the replacement of P I

k with a matrix easier to invert.
A fundamental aspect of the updating procedures is the possibility of approximating L−1

and U−1 or to have such inverses available. This issue is tackled in different ways in view of
the kind of the computed seed preconditioner, see [6]. The preconditioner Ps we are currently
considering can be classified as implicit, as its application requires the solution of linear systems.
Another possibility is the availability of an explicit preconditioner, that is a preconditioner that
approximates J−1

s and that can be applied by performing matrix-vector products.
The practical updating techniques proposed by Duintjer Tebbens and Tuma in [12] are based

on the implicit preconditioner Ps given in (2). They rely on suitable approximations to Jk − Js
and on the assumption that either L or U more or less approximates the identity matrix. If L is
close to the identity matrix and L−1 is neglected in (3), such expression becomes

Jk ≈ L(D + (Jk − Js)U
−1 )U = L(DU + (Jk − Js) ), (5)

while assuming U to be close to the identity, and neglecting U−1 it follows

Jk ≈ L(D + L−1(Jk − Js))U = (LD + (Jk − Js))U. (6)

Several options have been proposed in [12] to replace DU + (Jk − Js) or LD + (Jk − Js) by
a nonsingular and easily invertible approximation. One option is to approximate Jk − Js in (5)
or (6) by its upper/lower triangular part which gives rise to

Pk = L(DU + triu(Jk − Js)), (7)

Pk = (LD + tril(Jk − Js))U, (8)

respectively. Thus, the required information on Jk is reduced in complexity with respect to the
full matrix. Furthermore, the application of Pk does not involve any factorization and consists in
solving two triangular systems. This strategy tacitly assumes that one triangular part of Jk −Js
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dominates the other and a typical situation of this kind arises in CFD model problems, [9].
Interestingly, nearly matrix-free implementations of this approach are possible and the explicit
knowledge of the upper/lower triangular part of Jk is not required, see [13].

Since important information may be lost retaining only one triangular part of Jk − Js, an
alternative option replaces DU + (Jk − Js) in (5) or LD + (Jk − Js) in (6) by an unstructured
matrix with inverse available in closed form. Such unstructured approximation is constructed by
using products of Gauss-Jordan transformations, [12].

The introduced updated preconditioners have the potential to be more effective than reusing
Ps (frozen preconditioner) under the above mentioned assumptions on L and U and under the
assumption that the used approximation of Jk − Js is accurate enough, [12, Lemma 2.1]. An
analogous result can be stated with respect to a recomputed preconditioner for Jk, [12, Theorem
2.2].

We conclude this section with the method of updating the seed preconditioner presented by
Bellavia et al. in [2]. The proposed strategy is based on the observation that P I

k requires the
knowledge of L−1 and U−1; hence it uses an explicit seed preconditioner, i.e. an incomplete
factorization for J−1

s of the form
J−1
s ≈ W D−1ZT , (9)

where D is a diagonal matrix, and W and Z are sparse unit upper triangular matrices. A
possibility to construct this sparse approximate inverse preconditioner is to use the incomplete
generalized Gram-Schmidt orthogonalization process with respect to the bilinear form associated
to Js given in [6]. Alternatively, one can first compute an ILU factorization of Js and then
approximately invert L and U ; the latter task can be performed by solving a triangular system
for each column of L−1 and U−1, [7].

Exploiting factorization (9) and the relation Js ≈ Z−T DW−1, equality Jk = Js + (Jk − Js)
yields

Jk ≈ Z−T
(

D + ZT (Jk − Js)W
)

W−1.

Then, replacing Jk − Js by the banded matrix [Jk − Js]δ, and ZT [Jk − Js]δW by the banded
matrix [ZT [Jk − Js]δW ]β, for some nonnegative β and δ, the updated explicit preconditioner for
Jk is

Pk = W
(

D + [ZT [Jk − Js]δW ]β
)−1

ZT . (10)

Note that Pk approximates J−1
k and that only the main diagonal and δ lower and upper

diagonals of Jk need to be computed for its construction. When β = 0, the middle factor
in Pk is diagonal and the application of the preconditioner is straightforward; on the other
hand if β > 0 the application of Pk requires the solution of banded linear systems with matrix
D + [ZT [Jk − Js]δW ]β . In terms of computational cost, only small values of β and δ are viable
and if β is nonnull, direct methods for banded systems are convenient.

The effectiveness of this approach depends on two issues. First, it is assumed that the
approximation of J−1

s in terms of sparse factors is possible. This means that many entries of
J−1
s are small in magnitude and in its factorization many entries can be discarded while retaining

accuracy. Second, the accuracy in the replacement of the ideal update depends on the magnitude
of the elements dropped away in Jk − Js and in ZT [Jk − Js]δW . These two issues are related in
the sense that explicit preconditioners are satisfactory when the entries of J−1

s , Z and W decay
away from the diagonals, and banded approximations of matrices tend to contain most of their
large entries, [7].

The preconditioner (10) can be more efficient than the frozen preconditioner and than a
recomputed preconditioner for Jk under the assumption that the seed preconditioner and the
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approximations [Jk − Js]δ, and [ZT [Jk − Js]δW ]β to Jk − Js, and ZT [Jk − Js]δW respectively,
are both accurate, see [2, §4.3].

3 New techniques based on structured updates

Our techniques attempt to approximate P I
k by extracting banded parts of the matrices appearing

in it.
The first procedure takes the main diagonal of the matrix Jk − Js and does not involve L−1

and U−1; the resulting preconditioner is named Diagonally Updated ILU (DU ilu) factorization.
The second procedure allows for larger bandwidths and require a partial knowledge of L−1 and
U−1; we will refer to resulting preconditioner as Banded Updated ILU (BU ilu) preconditioner.

The quality of the preconditioners will depend on the size of discarded quantities from P I
k ; if

such quantities are small, the updated preconditioners are expected to be powerful. Remarkably,
some information on the size of Jk − Js is problem-independent and can be obtained from
the convergence theory of Newton-Krylov methods. Specifically, suppose that J is Lipschitz
continuous in a convex set containing a solution of the nonlinear systems and that the iterate
xs such that Js = J(xs) is close enough to such solution to guarantee local convergence of
the Newton method. Then, the iterates xk subsequent to xs converge to the solution and
‖Jk − Js‖ = O(‖xk − xs‖) is small.

3.1 The DU ilu preconditioner

Let Σk be the diagonal matrix
Σk = [Jk − Js]0, (11)

and σk
ii, i = 1, . . . , n, be its diagonal entries. The DU ilu preconditioner is built by replacing

Jk − Js with Σk in the ideal preconditioner (4). As a results, P I
k is approximated by

LDU +Σk,

which amounts to a diagonal modification of the available ILU factorization. The factorization
of matrix LDU + Σk is impractical in the context of the updates as its cost is comparable to
that of a recomputed preconditioner. We do not factorize it exactly but, inspired by [3], form a
cheap approximate factorization; we describe this approach in the following algorithm.

The matrix Pk computed by Algorithm 3.1 is ourDU ilu preconditioner. It takes the place of
LDU +Σk and shows some nice computational features. First, it is expressed in factorized form.
Second, the cost to form Pk is low: the computation of Dk is negligible while the computation of
Lk and Uk consists in scaling the nonzero entries of L and U . Third, by construction, skii ∈ (0, 1],
i = 1, . . . , n, and it is known that the conditioning of the matrices Lk and Uk is at least as good
as the conditioning of L and U respectively, [18]. Further algorithmic issues are postponed to
Section 4.

Let now analyze the quality of the DU ilu preconditioner. We have

‖Jk − Pk|| ≤ ‖Jk − (LDU +Σk)||+ ‖LDU +Σk − Pk‖

≤ ‖Js − Ps‖+ ‖Jk − Js − Σk||+ ‖LDU +Σk − Pk‖. (16)

The norm ‖Js − LDU‖ measures the accuracy of the seed preconditioner while the second and
third term in (16) can be ascribed to the DU ilu procedure. In fact, the DU ilu algorithm
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Algorithm 3.1: DU ilu Preconditioner

Given Js, Ps = LDU of dimension n× n.

1. Compute Σk in (11).
2. Set

Dk = D +Σk, (12)

Sk = diag(sk11, . . . , s
k
nn), skii =

|dii|

|dii|+ |σk
ii|

, i = 1, . . . , n, (13)

Lk = eye(n), Uk = eye(n), (14)

off (Lk) = off (L)Sk, off (Uk) = Skoff (U).

3. Let
Pk = LkDkUk. (15)

introduces the second term in (16) by neglecting the off-diagonal part of Jk − Js and the third
term in (16) by replacing LDU +Σk with Pk. As shown below, Pk is accurate for LDU +Σk as
long as Σk is sufficiently small. Hence, when Ps is accurate for Js and the sequence of matrices
{Jk} is slowly varying, i.e. ‖Jk − Js‖ is small, Pk is expected to be accurate.

To analyze the accuracy of Pk as an approximation to LDU + Σk, we introduce the error
matrix

Ek = LDU +Σk − Pk, (17)

and provide the expression for its entries Ek = (ekij). An analogous notation for the entries of
Dk, Lk, Uk, is used. First, consider the diagonal entries of Ek,

ekii =
i−1
∑

r=1

liruridrr + dii + σk
ii −

i−1
∑

r=1

lkiru
k
rid

k
rr − dkii.

By (12) and (15),

ekii =

i−1
∑

r=1

liruri(drr − (skrr)
2dkrr),

i.e.
[Ek]0 = [off (L)(D − S2

kDk)off (U)]0. (18)

Second, we give the analytical form of the off-diagonal entries of Ek, e
k
ij = (LDU)ij−(LkDkUk)ij .

Suppose i > j, then by using (15) and the fact that L and U have unit diagonal, we get

ekij =

j
∑

r=1

lirurjdrr −

j
∑

r=1

lkiru
k
rjd

k
rr

=

j−1
∑

r=1

lirurj(drr − (skrr)
2dkrr) + lij(djj − skjjd

k
jj).
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Proceeding analogously for the entries eij with i < j, we can conclude that

Ek − [Ek]0 = off (off (L)(D − S2
kDk)off (U)) + off (L)(D − SkDk) + (D − SkDk)off (U),

and by (18)

Ek = off (L)(D − S2
kDk)off (U) + off (L)(D − SkDk) + (D − SkDk)off (U). (19)

The following lemma expresses the relation between Ek and Σk and indicates that for ‖Σk‖
small enough, Pk is an accurate approximation to LDU +Σk.

Theorem 3.1 Let Pk and Ek be defined in (15) and (17). Then, there exists a positive scalar
c, independent of k, such that ‖Ek‖ ≤ c‖Σk‖.

Proof. By taking into account (19), it is sufficient to prove that

‖D − S2
kDk‖ ≤ ĉ‖Σk‖, ‖D − SkDk‖ ≤ ĉ‖Σk‖,

for some positive ĉ. We proceed entrywise and start supposing that diiσ
k
ii > 0. Then,

skii = dii/(dii + σk
ii), and

∣

∣dii − (skii)
2dkii

∣

∣ =

∣

∣

∣

∣

dii

dii + σk
ii

σk
ii

∣

∣

∣

∣

≤
∣

∣σk
ii

∣

∣ ,

dii − skiid
k
ii = 0.

In case diiσ
k
ii < 0, without loss of generality suppose dii > 0 and σk

ii < 0. Then, skii =
dii/(dii − σk

ii), and

∣

∣dii − (skii)
2dkii

∣

∣ =

∣

∣

∣

∣

dii

dii − σk
ii

(

3 +
2σk

ii

dii − σk
ii

)

σk
ii

∣

∣

∣

∣

≤ 5
∣

∣σk
ii

∣

∣ ,

|dii − skiid
k
ii| =

∣

∣

∣

∣

2dii

dii − σk
ii

σk
ii

∣

∣

∣

∣

≤ 2
∣

∣σk
ii

∣

∣ .

Thus, the proof is completed. 2

3.2 Banded approximate inverses

The two approaches presented in §2 tacitly assume that L−1 and U−1 contain many entries which
are small in magnitude.

Usually, the inverse of a sparse matrix A is dense, and it is not known in advance a good
sparsity pattern for an approximation to A−1. Possible exceptions are large classes of matrices
where the entries of the inverse tend to zero away from the main diagonal. Classes of matrices
with decaying inverses were detected and analyzed in several papers: banded symmetric positive
definite and indefinite matrices, [11, 19]; nonsymmetric block tridiagonal banded matrices, [20];
matrices of the form f(A) where A is symmetric and banded and f is analytic, [5]. Typically,
the rate of decay of the entries of A−1 is fast if A is diagonally dominant.

For the mentioned matrices, it appears justified the approximation of the inverse by a banded
matrix. This approach was applied to preconditioning techniques for symmetric matrices in the
papers [5, 24]. We proceed along such lines and introduce a suitable technique for building band
approximate inverses of L and U and of the middle factor in P I

k .
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Our first contribution is an algorithm for computing exactly the matrices [L−1]γ and [U−1]γ
without the complete inversion of L and U . The closed form of [L−1]γ and [U−1]γ is derived
algebraically as follows. Consider the upper unit triangular matrix U , and let uT

i , i = 1, . . . , n−1,
be ith row of matrix off (U), i.e. uT

i = (0, . . . , 0, uii+1, . . . , uin). Analogously, let vTi , i =
1, . . . , n− 1, be the ith row of matrix off (U−1). Trivially,

U−1 = I +
n−1
∑

i=1

eiv
T
i , (20)

where ei is the i-th vector of the canonical basis. By using the closed form of the inverses of the
elementary matrices,

U−1 =

(

1
∏

i=n−1

(I + eiu
T
i )

)−1

=

n−1
∏

i=1

(I − eiu
T
i ).

Note that

U−1 =

n−1
∏

i=2

(I − eiu
T
i )− e1u

T
1

n−1
∏

i=2

(I − eiu
T
i )

=

n−1
∏

i=3

(I − eiu
T
i )− e1u

T
1

n−1
∏

i=2

(I − eiu
T
i )− e2u

T
2

n−1
∏

i=3

(I − eiu
T
i )

= · · ·

= I −

n−1
∑

j=1

eju
T
j

n−1
∏

i=j+1

(I − eiu
T
i ), (21)

with
∏n−1

j=n(I − eju
T
j ) = I. Then, comparing (20) with (21), we get

vTi = −uT
i

n−1
∏

j=i+1

(I − eju
T
j ), i = 1, . . . , n− 1.

From the sparsity pattern of the matrices (I − eju
T
j ), it follows that the product uT

i (I −

ei+1u
T
i+1) modifies the components of ui of indices i+ 2, . . . , n; letting u

(1)
i = uT

i (I − ei+1u
T
i+1),

the product (u1
i )

T (I−ej+2u
T
j+2) modifies the components of u

(1)
i of indices i+3, . . . , n; etc. This

has the effect that the l-th entry of vTi , l = i+ 1, . . . , i+ γ, coincide with l-th entry of

−uT
i

min{i+γ,n}−1
∏

j=i+1

(I − eju
T
j ).

Interestingly, the above expressions indicate that each row of [U−1]γ can be computed indepen-
dently from the others and such computation is exact without the need of a complete inversion of
U . Algorithm 3.2 below sketches the details of the computation of matrix [U−1]γ and is written
borrowing from Matlab the notations to handle arrays and matrices.
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Algorithm 3.2: Computation of [U−1]γ

Given U ∈ IRn×n upper unit triangular, γ nonnegative integer.

1. V = eye(n).
2. For i = 1, . . . , n− 1

l = min{i+ γ, n}.
V (i, i+ 1 : l) = −U(i, i+ 1 : l).
For j = i+ 1, . . . , l − 1

w = [zeros(1, j − i), U(j, j + 1 : l)].
V (i, i+ 1 : l) = V (i, i+ 1 : l)− V (i, j)w.

end
end
3. [U−1]γ = V .

An alternative algorithm for computing [U−1]γ was presented in [24, Algorithm CHOL]. It eval-
uates the rows of [U−1]γ from the (n − 1)-th to the first sequentially, whereas in Algorithm 3.2
the rows can be calculated in parallel.

Clearly, the computation of [L−1]γ with L lower unit triangular, can be performed by applying
Algorithm 3.2 to the transpose of the matrix L and then transposing again the resultant banded
matrix.

Algorithm 3.2 is used to build our BU ilu preconditioner as sketched in Algorithm 3.3.

Algorithm 3.3: BU ilu Preconditioner

Given Js, Ps = LDU , β, γ, δ nonnegative integers.

1. Compute [L−1]γ and [U−1]γ by Algorithm 3.2.
2. Compute [Jk − Js]δ.
3. Set

Pk = L
[

D + [L−1]γ [Jk − Js]δ [U
−1]γ

]

β
U. (22)

Details on the implementation of Algorithm 3.3 are postponed to Section 4. Here we observe
that the way to apply Pk depends on the value of β. The most favorable case is β = 0 wherein
one diagonal and two triangular systems must be solved. Otherwise, the factorization of the
banded middle factor in Pk is necessary.

We further mention that Algorithm 3.3 provides a preconditioner for Jk using information
from both the lower and upper tridiagonal part of the current Jacobian, differently from the
approach given in [12] where either the lower or the upper part of Jk is discarded.

We conclude this section providing an upper bound to the distance of the BU ilu precondi-
tioner from Jk. In the next theorem we show that such distance depends on the quality of Ps for
Js and on the distance between Jk and Js. Then, an accurate seed preconditioner and a slowly
varying sequence {Jk} can yield an accurate BU ilu preconditioner.
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Theorem 3.2 Let Pk be the BU ilu preconditioner in (22). Then,

‖Jk − Pk‖ ≤ ‖Js − LDU‖+ c̄‖Jk − Js‖, (23)

where ‖ · ‖ denotes the 1 or the infinity norm and c̄ is some positive scalar independent of k.

Proof. As β is nonnegative, it trivially follows

Pk = LDU + L
[

[L−1]γ [Jk − Js]δ [U
−1]γ

]

β
U,

and

‖Jk − Pk‖ ≤ ‖Js − LDU‖+ ‖Jk − Js‖+ ‖L
[

[L−1]γ [Jk − Js]δ [U
−1]γ

]

β
U‖.

By the properties of the 1 or the infinity norm, we have ‖[A]γ‖ ≤ ‖A‖, for any matrix A
and nonnegative γ. As a consequence, we get (23) with c̄ = 1+ cond(L)cond(U) and cond(·)
being the condition number of a matrix. 2

4 Practical preconditioned Newton-Krylov algorithms

In this section we discuss the main implementation aspects of theDU ilu andBU ilu procedures
embedded in Newton-Krylov methods for the nonlinear system F (x) = 0. We address issues
related to the nearly matrix-free implementations and the possible breakdowns of the algorithms
proposed. Further, we give some details on the implementation of the Newton-Krylov solver used
in our numerical experiments and outline the adopted strategy to refresh the seed preconditioner
when the performance of the updating strategy deteriorates.

We begin showing that our preconditioners can be implemented in a nearly matrix-free man-
ner. To form the algebraic seed preconditioner, the full seed Jacobian has to be formed. There-
after, it is required the knowledge of the matrices [Jk]δ, δ ≥ 0, which are reduced in complexity
with respect to the full Jacobians. It is clearly possible to build and store their entries by finite
differences, [17]. An implementation of the BU ilu preconditioner alternative to approximating
[Jk]δ and then performing the product [Jk −Js]δ[U

−1]γ , is to directly approximate such product
by finite differences. In fact, proceeding as described in [13], once [U−1]γ has been formed, each
column of the matrix Φ = [Jk]δ[U

−1]γ can be computed element-wise as follows. Assuming for
sake of simplicity that i − δ ≥ 1 and i + δ ≤ n, and taking into account the structure of [Jk]δ,
the entries φij of Φ have the form

φij =

i+δ
∑

l=i−δ

(Jk)i,l(U
−1)l,j .

Then, by the structure of [U−1]γ , the expression of φij reduces to

φij =
∑

l∈L

(Jk)i,l(U
−1)l,j , (24)

where L = {l : l ∈ [lm, lM ], lm = max{i− δ, j − γ}, lM = min{i+ δ, j}}. If L is empty, i.e. lm >
lM , then φij = 0. Otherwise, (24) can be written as

φij = wi, w = (w1, w2, . . . , wn)
T = Jkū,
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with ū = (0, . . . , 0, (U−1)lmj , . . . , (U
−1)lM j , 0, . . . , 0)

T ∈ IRn and wi can be approximated by
finite differences which amounts to evaluate the ith component of F at xk + ǫū, for some scalar
ǫ. We conclude noting that only the components of [Jk − Js]δ[U

−1]γ corresponding to nonzero
entries of [L−1]γ in the computation of [L−1]γ [Jk − Js]δ[U

−1]γ are required.
Another issue that deserves consideration is the potential need to freeze the updated precon-

ditioner or to compute a new seed preconditioner from scratch (refreshed preconditioner). In fact,
Algorithms 3.1 and 3.3 need to be safeguarded against the risk of singular or nearly singular mid-
dle factors in the updated preconditioners, i.e. Dk in (15) and

[

D + [L−1]γ [Jk − Js]δ [U
−1]γ

]

β

in (22). The construction of a singular preconditioner implies a breakdown in the updating pro-
cedure but it is unlikely that the mentioned middle factors will be exactly singular. On the
other hand, the application of the updated preconditioner to a vector may indicate a serious ill-
conditioning of such matrix. In this case, it is necessary to abandon the updated preconditioner
and either replace it by the one used in the previous Newton equation or to refresh the seed
Jacobian and preconditioner.

The occurrence of a nearly singular middle factor in the updated preconditioners is monitored
for the DU ilu procedure by the condition

min
i=1,...,n

|(Dk)ii| ≤ τ‖Js‖1, (25)

for some small positive τ , see [2]. An analogous control is performed in theBU ilu preconditioner
whenever β = 0 is used in (22). If such condition is met, the candidate updated preconditioner
is abandoned and replaced by the one used in the previous Newton iteration; in other words, the
preconditioner from the previous Newton iteration is frozen.

Moreover, the effectiveness of the preconditioned Krylov method in solving the linear systems
(1) may also suggest the need for refreshing the preconditioner. In a Newton-Krylov method,
the linear system (1) is solved approximately and the computed step sk is required to satisfy

‖Jksk + Fk‖2 ≤ ηk‖Fk‖2, (26)

with ηk ∈ [0, 1). If the approximate updating strategy DU ilu or BU ilu neglects important
information from the ideal update P I

k , the preconditioned Krylov method is expected to slow
down. For this reason, a practical scheme must combine the updating algorithms DU ilu and
BU ilu with the recomputation of the preconditioner when the quality of the updates deterio-
rates, [2, 9]. We follow the strategy to refresh the seed preconditioner, i.e. to compute a new
seed Jacobian and a new seed preconditioner, when the Krylov method fails.

To enlarge the convergence region of the Newton-Krylov solver, we embedded it into a back-
tracking strategy. Then, once the step sk is computed, a steplenght α is selected in order to
satisfy the following decrease condition:

‖F (xk + αsk)‖2 < (1− αλ)‖Fk‖2, λ ∈ (0, 1), (27)

and the new iterate is xk+1 = xk +αsk. To compute the steplenght α, a backtracking strategy is
usually performed and we adopted the three point parabolic rule [23]. If the backtracking strategy
fails in producing an acceptable step within NBTmax backtracks, we left the iterate unchanged, i.e.
we set xk+1 = xk and refresh the preconditioner.

5 Numerical results

In this section we show the numerical performance of the DU ilu and BU ilu preconditioned
Newton-Krylov solvers described in the previous section. Our aim is to assess the reliability and
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efficiency of the new proposals in a matrix-free setting, also in comparison with the techniques
presented in [12, 13].

5.1 Implementation details

The sequence of linear systems (1) is solved by the Krylov solver BiCGSTAB supplied by Matlab
and right preconditioning. Starting from the null initial guess, a maximum of LImax = 400 linear
iterations is allowed.

In order to operate in a matrix-free manner, the seed Jacobians are computed by finite
differences and the matrices [Jk]δ are built by using finite differences and stored. The action of
the Jacobians Jk on vectors required by BiCGSTAB is approximated by finite differences.

The seed preconditioners is constructed by using the luinc Matlab function which produces
two different kinds of incomplete LU factorizations: the drop tolerance and the 0 level of fill-in
factorizations. We use the drop tolerance factorization with tolerances depending on the problem
and force diagonal pivoting.

We chose the forcing term ηk in (26) in order to achieve the desirable fast local convergence
near a solution and, the same time, to minimize the oversolving. Following the results by
Eisenstat and Walker [23], we set η0 = ηmax = 10−2 and used the so-called adaptive Choice 2

ηk = χ

(

‖Fk+1‖2
‖Fk‖2

)2

, k ≥ 1, (28)

with χ = 0.9 and safeguard
ηk = max{ηk, χη̄

2
k−1},

if χη̄2k−1 > 0.1. Then, the additional safeguard ηk = min{ηk, ηmax} is imposed. Concerning the
backtracking strategy, we set NBTmax = 20 and λ = 10−4 in (28).

A successful termination of the Newton-Krylov solver is declared when

‖Fk‖2 ≤ 10−8, (29)

within a maximum of 100 nonlinear iterations. A failure is declared otherwise. A failure is also
declared when two consecutive backtracking failures occur because, despite the preconditioner
refresh, it was not possible to satisfy the decrease condition (27).

In order to have a fair comparison in terms of CPU time among the codes, we implemented
their most time-consuming part as Fortran 90 mex-files with Matlab interface. In particular, we
implemented a Fortran mex-file version of Algorithm 3.1 which resulted very efficient since we
could take advantage of the Compressed Column Format used by Matlab to store sparse matrices.
Moreover, we employed a mex-file implementation of Step 2 of [13, Algorithm 4.1] which carries
out the matrix-free application of the preconditioners (8). The matrix-free implementation of
the preconditioner (7) has been developed analogously.

All the tests were performed on an Intel Xeon (TM) 3.4 GHz, 1GB RAM using Matlab 7.6
and machine precision ǫm ≈ 2× 10−16.

5.2 Experiments

We considered four problems widely used in literature (see e.g. [2]): the Nonlinear Convection-
Diffusion problem (NCD), the Flow in a Porous Medium problem (FPM), the CounterCurrent
Reactor problem (CCR) and the 2D Driven Cavity problem (2DC). Three of them, namely problems
NCD, FPM and 2DC, arise from the discretization of PDE problems. In all four problems, the
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Figure 1: The nonlinear convection-diffusion problem: sparsity pattern (on the left) and wire-
frame mesh (on the right) of the inverses of the L and U factors obtained from the ILU factor-
ization of the Jacobian at the starting point (n = 400).

dimension n of the nonlinear systems can be varied and we considered the values: 4900, 8100,
10000, 15625, 22500.

Problem NCD has been solved setting the Reynolds number equal to 250, 500, and 1000, while
problem 2DC has been solved with the smaller Reynolds numbers 50, 100, and 150.

The seed preconditioner in problem CCR was computed with the drop tolerance 10−1 while
in problems NCD and FPM the value 10−2 was employed. Problem 2DC requires a tighter drop
tolerance to build an efficient preconditioner and the tolerance used is 10−3. For all the other
parameters, we adopted the choices used in [2].

Figures 1 and 2 show for problems NCD and 2DC the sparsity pattern (on the left) and the
wireframe mesh (on the right) of the inverses of the L and U factors obtained from the ILU
factorization of the Jacobian at the starting point. We remark that these inverses appear almost
dense but the fast decay of the elements away from the main diagonal is clear and motivates the
use of our BU ilu strategy to solve these problems. Plots similar to those of Figure 1 have been
observed for problems CCR and FPM but they are not reported here.

We give statistic of the runs in tables where the column’s headers have the following meaning:

• L IT: Total number of BiCGSTAB iterations.

• NL IT: Number of nonlinear iterations.

• Time: Overall execution time (in seconds) of the Newton-Krylov algorithm.

• RN: Number of times the preconditioner was refreshed.

• Re: Reynolds number.
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Figure 2: The 2D driven cavity problem: sparsity pattern (on the left) and wireframe mesh
(on the right) of the inverses of the L and U factors obtained from the ILU factorization of the
Jacobian at the starting point (n = 400, Re = 50).

First, we focus on problems NCD, FPM and CCR and compare the performance of DU ilu

preconditioner with that of BU ilu with δ = 0, β = 0 and γ = 20. Making some comments on
the choice of the parameters for BU ilu preconditioner, we first note that only the diagonal of
the current preconditioner Jk has to be computed. Second, the application of BU ilu does not
require the factorization of the middle factor in (22) because β = 0. Finally, we approximate
L−1 and U−1 retaining 20 of their lower and upper diagonals, respectively; experiments with
γ = 50 were carried out but meaningful differences in term of BiCGSTAB iterations and number
of preconditioner’s refreshes were not registered.

Tables 1-3 display the results obtained. Remarkably, both updating procedures work well
retaining only the diagonal of the current Jacobian and require a small number of preconditioner’s
refresh, except for problem FPM, with BU ilu preconditioner and the larger grids, where 3 or 4
refreshes are required. Focusing on the number of linear iterations and preconditioner’s refreshes
it is observed that DU ilu outperforms BU ilu in the solution of problems FPM and CCR. In
terms of computational time, Newton-Krylov method with DU ilu is the most effective in 21
runs out of 25 and in several cases the savings in time are large. In the four runs where BU ilu

is faster, DU ilu requires one extra preconditioner’s refresh.
The need to freeze the preconditioner because condition (25) is met never occurred in problem

NCD while it occurred once in BU ilu with problem CCR and n= 15625. On the contrary, freezing
the preconditioner was crucial to get convergence of the nonlinear procedure in problem FPM; this
fact confirms the experience in [2].

Summarizing the computational testing reported above, as long as information on the diago-
nal of the current Jacobian is sufficient for updating, DU ilu strategy seems more effective than
BU ilu. Such good behaviour and the relevant feature of being independent of the choice of
parameters make the DU ilu strategy promising for practical applications.
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Problem NCD

DU ilu BU ilu

Re n L IT NL IT Time RN L IT NL IT Time RN

250 4900 549 13 22.76 1 635 13 24.89 1
8100 621 13 53.05 1 561 12 53.48 1

10000 601 13 75.24 1 569 12 77.55 1
15625 1108 11 178.11 1 1311 11 136.33 0
22500 1270 11 282.24 0 916 11 374.71 1

500 4900 671 14 27.39 1 819 15 27.62 1
8100 768 16 58.25 1 895 16 62.63 1

10000 976 16 108.92 2 621 15 82.45 1
15625 755 15 185.1 1 664 15 187.43 1
22500 668 14 387.72 1 632 14 391.54 1

1000 4900 1204 16 34.54 2 1079 15 32.69 1
8100 799 16 71.17 2 1217 16 81.96 2

10000 1010 16 106.99 2 865 16 107.1 2
15625 675 17 238.61 2 1000 17 251.83 2
22500 1281 15 423.13 1 875 15 407.51 1

Table 1: The nonlinear convection-diffusion problem: results with with DU ilu preconditioner
and BU ilu preconditioner, γ = 20, δ = β = 0, varying Re and n.

Problem FPM

DU ilu BU ilu

n L IT NL IT Time RN L IT NL IT Time RN

4900 154 9 26.84 0 481 10 47.36 1
8100 230 11 89.5 0 581 12 140.93 1
10000 660 12 237.52 1 1039 14 358.05 3
15625 819 12 815.21 2 1639 13 1042.81 3
22500 1018 13 1578.8 1 1849 15 2572.29 4

Table 2: The flow in a porous medium problem: results with DU ilu precondition with and
BU ilu preconditioner, γ = 20, δ = β = 0, varying n.

Problem CCR

DU ilu BU ilu

n L IT NL IT Time RN L IT NL IT Time RN

4900 718 12 24.79 1 800 11 33.57 2
8100 661 11 55.55 1 729 10 73.64 2

10000 690 11 81.67 1 946 10 111.74 2
15625 352 12 185.03 1 1240 13 274.57 2
22500 504 11 391.62 1 1249 12 565.03 2

Table 3: The countercurrent reactor problem: results with DU ilu preconditioner and with
BU ilu preconditioner, γ = 20, δ = β = 0, varying n.
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Problem 2DC with BU ilu

Re=50 Re=100 Re=150
n L IT NL IT Time L IT NL IT Time L IT NL IT Time

4900 147 5 26.07 251 6 29.69 650 7 39.49
8100 398 5 66.28 744 6 81.27 993 6 88.93
10000 676 5 104.56 1000 6 123.36 1218 6 131.68
15625 821 5 238.94 1309 6 284.09 1431 7 300.47
22500 971 5 484.18 1436 6 558.25 2120 7 647.75

Table 4: The 2D driven cavity problem: results with BU ilu preconditioner, γ = 50, δ = β = 1,
varying Re and n.

Although DU ilu strategy has proved to be successful, BU ilu procedure has a wider appli-
cation. In fact, there are cases where DU ilu cannot be applied. One example is problem 2DC

where the diagonal of the Jacobian is constant and DU ilu preconditioner coincides with the
seed preconditioner. Analogously, the BU ilu preconditioner with δ = 0 reduces to the seed
preconditioner.

We now present results for problem 2DC obtained with BU ilu strategy and δ = 1, that is the
tridiagonal part of the current Jacobian is used for the updating. The sequences of linear systems
arising in the solution of problem 2DC are extremely difficult to be solved. Sparse preconditioners
caused BiCGSTAB to stagnate at the first nonlinear iteration and for this reason, as already
mentioned, the drop tolerance used to compute the seed preconditioner was 10−3. Further, in [12]
it is pointed out that the refreshed and recomputed seed ILU preconditioners for the sequences
arising in the solution of this problem, deteriorate in the progress of nonlinear iterations. Since
recomputing the preconditioner should be avoided, we modified the Newton-Krylov solver, in that
we inhibited the refresh of the preconditioner when the Krylov method fails and we proceeded
with the last computed iterate produced by BiCGSTAB. Finally, we extracted a larger number
of diagonal from L−1 and U−1 than for the previous problems and used γ = 50. This is also
motivated by the slower decay of the off-diagonal elements of L−1 and U−1 than in previous
problems, see Figure 2.

We performed experiments testing the behaviour of BU ilu with β = 0 and β = 1. In
most of the runs, the latter value of β resulted to be the most convenient in terms of number of
linear iterations. Moreover, although a tridiagonal system has to be solved in order to apply the
preconditioner, the Newton-Krylov method with BU ilu and β = 1 is fastest in 11 runs out of
15. Therefore, in Table 4 we show results obtained with this value of β.

From Table 4 it is quite evident that the sequences become more difficult to be solved by pre-
conditioned BiCGSTAB as the Reynold number and the grid dimension increase. The Newton-
Krylov solver is successfully in all the runs but, when the two largest grid values are employed,
in some nonlinear iterations BiCGSTAB fails in satisfying the stopping criterion (26) within the
maximum allowed 400 iterations.

We conclude this section showing the numerical behaviour of the updating techniques pro-
posed in [12] and described in Section 2. Two different matrix-free implementations of updatings
(7) and (8) have been proposed in [12, 13].097890 We limit ourselves to consider the approach
described in [13, Algorithm 4.1].

Algorithm 4.1 in [13] exploits separability of the components of function F and applies the
updated factorized preconditioner via function evaluations. Following this approach the up-
per/lower tridiagonal part of the Jacobian is not explicitly needed and only the diagonal of the
current preconditioner needs to be evaluated and stored. The cost of one application of the
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preconditioner is given by n scalar F–evaluations corresponding to all the scalar component of
F . Hence, if the cost of the n scalar F–evaluations is roughly the cost of one full F evaluation,
each iteration of BiCGSTAB preconditioned requires four F -evaluations: two for applying the
preconditioner and two for approximating the action of the Jacobian on a vector (BiCGSTAB re-
quires two matrix-vector products and two applications of the preconditioner in every iteration).
Thus we can draw the conclusion that, in terms of F -evaluations the cost of one iteration of
BiCGSTAB preconditioned by (7) or (8) update is twice the cost of BiCGSTAB preconditioned
by our updating procedures.

We performed runs using both updates (7) and (8). The performance of the Newton-Krylov
algorithm heavily depends on the chosen update; here for each problem we report on the results
obtained by the best performing one. The preconditioner (8) outperformed the preconditioner
(7) in the solution of problems NCD, FPM and 2DC whereas for problem CCR, (7) was the best.

We do not report the elapsed CPU time because, despite the employment of Fortran 90
mex-files to implement the algorithm, we observed unexpected large values. In fact, in our
experience the evaluation of n scalar functions implemented as Fortran mex-files and run in
Matlab environment turned out to be more time consuming than the evaluation of one vector
value F . As a consequence, we use the number of linear and nonlinear iterations and the number
of F -evaluations as a measure of comparison between the preconditioners (7) and (8) and our
proposals DU ilu and BU ilu.

Computational experience indicate that the Newton-Krylov method combined with the pre-
conditioners (7) and (8) is less robust than with our strategies in the solution of problem 2DC.
Specifically the Newton-Krylov algorithm fails in all runs with problem 2DC except four cases:
n = 4900, 8100, 10000 and Re = 50, n = 8100 and Re = 100. The failures of the Newton-Krylov
solver depend on the failures of preconditioned BiCGSTAB.

Statistics of the runs obtained solving problems NCD, FPM and CCR are collected in Tables 5
and 6. We did not report statistics on problem 2DC as the number of runs successfully solved is
small.

Comparing Table 5 with Table 1, we note that in the majority of the runs the updating (8)
requires a lower number of preconditioner’s refresh and the number of BiCGSTAB iterations
is in most of the runs lower than half of the number of iterations executed by BiCGSTAB
preconditioned by DU ilu and BU ilu . Therefore, although BiCGSTAB preconditioned by (8)
requires about two additional F -evaluations per iteration, we can draw the conclusion that this
updating strategy is less costly than ours.

Results for problems FPM and CCR seems to indicate an advantage of our procedures over the
updates (7) and (8) with respect to the number of F -evaluations and preconditioner’s refresh.
Specifically, Table 6 highlights that in the solution of FPM problem, updating (8) requires a large
number of preconditioner’s refresh. Most of the times, these refreshes are performed because
BICGSTAB returns a failure as ill-conditioning of the preconditioner has been detected. Finally,
comparing the the results in Tables 3 and 6 for problem CCR, we see that the updating (7)
performs better than BU ilu in terms of F evaluations but is less convenient than DU ilu

strategy in terms of F -evaluations and number of preconditioner’s refresh.
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