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A biological approach to computational models of proteomic
networks
Kevin A Janes and Douglas A Lauffenburger

provided
Computational modeling is useful as a means to assemble and

test what we know about proteins and networks. Models can

help address key questions about the measurement, definition

and function of proteomic networks. Here, we place these

biological questions at the forefront in reviewing the

computational strategies that are available to analyze

proteomic networks. Recent examples illustrate how models

can extract more information from proteomic data, test

possible interactions between network proteins and link

networks to cellular behavior. No single model can achieve all

these goals, however, which is why it is critical to prioritize

biological questions before specifying a particular modeling

approach.
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Introduction
Our current understanding of the proteins, interactions

and pathways that comprise signaling networks is

detailed, yet it remains incomplete. Recent experimental

techniques for unraveling intricate signaling networks

have become increasingly quantitative and multiplex.

New approaches are now needed to compile the existing

quantitative biological knowledge and to maximize the

information extracted from large-scale signaling and pro-

teomic datasets. Computational models formalize a com-

plex biological or experimental process mathematically,

which can be useful for assembling and analyzing quan-

titative data. Modeling is thus critical for fields such as

proteomics, genomics and systems biology.

As a discipline, biology thrives on clarity through con-

sensus (take, for instance, the central dogma). To model

biological networks, however, we and others have argued

against a consensus ‘one size fits all’ philosophy, favoring
www.sciencedirect.com
instead a spectrum of computational techniques [1,2].

Admittedly, the full breadth of computational modeling

approaches can be daunting [3], and all techniques are not

equally valid for all questions. If the choice of model is

flexible but not arbitrary, then which modeling

approaches are appropriate for which biological applica-

tions? Here, we attempt to answer this question through

examples of recently published proteomic-network mod-

els. Rather than organizing the review around a sequence

of modeling techniques, we focus on the important bio-

logical problems to which different network models have

contributed. This biology-centric approach might clarify

how proteomic-network models can be versatile but not

all-encompassing.

Anchoring model sophistication with
experimental data
Proteomics research is clearly directed at uncovering

more biological detail within networks — new proteins,

new interactions, new complexes [4]. For computational

models of such networks, however, the level of detail

must be constrained by the availability of supporting

quantitative data. Models with very little detail are nicely

constrained but oversimplified, whereas highly sophisti-

cated models lack the experiments needed to specify the

detailed mechanisms realistically. Model ‘believability’ is

therefore highest when the model contains only the detail

needed to capture and predict the experiments of interest

for a biological question.

How does increasing the level of model detail decrease

believability? With model detail come parameters. In a

model, these parameters might define a signaling pro-

tein’s starting concentration, rate of turnover or diffusivity

through the cytoplasm. Model parameters are frequently

unknown and must therefore be estimated from data,

which reduces believability. Importantly, the number of

required parameters multiplies as more biological detail is

added (Table 1). Spatial detail, for example, requires

substantial parameterization, limiting the scope of believ-

able models to only a few proteins. This does not imply

that proteomic-network models should never include

details of protein localization. Clearly, spatial detail has

been essential for answering certain biological questions,

such as those involving nucleocytoplasmic shuttling [5�–
7�]. Model sophistication ultimately evolves via a series of

choices that are based on the particular problem at hand

(Figure 1). An advantage of analyzing proteomic networks

computationally is that these choices (and all of their

underlying assumptions) are hard-coded into the mathe-

matics of the model.
Current Opinion in Chemical Biology 2006, 10:73–80
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Table 1

Parameter considerations for proteomic network models.

Included in model Parameters required Comments and assumptions

Proteins N Protein concentrations for a network of N proteins.

Interactions + 5N Average number of interactions per protein [51].

Reaction kinetics + 2.5 � 5N Reaction-rate parameters for each connection, assuming equal proportion of binding (two-parameter)

and enzyme-catalyzed (three-parameter) reactions.

Spatial detail + (C – 1) � N Additional protein concentrations for each of C topologically distinct compartments (organelles,

surfaces, etc.); C can be as large as 20 [52].

+ N Diffusion coefficients for each of N proteins, assuming equal diffusivity in different compartments.

+ 2 � C � N Boundary conditions needed to solve two-dimensional partial differential equations in each of C

compartments.

Stochasticity � M � N For an exact stochastic solver simulating the dynamics of M individual molecules [42]; stochasticity

thought to become important when M is less than 100 per cell.
Organizing computational models from a
biological perspective
Different types of network models can be separated into

mathematical classes: deterministic, probabilistic and

statistical (Figure 2a, Box 1). Although useful for organiz-

ing the computational algorithms, this model-centric view

hides the interesting biological applications behind equa-

tions and nomenclature. Unanswered biological questions

are the critical motivation for proteomic-network model-

ing, but their importance is de-emphasized when com-
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putation is placed at the forefront. A model-centric view

creates models in search of questions.

Moving biology ahead of algorithms creates a different

classification of proteomic-network models (Figure 2b).

First, there arise questions of network measurement.

How can proteomic measurements be made more reli-

able, quantitative and reproducible? Are some measure-

ments more informative than others? Second, there are

questions of network definition. Is our current under-
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ring levels of detail are organized vertically, and parameter

the estimates in Table 1. Blue arrows illustrate potential

into network structure; (ii) data-driven models that reveal new

for (iii) spatial detail or (iv) stochasticity. See Box 1 for a glossary of
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Figure 2
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Two distinct perspectives on computational models of proteomic networks. (a) A model-centric view. Overall categories are organized by model

type and applied to the measurement (‘M’), definition (‘D’) or function (‘F’) of proteomic networks. Note that no single type of model is appropriate

for all three areas. (b) A problem-centric view. Overall categories are organized by biological question. Numbers and letters refer to the

approaches listed in (a). See Box 1 for a glossary of terms.
standing of a proteomic network sufficient to explain

counterintuitive results? Can we deduce new interactions

from large-scale measurements alone? Finally, there are

questions of network function. How are phenotypes

coordinated by a proteomic network? Where should we

perturb networks for therapy? For each of these ques-
Box 1 Glossary.

Bayesian network: A graphical modelling technique for calculating

the most likely set of protein–protein interactions given a set of

experimental measurements of these proteins.

Compartmentalized model: A model based on ordinary differential

equations that incorporates spatial detail by considering proteins in

different organelles as distinct measured variables; for example,

xcytoplasm and xnucleus.

Decision tree: A learning algorithm that approximates a cellular

output by constructing a ‘tree’, where the ‘branches’ classify

experiments based on the levels of measured variables and the

‘leaves’ at the end of the branches predict the output.

Deterministic model: A model that will give the same output each

time when provided the same starting conditions.

Ordinary differential equation: An equation containing derivatives

with respect to a single experimental variable, such as time.

Partial differential equation: An equation containing derivatives with

respect to multiple experimental variables, such as both time and

space.

Partial least squares: A regression technique for relating

independent and dependent measured variables when the number

of variables exceeds the number of experimental observations.

Pearson correlation: A statistical term that quantifies the degree to

which two measured variables are linearly proportional to one

another.

Probabilistic model: A model that can give different outputs from

the same starting conditions, because outputs are based on the

probability of certain outcomes occurring.

Stochasticity: Randomness, used here to refer to the heterogeneity

of outcomes that can occur as a result of reactions involving small

numbers of proteins.
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tions, there exists a panel of computational approaches

from which to choose (Figure 2b). Model selection within

each panel can then be based on the specifics of the

biological system, its current extent of understanding and

the data available (Figure 1).

Network-measurement models
Modeling has played an increasingly important role in the

measurement of proteomes and networks. Measurement

models are a useful way to condense different methodo-

logical considerations into a single quantitative descrip-

tion of an experiment (Table 2). High-throughput and

multiplex techniques can be particularly sensitive to

methodological details if the goal is to fuse results from

many samples and many experiments into a common

dataset. Models are valuable to convert raw measurement

data into useful information or to quantify confidence

within large-scale datasets.

In the field of ‘global’ proteomics, no other experimental

method has had as significant an impact as mass spectro-

metry (MS) [8]. MS-based proteomic datasets still require

significant technical expertise to decipher the complex-

ities of upstream fractionation, MS instrumentation and

downstream peptide (or protein) identification that are

involved in each experiment [9]. However, emerging

from this expertise are empirical statistical models, where

anecdotal information and earlier experiments are con-

verted mathematically into prior knowledge about the

current dataset. MS-relevant examples of prior knowl-

edge include using (i) peptide size and hydrophobicity to

model retention times on separating columns [10], (ii)

database scoring parameters to discriminate correct and

incorrect peptide assignments from MS spectra [11] and

(iii) sibling and degenerate peptides to predict the pre-
Current Opinion in Chemical Biology 2006, 10:73–80
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Table 2

Classes and subtypes of proteomic network models.

Model class Model subtype Goal or purpose Examples

Network measurement Methodology Improve the accuracy, sensitivity or stability

of a proteomic network measurement

HPLC modeling [10]

Peptide identification [11]

Protein identification [12�]

Information Assess the quantitative or relative value

of a proteomic network measurement

Proteomic compendia [15��]

Interactome compendia [14�]

Network definition Reconstruction Define a consensus mechanism

summarizing the existing knowledge of a

proteomic network

Growth factors: EGF [21], NGF [22], PDGF [23]

Cytokines: FasL [24,25], TNF [26]

Morphogens: Wnt [27], Shh [28]

Signaling modules: JAK-STAT [6,44],

NF-kB [45], TCR [46]

Inference Deduce protein-network structure from a

series of experimental measurements or

perturbations

T cells [30��]

Stem cells [47]

Endothelial cells [31��,48]

Network function Response Predict graded cellular outputs from

network signals

Migration [38�]

Cytokine secretion [35]

Contractility [37]

Size [49]

Decision Predict cellular phenotypes from network

signals

Apoptosis [36,39��]

Differentiation [32]

Proliferation [50]

Viral infectivity [41]

EGF, epidermal growth factor; HPLC, high-performance liquid chromatography; JAK, Janus kinase; NF-kB, nuclear factor-kB; NGF, nerve growth

factor; PDGF, platelet-derived growth factor; Shh, Sonic hedgehog; STAT, signal transducer and activator of transcription; TCR, T-cell

receptor; TNF, tumor necrosis factor; Wnt, Wingless/Int-1.
sence of proteins in a complex starting mixture [12�].
Importantly, prior knowledge can be updated during

iterations between model and experiment, such that

the first model output from the data becomes part of

the prior knowledge during a second pass through the

model. An excellent demonstration of iterative modeling

for MS-based measurements is the work by Keller et al.
[11], which used prior MS measurements as training data

to fit an initial frequency distribution of peptides whose

assignments were correct and incorrect. The initial dis-

tributions were used as prior information in a model that

calculates the probability of correct peptide assignment

given an MS spectrum. Running the model through all of

the spectra in an MS experiment generates a new dis-

tribution of (probably) correct and (probably) incorrect

peptides, which can update the prior information for the

next iteration through the model. In this way, the model

learns the most likely peptide assignments from the

spectra itself, with initialization provided by a high-qual-

ity training dataset. The resulting peptide probabilities

can then be fed into downstream models that calculate

protein assignments from a set of likely peptides [12�].

Measurement models are also useful for analyzing data

quality itself. Often, quality is synonymous with informa-

tion [13], and recently modeling has been used to identify

the information-rich subset of measurements within pro-

teomic datasets (Table 2). Gunsalus et al. [14�] selected
for high-quality proteomic data by calculating the inter-
Current Opinion in Chemical Biology 2006, 10:73–80
section of large-scale phenotypic, transcriptional and

interaction datasets in Caenorhabditis elegans. Using the

overlap among themeasured networks, the Gunsalus et al.
model was shown to be enriched in proteins sharing

common biological functions. Gaudet et al. [15��] used

the predictive ability of a model to quantify network

information content directly from a proteomic measure-

ment set. A key conclusion from this work was the

importance of measurement combinations. Different

types of assays (kinase activity assays, quantitative wes-

tern blotting, etc.) used over a range of time points were

critical to accurately predicting the response of cells

treated with multiple experimental stimuli. As quantita-

tive MS-based experiments evolve [16,17], it will be

important to use similar strategies to quantify how infor-

mation distributes among different precursor-ion spectra

and to examine how the information from MS experi-

ments compares with other large-scale measurement

techniques [18,19].

Network-definition models
An important goal for computational models is to define

mathematically the proteins and pathways that constitute

a signaling network. Modeling strategies for addressing

the question of network definition can be subdivided into

two categories: reconstruction models, which build

networks from previously reported mechanisms; and

inference models, which deduce network structure from

large-scale datasets (Table 2). Network reconstruction
www.sciencedirect.com
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[20�] has a long history dating back to metabolic engi-

neering and has been widely applied to proteomic signal-

ing networks involving growth factors [21,22�,23],
cytokines [24–26] and morphogens [27,28].

What can be learned from these complex models founded

on highly parameterized systems of differential equations

(Figure 1)? Ironically, reconstruction models tend to

reveal more about the underlying network when they

cannot capture the observed biology. A model by Hua

et al. [25] of the prodeath cytokine, FasL, was at first

unable to predict correctly how the activation of the

apoptotic protease caspase-3 would be affected by over-

expression of the antiapoptotic protein Bcl-2. The initial

model had specified that overexpressed Bcl-2 interacted

exclusively with the prodeath molecule Bax. Using the

model, alternative Bcl-2 interaction scenarios were inves-

tigated. The in silico network that best matched experi-

ment specified for Bcl-2 to interact with both Bax and

another prodeath Bcl-2 family member, truncated Bid. In

this way, reconstruction models can evolve with the

emergence of new data and biological mechanisms. A

revised nerve growth factor (NGF) model by Sasagawa

et al. [22�], for example, implicated Rap1 as the critical

small G protein that mediates sustained extracellular-

regulated kinase activation after NGF stimulation. The

perpetual refinement of this subtype of models suggests

that open distribution and sharing of network reconstruc-

tions will be important in the future [29] (see also Update).

Many biological networks lack the in-depth mechanistic

understanding needed for a plausible network recon-

struction. With these networks, inferential modeling

approaches can be used to suggest connections between

molecules (Table 2). Unlike reconstruction models, infer-

ence models rely heavily on analysis of a core dataset

(upper half of Figure 1). Different mathematical algo-

rithms can help reveal networks from data, but they are all

fundamentally based on identifying covariations among

measurements. A Bayesian network approach [30��]
might identify different relationships than would a Pear-

son correlation analysis [31��] (Box 1), but it is the design

of the original experiments that determines whether

either computational approach will identify new mechan-

istic links in the network. Recent evidence suggests two

useful strategies to design experiments for network defi-

nition: stimulate cells with diverse combinations of extra-

cellular stimuli [15��,32] to reduce the likelihood of

chance correlations; and disrupt many individual proteins

genetically or pharmacologically [30��,31��] to focus on

points of control within the network. A probabilistic

model by Sachs et al. [30��] inferred the connectivity of

11 signaling molecules from a single set of experiments

involving primary T cells treated with combinations of

pathway activators and inhibitors. By using a dataset

based on interventions, the model recapitulated the

mechanisms established from decades of signaling
www.sciencedirect.com
biochemistry and also suggested new links within the

network. Another nice example is the approach of Plavec

et al. [31��], which used protein overexpression combined

with various cytokines to deduce statistically the inter-

connections among proteins in the Ras and NF-kB path-

ways. An increase in multiparameter, systems thinking

about signaling networks [33�] suggests that many experi-

mental datasets will soon be available for inference mod-

eling. In the future, more complete and reliable network

definitions will probably be achieved by applying multi-

ple computational techniques (Figure 2b) to the same

network and dataset of interest.

Network-function models
Proteomic networks are important because they ulti-

mately control cellular functions. Diverse extracellular

stimuli converge upon a common intracellular network,

which can mediate an array of cellular responses [34�].
Function models aim to address questions of how pro-

teomic networks control graded cellular responses, such

as the amount of a secreted cytokine [35], or binary

cellular decisions, such as death versus survival [36]

(Table 2). Some functions, like the contraction of a

cardiomyocyte [37], are extremely well characterized

and can be approached with a highly detailed mechanistic

model (lower half of Figure 1). Most function models,

though, are correlative and seek to link a measured

intracellular network with measured cellular phenotypes.

Hautaniemi et al. [38�] used decision-tree modeling (Box

1) to characterize cell migration based on the phosphor-

ylation levels of five key intracellular proteins. The

resulting ‘branches’ of the decision tree identified the

sequence of conditional molecular statements that best

predicted low, medium or high cellular speed — for

instance, IF extracellular-regulated kinase phosphoryla-

tion is low AND IF myosin light-chain phosphorylation is

high THENmigration speed is high. It would be interesting

to use this approach in larger networks while constraining

decision-tree branchpoints based on the approximate

positions of molecules in the network (first membrane

transducers, then initiators, then effectors, etc.).

Prediction of cellular functions can also be achieved more

quantitatively by trainingmodels onmeasurements of the

upstream signaling network. We have used partial least

squares modeling to predict 12 measured apoptotic

responses from 19 time-dependent signaling profiles

[39��]. This particular modeling approach calculates the

most informative combinations of signals that together

predict cellular functions. The combinations of stress,

prodeath and prosurvival signals identified by the model

were consistent with known mechanisms but could not

have been predicted by inspection. Focusing on intracel-

lular signals with recognized but complex roles in cell

death thus allowed the model to identify new mechan-

isms of apoptosis control within the currently understood

network. Very recently, we have found that this approach
Current Opinion in Chemical Biology 2006, 10:73–80
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to modeling network function could effectively capture

cytokine-induced apoptotic responses that differ between

diverse cell types (K Miller-Jensen, KA Janes, DA Lauf-

fenburger, unpublished data). This suggests that differ-

ent cell types might share a common network that

converts signals into cellular responses. If true, then

reconstruction models (Table 2) could soon encompass

cellular functions, as has been done for genetic networks

in prokaryotes [40]. Further modeling efforts aimed at

predicting cellular functions will help understand how

proteomic networks can be targeted therapeutically to

improve or correct cell behavior.

Conclusions
The measurement, definition and function of proteomic

networks must be addressed in such a way that models

complement experiment. These networks remain too

unconstrained to study by mathematics alone yet have

become too complex to understand completely by intui-

tion. We believe that insights here will come about by

approaching models through biological questions. In line

with this view, our review has focused on less detailed

models with strong foundations in data (Figure 1). Very

detailed models incorporating stochasticity have been

successfully developed in simpler systems [41], and

recent computational advances [42] might allow low-

abundance signaling molecules to be examined in mam-

malian networks. We expect that modeling approaches

will readily keep pace in providing network insight as

proteomic techniques become more quantitative, high-

throughput and sensitive [8,43].

Update
Recent work has provided new examples of how existing

reconstruction models can be further explored and

refined to aid biological discovery. Cheong et al. [53�]
used an NF-kB signaling model [45] to identify the

dynamics of inhibitor of NF-kB kinase (IKK) that were

required for the dose-independent activation of NF-kB in

cells stimulated with tumor necrosis factor. Werner et al.
[54��] and Covert et al. [55��] separately revised the same

NF-kB model [45] to study lipopolysaccharide-induced

IKK signaling through Toll-like receptor 4.
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