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Abstract 

Global increasing stipulates for the production of renewable fuels due to massive utilization of readily available fossil 

fuel, more interests in microbial production of biofuels are generated. This opened great opportunities to the biologists, 

because anaerobic bacteria particularly Clostridium species are capable of converting carbohydrates into a variety of solvents 

such as acetone, butanol, ethanol and more the like. The review provided ample sources of information with regards to the 

potentialities of Clostridium species towards production of biofuels. The classification of Clostridium species into 

pathogenic and non-pathogenic, and those capable of biofuel production has been summarized. Typical metabolic processes 

responsible for transforming biomass into various biofuels have been highlighted. Utilization of agricultural wastes as 

substrates towards biofuel production was equally highlighted. Various carbon sources and some Clostridium species 

exploited for biofuel production were summarized. The review also provided some of the factors that influenced the biofuel 

production. 
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Introduction

Louis Pasteur was the first to discover 

microorganisms in 1861.  Nevertheless, microorganisms 

producing biofuels were first discovered in the early of 

1920s by Chaim Weizmann. He discovered the 

Clostridium acetobutylicum (a spore forming, rod shaped, 

obligate anaerobe and gram-positive bacteria) and was 

reported to be employed in large scale fermentation by 

using sugar and starchy grains for production of acetone 

and butanol (Johnson et al., 1997). However, the 

Clostridium acetobutylicum, in nature, produces Acetone, 

Butanol, and Ethanol (ABE) in a ratio of 3:6:1. The initial 

production plants for the production of ABE fermentation 

were developed due to the First World War dependent 

demand of acetone for a cordite manufacture, during which 

biofuels were only an unwanted byproduct (Tina and 

Hubert, 2011) and later on become a vital product as a 

result of high reliance on fossil fuel. 

It is also important to note here that Clostridium 

species are classified into pathogenic and non-pathogenic. 

The non-pathogenic are those capable of producing 

biofuels and are also of two types. The acetic acids, butyric 

acid, and gasses (H2 and CO2) producing group like          
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C. butyricum, and those that produce acids (C. 

acetylbutylicum) and are capable of converting them to 

solvents, acetone, butanol and ethanol (Morris, 1994). 

Added to that, many more species of Clostridia have been 

used purposely to produce organic acids and solvents by 

acting up on long chain sugars into simple and consumable 

sugars (monosaccharide). The broad classification of the 

Clostridium species based on harmful and beneficial and 

their end products is presented in table 1.  

Similarly, the genus Clostridia holds an enormous 

variety of bacteria capable of producing biofuels like        

C. acetobutylicum, C. beijerinckii,                                      

C saccaroperbutylacetonicum, C. saccharoacetobutylicum, 

C. aurantibutyricum, C. pasteurianum, C. sporogenes,     

C. cadaveris, and C. tetanomorphum). A research 

conducted by Huang (2010) showed that                           

C. acetobutylicum, C. beijerinckii, C. 

saccaroperbutylacetonicum, and C. 

saccharoacetobutylicum demonstrated a significant activity 

of forming butanol with higher yields.  Previously, it was 

believed that C. acetobutylicum was the only type that 

proposed to be used for ABE fermentation.  Nevertheless, 

all through 1990’s some other species were recognized 

namely C. beijerinckii, C. saccharoperbutylacetonicum 

and C. saccharobutylicum along with C. acetobutylicum.  

Afterward, different strains of the above species have been 

evaluated and reclassified through the use of a gene 

sequencing technique named 16S rRNA (Johnson et al., 

1997; Winzer et al., 2000). Nevertheless, not only 

Clostridium species are involved in biofuel production. 

Well-known and studied microorganisms such as E. coli 

provide an excellent scientific stand for biofuel production 

(Tina and Hubert, 2011). 

 

Metabolism processes 

Lignocellulosic materials and other feedstock can be 

transformed into solvents through hydrolysis and 

succeeding processes of fermentation.  This transformation 

produces some varieties of simple sugar like, glucose, 

xylose and arabinose which then go through a glycolysis 

and fermentation process to obtain the solvents (Thaddeus 

et al., 2007a), particularly biobutanol and acetone, as 

shown (Fig. 1). From the figure 1 biomass metabolism by 

Clostridium specie commences through a biomass and 

lignocelluloses pretreatment; then move to starch 

hydrolysis by enzyme activities, some of the enzymes 

involved include α-amylase, β-amylase, pullulanase, and 

glucoamylase; it then followed a cellulose hydrolysis by 

some enzymes called cellulases B-glucosidase; eventually 

the process concluded the extracellular part through a 

hemicellulose hydrolysis (Thaddeus et al., 2007b). Next to 

this is the intracellular part of the process which is referred 

to as solventogenetic and acidogenetic phases. These 

phases are responsible for the production of biobutanol, 

acetone, ethanol (Solventogenesis), acetic acid, and butyric 

acid (Acidogenesis).  

The enzymes involved in the process are designated 

by numbers as shown accordingly:  Enzymes responsible 

for glycolysis like hexokinase, glucose phosphate 

isomerase, phosphofructokinase, and fructose diphosphate 

aldolase 1; Pyruvate ferredoxinoxidoreductase 2; 

acetaldehyde dehydrogenase 3; ethanol dehydrogenase 4; 

phosphate acetyltransferase 5; acetate kinase 6; acetyl-CoA 

acetyltransferase 7; 3-hydroxybutyryl-CoA dehydrogenase 

8;, acetate/butyrate, acetoacetyl-CoA, CoA-transferase 9; 

acetoacetate decarboxylase 10; crotonase 11; butyryl-CoA 

dehydrogenase 12, phosphate butyltransferase 13; butyrate  
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kinase 14; butyraldehyde dehydrogenase 15; butanol 

dehydrogenase 16; and lastly hydrogenase 17 (Ezeji et al., 

2007; Huang et al., 2010). 

Anaerobic digestion processes 

As the hydrolysis of the biomass is accomplished, 

hexose      sugars     are     metabolized    by    means   of 

Table 1. Beneficial and harmful Clostridium species and their end products 

Species categories and their end products 

A B 

Toxic Products References Non-toxic Products References 

C. botulinum  

 

 

 

 

 

 

Toxins 

 

 

 

 

 

 

 

Andreesen 

et al. 

(1989) 

 

C. butyricum 

Acetic acid, Butyric acid and 

gases (H2 and CO2) 

Andel et al. (1985)  

 

C.perferingens 

 

 

C. beijerinkii 

Acetic and butyric acids, H2 

and CO2, butanol, ethanol, and 

isopropanol 

 

Green and Stephens 

(1996) 

 

C.histolyticum 

 

C. acetobutylicum 

Acetic and butyric acids, H2 

and CO2, Acetone, Butanol, and 

Ethanol 

Qureshi et al., 

(1992),Girbal and 

Soucaille (1998) 

 

 

C. tetani 

C. aurantibutyricum Acetic and butyric acids H2 and 

CO2 gases, Butanol and Ethanol 

Somrutai et al. (1996) 

C.tetenomorphum Acetic and butyric acids H2 and 

CO2 gases, Butanol and Ethanol 

 

Gottwald et al. 

(1984) 
 

C. tyrobutyricum 

Table 2.  List of different carbon sources 

Carbon sources 

Microorganism References 

Sago Starch Clostridium saccharobutylicum P262  Madihah et.al., 2008 

 

Corn 

 

 Clostridium beijerinckii BA101 Quereshi and Blaschek, 2001 

 

Potato Clostridium acetobutylicum DSM 1731 Gutierrez et al., 1997 

Maize stalk juice Clostridium beijerinckii NCMB 8052 Yi and Blaschek, 2011 

Fig. 1.   Metabolism of Biomass by Solventogenic Clostridium (Gheshlaghi et al., 2009) 
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glycolysis to form a mole of hexose sugars which are 

further transformed into two moles of pyruvate, with the 

total production of two moles of adenosine triphosphate 

(ATP) and two moles of Nicotinamide Adenine 

Dinucleotide (NADH). Moreover, pentose sugars became 

transformed into glucose through pentose phosphate 

pathway resulting in the production of fructose-6-

phosphate and glyceraldehyde-3-phosphate. All through 

during acidogenesis, the bacteria grow exponentially where 

acetic acid and butyric acid are produced together with 

formation of ATP. These two acids are formed from the 

acetyl-CoA and butyrl CoA synthesize by the enzyme 

phosphate acetyltransferase and acetate kinase, so also 

phosphate butyrltransferase and butyrase kinase. However, 

in solventogenesis phase, the cell grows at stationary 

phase, in which the organic acids are then synthesized 

again for acetone, butanol and ethanol production. This 

pathway is responsible for the production of 

acetylaldehyde, acetoacetate, and butyraldehyde. However, 

the reduction of butyryl-CoA to butanol is performed by 

enzymes called butyraldehyde dehydrogenase and butanol 

dehydrogenase (Gheshlaghi et al., 2009). The processes 

involved starting from glycolysis until solvents production 

is summarized below,  

Glucose+2ADP+2NAD+               2Pyruvate + 2ATP + 

2NADH2 

2pyruvate+2CoA+2Fd                      2Acetyl CoA + 2FdH2 

+ CO2 

Acidogenesis  

Glucose                       2Acetate + 4ATP + 2NADH2 + 

2CO2  

Glucose                       Butyrate + 3ATP + 2CO2  

 

Solventogenesis  

Glucose                         2Ethanol + 2ATP + 2CO2  

Glucose     Butanol+2ATP+2CO2 

Biomass as substrate for biofuel production 

Biomass for fermentation process is most 

responsible part on the basis of its feasibility in an 

economic wise (Qureshi and Blaschek, 2000). On the basis 

of utilization of substrate, biofuels were classified into first 

and second generations. In the first generation, raw 

materials used were sugarcane and cereal grains while in 

the second generation, lignocellulosic materials 

(Agriculture and forest wastes) were used as substrates.  It 

should be noted that the raw materials used for the first 

generation were food competitive, while the second 

generation were non-edible materials (Naik et al., 2010) 

and therefore are non-food competitive.  Currently, there is 

an increased focus on second generation biofuel due to the 

availability of cheaper raw materials (Hoekman, 2009) and 

are not foods competitive. Durre (1998) pointed out that 

the traditional attempts in utilizing cereal grains and sugar 

as substrate in the ABE fermentation process for large 

scale production were promoted by the availability of the 

raw materials and the massive necessity of fermentation 

products.  However, these substrates utilization was 

covered due to price hikers, so also contributed to food 

shortages (Pfromm et al., 2010). This hesitation imposed to 

explore inexpensive and non-food competitive raw 

materials for ABE fermentation. Fortunately, it is found 

that various carbohydrates such as glucose, fructose, 

mannose, sucrose, lactose, starch, and dextrin were 

consumed totally by Clostridium species, while galactose, 

xylose, arabinose, raffinose, melezitose, inulin and 

minnitol were  partially utilized. Studies have revealed that  
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xylose and arabinose could also be completely fermented 

by most Clostridium species. However, these organisms 

were unable to consume trehalose, rhamnose, melibiose, 

and glycerol (Jones and Woods, 1986). It is well 

understood that raw materials containing above mentioned 

simple sugars, because they are less expensive and 

relatively abundant, can maintain or improve the 

economics of ABE fermentation (Zhang et al., 2010). 

Moreover, nowadays, it is known that Clostridium species 

can consume other cheaper alternative substrates such as, 

lignocellulosic materials due to their saccharolytic 

capability (Ezeji et al., 2007). However, acidic or 

enzymatic hydrolysis of lignocellulosic materials has been 

crucial to convert into simple sugars before being used as 

substrates in ABE fermentation. The lignocellulosic 

biomass is among the most abundant renewable resource 

globally for biofuel production (Antoni et al., 2007).  For 

instance, developing countries like India generates over 

370 million tonnes of industrial raw materials per annum 

from plants, rice husk from rice mills, sawdust from saw 

mills, bagasse from sugar mills etc. (Chauhan, 2010).  To 

mention a few more, as a result of more insights on the 

significance of biobutanol production, a lot of researches 

were undertaken on the fermentation processes to produce 

biofuel using different types of biomass as shown in Table 

2. 

Factors influencing biofuel production 

Acetone-Butanol-Ethanol (ABE) production through 

fermentation is now attracting people minds, however the 

processes involved are highly complex, because it is 

greatly influenced by many different factors at all angles. 

For example, proper pH control is crucial for the process to 

shift to solventogenesis and produce a high butanol yield 

(Jones and Woods, 1986); while sugar concentration both 

low and high in a raw material used as substrates could 

lead to reduced microbial growth (and unfavorable solvent 

production), and substrate inhibition (which may inhibit 

cell growth and cause failure of fermentation); suitable 

agitation rate can facilitate mixing of the substrates and 

products, enhancing substrate accessibility and products 

distribution, but high agitation may adversely impact the 

fermentation, and lead to unnecessary waste of energy 

coupled with poor industrial economics (Yi et al., 2011). 

Temperature is equally among the factors that 

tremendously influence biobutanol production. It was 

clearly stated by Madi et al. (1987) that temperature of a 

medium during fermentation exercise influenced the total 

yield, the ratios of solvents, and the rate at which solvents 

are produced. They also pointed out that optimum 

temperature responsible for solventogenesis by some of the 

Clostridium species was nearly 30C. The medium 

constituents are also among the factors that show a high 

impact on both solvents and acid production. The microbial 

cells physiological appearance and biosynthetic mechanism 

can easily be altered by amendment of the chemical 

composition of the nutrients found in the medium (Welsh 

and Veliky, 1984). Therefore, apposite choice of substrates 

sources both organic and inorganic (like nitrogen, carbon, 

minerals, vitamins) is highly crucial in optimizing the 

production of acids and solvents. Organic nitrogen sources 

constitutes vital compounds like protein, yeast extract, 

amino acid, and glutamic acid, which are all excellent 

compounds in facilitating microbial growth when 

supplemented in a culture medium (Abou-Zied and 

Yassein, 1976) and this could be due to availability of 

vitamins and other growth initiators present in the organic 

nitrogen. However, combining certain organic and 

inorganic nitrogen sources could facilitate the microbial 
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rate of growth, utilization of substrates and 

Solventogenesis (Welsh et al., 1987). Another vital factor 

that greatly affects acidogenesis, solventogenesis, and 

microbial cell growth is the level of nitrogen and also the 

ratios of carbon to nitrogen, for exceptional microbial cell 

growth favoring Solventogenesis were usually found at a 

low ratio (less than 0.2) of carbon to nitrogen.  However, 

when the ratio is high (greater than 0.2), nitrogen furnish 

constraint diminish both substrate consumption and cell 

growth, thereby altering the shifting of the process to 

solventogenesis although there is abundance sugar in the 

culture medium (Lai and Traxler, 1984). 

Conclusion 

Biofuel now became highly attractive and a best 

substitute to fossil fuel. The values and applications of 

biofuels into different aspects of industrial and domestic 

processes can ever be emphasized due to the availability, 

cheap, and optimum utilization of waste biomass which 

make them easier and equally open opportunities for 

biologist to explore the fermentation processes.  

Consequently, series of researches have been carried out to 

raise the level of biofuel production through utilizing 

different Clostridial strains and substrates (both carbon and 

nitrogen sources, including organic and in-organic). 
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