
Remote Opportunities: A Rethinking and Retooling

Yağız Onat Yazır, Katherine Gunion1, Christopher Pearson,
Celina Gibbs, Anthony Estey, Steven Lonergan,

Yvonne Coady
University of Victoria

{onat, pearson, celinag, aestey, stevenl, ycoady}@cs.uvic.ca
University of British Columbia1

katgun@interchange.ubc.ca

Abstract

Introducing technology as a sustainable means of cre-
ating, connecting, and collaborating reveals the need to
carefully consider subtle aspects of deployment strategies
and support in remote regions. In order to comprehensively
address both cultural and technical issues for educational
infrastructure, we consider two elements to be key: (1) a
staged deployment approach, involving both educators and
community members, coupled with (2) uniquely designed
collaborative Integrated Development Environments (IDEs)
to aid constructivism.

This paper presents our current experience with these el-
ements in the context of a pilot project for aboriginal com-
munities on the west coast of British Columbia. Currently,
these local communities have been working alongside our
group for a staged deployment of programs throughout
southern Vancouver Island. In our next phase we will be ex-
tending this to more remote regions in the north island and
coastal regions. By building on a philosophy of Community-
Driven Initiatives for Technology (C-DIT), we hope to se-
cure community involvement in the development and test-
ing of necessary tool support. These tools specifically tar-
get IDEs for the development of programming skills, and
support our long term goal to help secondary and post-
secondary level students appreciate both the process and
the art of programming.

1. Introduction

The simple intuition behind the proposed philosophy
of Community-Driven Initiatives for Technology (C-DIT)
is that by planting initiatives that are both sensitive to
community-context and driven primarily from within, we
can improve long-term sustainability of the projects in-

volved.
The traditional role of elders in aboriginal communities

in terms of leadership is clear. However, not surprisingly,
the youth in the community are generally more technically
savvy. Hence, in the context of technology, there is actu-
ally an important inversion taking place. By working with
community members to develop a program where youth are
offered enriched programs involving computer science, and
also serve as teaching-assistants for elders, we believe we
can effectively harness this inversion and connect the two
groups in a collaborative initiative. We believe that, where
possible, educational initiatives in remote regions must be
sensitively integrated with cultural issues such as aboriginal
elder leadership.

Given that representation and educational infrastructure
from within a community is necessary for sustainability, we
propose a rethinking and retooling of remote educational
infrastructure based on a simple philosophy of Community-
Driven Initiatives for Technology (C-DIT). For example,
targeting the youth and stimulating their inherent interest in
technology through a staged deployment of programs deis-
gned to be sensitive to cultural contexts, we believe we can
create a demand for more advanced educational offerings.

Of course, supporting these advanced offerings in con-
texts that will largely rely on remote technology brings with
it a whole new set of challenges. Here we believe the
right tool support to promote understanding of both high-
level abstractions and low-level architecture is the key. We
propose an IDE that allows for transparent transitioning
between graphical languages, textual representations, and
computational elements in order to allow students to explore
the process of programming and the artifacts involved.

The remainder of this paper is organized as follows. Sec-
tion 2 overviews deployment strategies, providing an exam-
ple from our own experiences of short-term localized initia-
tives and motivating community-driven programs. A model
for C-DIT is provided, along with a concrete example of



such an initiative. Section 3 follows with the motivation and
design for IDE support that is both collaborative in terms of
process, and transparent in terms of representation. Section
4 closes with a discussion of future work and summarizes
our conclusions.

2. Deployment Strategies

Before exploring C-DIT and its associated tool support,
we briefly consider our previous efforts in educational ini-
tiatives with youth in local aboriginal communities in or-
der motivate our adoption of a community-driven approach.
Though arguably successful, our deployment strategy was
localized and short-term.

2.1. Localized Success

In the summer of 2007, we hosted a camp for a group
of 15 aboriginal youths (ages 12-17) for three days span-
ning three weeks. These students came from a near-by lo-
cal community, where computers in the afterschool program
are scarce, and students are given computer-time mainly on
a reward system. At this camp we introduced these youth
to the world of programming through graphical languages
and IDEs such as those used by LEGO Mindstorms[18] and
Scratch[19]. The students were interested in the projects
and intensely engaged in programming. They appeared to
be focused, and though no formal study was performed, we
anecdotally observed that there were many unanticipated
challenges along the way that were enough to discourage
students from completing the task.

Part of our goal for this project was to create a mod-
ule that educators with no previous experience could use
to deploy the same educational exercises to self-motivated
learners. However, we concluded that this was impractical
for the material we had developed. Accordingly, several ex-
perienced teachers all concluded that without positive rein-
forcement and encouragement, many of these students were
not invested enough to persevere programming in the face
of adversity. In particular, if the computers they were work-
ing on had any Internet access, the first sign of trouble was
typically accompanied by abandonment of the task and surf-
ing for a virtual social context such as email, chatrooms and
most notably Bebo[3] for social networking.

From this experience we have reason to believe that these
youth are vested as consumers of technology, but require
encouragement and positive feedback if they are to become
producers of technology. Though we believe opportuni-
ties to leverage remote education exist, we also believe they
must be conducive to incremental progress.

These observations are not new, as for decades Interac-
tive Radio Instruction (IRI) has been implemented to teach
a variety of subjects to school children in countries such as

Nicaragua, Thailand, Guatemala, and Kenya[8]. The IRI
projects were often considered successful for two main rea-
sons: (1) the integrated interaction with fellow students, and
(2) a facilitator would be present in the room to focus the
students and moderate question and answers. As a result,
there is face-to-face interaction as well as an authority fig-
ure to help mediate and guide. These two factors were not
part of our original vision for remote deployment, and are
potentially only available in a limited capacity in most cur-
rent tools.

2.2. Community-Driven Initiatives

After recognizing the short-term limitations of our tech-
nology camps, we have now adopted a philosophy of going
into communities and allowing them to choose their pre-
ferred education. Not surprisingly, basic technical courses
such as recovery from virus infection and establishing a net-
work infrastructure ranked highly in terms of desirable of-
ferings.

In order to ensure buy-in from the same group of youths
that attended the camp, we designed a 20-hour workshop,
Beyond Bebo, and focuses on skills that go beyond their
current exposure to technology[32]. Topics include com-
puter construction, programming, graphic and web design,
slide show presentations, networking, and troubleshooting.
It is not surprising that young consumers have only a min-
imal understanding of current Information and Communi-
cation Technologies (ICT) and its contribution to society.
Several studies have shown this to be true in the general
population[19, 13, 21]. The question remains however, as
to whether or not this combination of topics establishes a
community-driven demand for esoteric topics such as com-
puter science when these regions are faced with more press-
ing and rudimentary needs. Assuming it does the next ques-
tion is how to expose students to the fundamentals of com-
putation without the infrastructure for sustained instruction.

3. Computation: A Wholistic View

Currently there is a plethora of programming languages
targeting youth, such as Squeak[12], Scratch[19], Lego
Mindstorms[18], Pico Crickets[27], EToys[15, 16] and
Alice[1]. Figure 1 shows a few of these. In a variety of
after school and summer activities, these environments are
used as an anchor for technological education[31, 29]. Fur-
thermore, these learning environments gain a special im-
portance in economically disadvantaged communities with
the emergence and support of the One Laptop per Child
(OLPC) project[24].

Additionally, there are a number of attempts to apply
these programming environments within preliminary com-
puter science courses in post-secondary education[7, 28,



10]. Such courses use these environments to facilitate a
smoother introduction to more traditional syntax laden tex-
tual environments. However, the transition from graphical
to textual environments can be unexpectedly hard. Students
tend to have difficulties getting accustomed to syntax and
understanding the more formal treatment of object-oriented
concepts[28]. This is particularly surprising when the con-
cept of objects have been first and foremost in many of these
environments.

This transition may become even more complicated if
concurrency appears to be trivial in graphical programming
environments designed to simultaneously animate objects.
Mapping the equivalent support involves threads of execu-
tion, which typically does not get attention until the later
years of post-secondary education. The irony is that modern
architectures are hungry to exploit programs designed with
concurrency in mind. In short, the transition from graph-
ical to textual environments is a juncture where students
may disengage because it is accompanied by disappoint-
ment when advanced concepts do not map well from one
environment to the next.

A possible way of preventing this sudden exposure to
complexity would be to make use of a common program-
ming environment to integrate the abstract understanding in
graphical environments with more technical representations
of problem solving. IDEs such as Eclipse[9], where the user
has access to various tools within the same medium as plug-
ins, can substantially ease the transition by giving simulta-
neous access to both graphical and textual tools. Further-
more, the advantages gained from such integration can be
maximized through the development of a plug-in that is de-
signed specifically to expose mappings between graphical
and textual environments in an incremental manner. We be-
lieve better integration of these equivalent textual represen-
tations with graphical environments can in fact be beneficial
to students struggling to create a mental model of computa-
tion.

Equally important to accentuate in first year post-
secondary education is the fact that code design, implemen-
tation and analysis are intensely social processes. Grow-
ing popularity of real-time collaboration within industrial
strength IDEs to facilitate team work is evidenced by re-
cent work such as Jazz[4]. At the system level, providing
such collaboration can become particularly challenging in
geographically isolated areas where wireless alternatives to
classical wired connections need to be considered[17].

In the remainder of this section, we first provide back-
ground on well-known graphical programming environ-
ments. Next, we propose a platform for integrating graphi-
cal and textual languages as an incremental transformation,
including further deep transformations into computational
representations involving modern architectures. Finally, we
focus on the necessity for and nature of collaboration in

such an educational platform.

3.1. IDE Support

In the last decade, particularly since various researchers
have underlined the insufficient fluency of society with re-
spect to information technology, primary and secondary
school education has become a major focus within educa-
tional software communities. Attempts to introduce tech-
nology to youth have expanded to after-school activities
where students have a chance to work with the current popu-
lar tools in informal and relaxed environments[19]. Some of
the focus has been on audio-visual tools applied within cre-
ative settings. However, students mastering these creations
were often barely introduced to computer programming and
objects, which arguably motivates key concepts such as al-
gorithmic thinking[17, 25]. The intuition behind this kind
of introduction stemmed from the fact that many early at-
tempts to teach programming to youth had been plagued
with difficulties due to the relatively complex syntactical
structures of popular programming languages.

As a result, many efforts within the educational soft-
ware communities began to focus on the use of graphical
programming environments, where children can get more
comfortable with graphical building blocks rather than the
ordinary textual instructions. Several graphical languages
and their corresponding platforms have been introduced ac-
cording to this theme which tends to hide issues of syn-
tax from the programmer. For instance, Scratch emerged
as a graphical and educational version of Squeak, based on
SmallTalk80 where blocks from a script are represented as
graphical programming blocks that can be used in a drag
and drop manner. Squeak and others like Scratch, E-toys
and Alice have been heavily used in after-school and sum-
mer activities as development platforms. In addition, tools
like Lego Mindstorms, and Pico Crickets have introduced
their own graphical environments to ease the use of hard-
ware entities such as light and sound sensors.

Throughout our research, we have used most of the
graphical languages mentioned for various outreach activ-
ities and witnessed their remarkable impact on introducing
information technology to youth. In particular, during a
weekly set of outreach activities with students in grades 2-
7, we found that students made substantial progress in areas
such as variables, looping, concurrency, and input/output.
This rapid and comfortable progress directly relates to the
impact of graphical programming environments as the stu-
dents are isolated from the syntax-oriented complexities
that naturally exist in textual programming languages[31].
Overall, not only did these graphical languages give the
children an impressive arsenal of computational tools, but
also equipped them with enhanced algorithmic-thinking
skills, and a new perspective towards information technol-



Figure 1. Snapshots, from LEGO Mindstorms (top-left), Scratch (top-right) and Alice (bottom), of a
section of code which randomly selects between two phrases and display them repeating five times.

ogy.

3.2. Motivation and Related Work

Graphical environments generally make the logic of pro-
gramming more accessible to beginner programmers by al-
leviating the burden of syntax[30]. There are many pro-
gramming environments designed to teach the basics in the
software field simultaneously. The members of the Life-
long Kindergarten Group from the MIT Media Lab have
been working with domain specific representations such as
Systems Thinking Blocks and other physical and graphical
environments[20]. Additionally, this group has established
afterschool programs and organize a network of Computer
Clubhouses[29, 6].

Programs such as these have been instrumental in the de-
velopment and implementation of multiple learning tools.
For example, in the Pico Crickets programming environ-
ment, PicoBlocs gives the user the option to program tex-
tually or graphically. However, the user is unable to switch
between the two representations, or view them simultane-
ously. In addition, Squeak contains similar features, such as
the ability to view graphical blocks in their textual format,
yet users are unable to modify the graphical representation
through editing the textual representation.

Projects such as BlueJ[33] and Greenfoot[11] focus on
teaching the principles of object oriented programming
through mapping graphical entities, as in UML diagrams,

to textual representations. Further, jGrasp[14] is an educa-
tional tool built in Java using visual representations to im-
prove software understanding.

3.3. Transition: Graphical to Textual

Our experiences over the last year have revealed the ad-
vantages of graphical environments. The question remains
as to whether the transition from these graphical environ-
ments to textual representations, and finally to a mental
model of computation, could in fact be enhanced by tool
support.

Recent research on teaching introductory level computer
science courses with Alice revealed that although the stu-
dents had positive attitudes towards the graphical program-
ming experience, they had major difficulties with the tran-
sition to high-level languages like C++ and Java[28]. Some
of the challenges during this transition were associated with
difficulties in understanding objects even though every vi-
sual entity in the Alice environment is essentially an object.
The difficulties appear to be associated with the transition
to syntactical development and debugging. It is not unrea-
sonable to assume that the same impact will be associated
with other graphical environments. Throughout our study,
we did not come across a platform that provides an incre-
mental and transparent transition from graphical languages
to textual languages.

In order to provide a more transparent transition, we pro-



pose to integrate a graphical environment into a platform
which also actively supports textual programming. This
support could take the form of a plug-in specifically de-
signed to support these mappings.

The approach we plan to implement in a project called
GlassOnion[34] is based on the intuition that this integra-
tion could be done using a tabbed interface to isolate the stu-
dent from the associated intellectual context switching in-
volved in multiple representations. Additionally, this plug-
in could perform on-the-fly translations along a spectrum
of languages. This would facilitate a completely transpar-
ent transition where the programmer can view the textual
representations of his/her graphical program. Enhancing
the visualization at the source code level we plan to use
BRICS[5], a system for introducing visual object-like struc-
ture to method level control structures.

Another component that we envision is a step-through
debugger to allow users to walk through their programs
in multiple languages simultaneously. Such a component
would explicitly map between graphical and textual repre-
sentations. Along the same lines, runtime visualization sup-
port can range from views of object interaction and memory
allocation for data structures in higher level languages to a
view of registers in assembly language.

3.4. Transition: To Computational

Focusing on abstract views of computation is an ar-
guably proficient way of motivating interest through an
easy-to understand high-level view in first year post-
secondary courses. However, balancing the level of ab-
straction relative to modern multiprocessor architectures
emerges as another, and perhaps a more challenging issue.

In addition to multi-lingual representation of an algo-
rithm graphically and textually, the design of GlassOnion
further includes components that visualize computational
activity at the hardware-level in order to provide a map-
ping between high-level and low-level aspects of compu-
tation during program execution.

Our goal is to express technical details through sim-
ple animations in order to help create a more aware and
ready generation of Computer Scientists. Many simula-
tions such as these for physics have been proven valuable
to students[26], and hope to connect students with architec-
tural appreciation in much the same way.

Throughout the design of such a component it is key to
carefully select the right entities and activities to visualize.
These visualizations and activities must help the students to
get a better grasp of the nature of computation in general.
Another important point is to decide on an optimum way of
presenting these visualizations which will not overwhelm
the user with unnecessary content. Instead, we envision a
customizable outlook that is based on the encapsulation of

different views in a hide/show manner used by former sim-
ulators such as ARMSim[2].

The architectural visualization component is comprised
of two subcomponents: (1) storage visualization compo-
nent, and (2) process visualization component. The storage
visualization component consists of memory, cache and vir-
tual memory views, while the process visualization compo-
nent consists of onchip storage and chip activity views.

In memory view the user can follow the activity in spe-
cific memory locations depending on how the allocation is
performed. On one end the stack subview simulates static
memory usage, while on the other heap subview outlines
the dynamic memory allocations performed by the program.
Through these views, the user can actively follow the usage
of memory through assignments, modifications, allocations
and disposals. Visualization of memory can be particularly
effective in teaching concepts such as variables and data
structures. Furthermore, memory related concepts that are
considered to be somewhat complex, such as pointers in C
programming language, can visualised at runtime.

This technical representation can be extended to include
assembly language with the animation of data flow through
registers and logic units, and simulation of virtual memory
address translation. This deeper representation gives stu-
dents support for understanding underlying mechanisms of
computation.

3.5. Transition: Individual to Collaborative

In addition to the need for a transitional tool, it is also
important to note the necessity of support for collaboration
within the supported views. Throughout our experiences
with outreach activities, we have observed the continuous
communication that children naturally used to enhance their
projects. This informal communication at the development
stage has motivated us to consider whether collaboration
without context switching is possible.

Here, it is very important to note that the idea of collab-
oration is not new in the domain of graphical environments.
Two examples are the Squeak (e.g. Nebraska[22]and
OLPC) and Scratch (e.g. NetScratch[23]). However, these
two examples are rather restricted to their environments.
Furthermore, projects like Jazz have integrated collabora-
tion into an IDE where a group of developers can actively
communicate during the project development. Motivated by
these ideas and approaches, we envision a collaborative en-
vironment that not only facilitates communication but also
regulates and visualizes access to shared entities in a collab-
orative project. Such visualization can be provided through
the use of abstract representations similar to a subset of
UML. For example, actively shared entities can be rendered
using different colors or different shapes. A user’s artifact
is identified by colour. Users can then simply look at the



Figure 2. The vision of collaboration as an Eclipse plug-in, showing the source code and overview
windows, and what the rest of the team is viewing.

visualization to know where their team members have been
working. Figure 2 illustrates how the collaboration is visu-
alized. Colours on the right-hand-side correspond to active
team members and gives awareness of where they are cur-
rently working in the shared code-base.

At the lower levels, challenges with facilitating this
kind of collaboration must be implemented using a limited
amount of computational resources. We also envision this
system to work with both centralized and wireless ad hoc
peer-to-peer settings.

It is important to note that our vision is to embed ac-
tive collaboration into a tool, or preferably a comprehensive
plug-in, that is specifically built for supporting transition
from graphical to textual environments and a deeper explo-
ration into computational entities. We suggest that such an
approach would not only facilitate an understanding of syn-
tactical restrictions but also motivate teamwork by provid-
ing a natural and positive context for informational sciences
for both secondary and post-secondary curricula.

We believe this approach is feasible given the huge shift
in display technologies over the past few years. LCD
screens have become less expensive than comparable CRT
monitors, and this has lead to a change in the way comput-
ers are produced, marketed and sold. Notebook computers
are now priced competitively with desktop computers, and
those desktop computers now have a wide selection of dis-
plays with significantly higher resolution. As real-time col-
laboration software requires awareness, and awareness re-
quires display area, this change will usher in significant im-
provements in real-time collaboration software. Further, we
envision that enhancing educational laptops with the capa-
bility to scale by linking multiple devices together to share

both monitor real-estate and processing capacity is not out
of the question.

The educational scaffolding supplied by this nature of
support has direct ramifications for remote instruction and
mentoring. Given a representation such as that mocked up
in Figure 2, it would be easy to accompany another person
in a debugging session, bringing attention to certain code
segments or demonstrating coding technique. Monitoring
capabilities, so as to collect statistics about the ways in
which programmers develop their solutions to assignments
and lab exercises, is also a possibility.

4. Future Work and Conclusions

In this paper we have outlined the need for community
based initiatives and provided concrete examples from our
own project working with aboriginal communities on the
west coast of British Columbia. We further identified crite-
ria we believe to be key in terms of transparent and collab-
orative IDE support for programming when access to edu-
cational support is limited.

By supporting transparency and collaboration at all lev-
els of abstraction, from high-level graphical languages to
low-level computational representations, we believe we can
provide a sustainable educational infrastructure package.
Further, by deploying this package within cultural contexts,
we believe C-DIT can plant initiatives that take hold in re-
mote communities. The role of collaboration is fundamen-
tal, as it could allow for immediate feedback with projects
that involve active teamwork, peer interest, or mentoring
advice.

Our goal is to increase appreciation for the inherently



multi-faceted nature of programming. We believe that this
incremental mapping of both computational elements and
software development processes will allow students to more
easily move from highly-constrained environments to more
realistic, dynamic and exciting settings, thereby increasing
their appreciation of, and investment in, the art of program-
ming.

References

[1] Alice, http://www.alice.org/ Retrieved, 2007.
[2] ARM Simulator. http://sim.sagepub.com/cgi/content/abstract/80/4-

5/221, Retrieved, 2007.
[3] Bebo, http://www.bebo.com/ Retrieved, 2007.
[4] L. Cheng. Jazzing up Eclipse with collaborative tools. In

Proceedings of ACM SIGPLAN Conference on Objected
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pages 45–49, Anaheim, California, USA,
October 2003. ACM Press, New York.

[5] C. Pearson, C. Gibbs, and Y. Coady. Intuitive Source Code
Visualization Tools for Improving Student Comprehension:
BRICS, Objected Oriented Programming, Systems, Lan-
guages, and Applications Workshop 1: Process in Object
Oriented Pedagogy, October 2007.

[6] Computer Clubhouse, http://www.computerclubhouse.org/
Retrieved, 2007.

[7] A. Conway and K. Christiansen. Alice: lessons learned from
building a 3D system for novices. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Sys-
tems, pages 486–493, The Hague, The Netherlands, April
2000. ACM Press, New York.

[8] D. Eastmond. Realizing the Promise of Distance Education
in Low Technology Countries. Educational Technology Re-
search and Development, 48(2):100–111, 2000.

[9] http://www.eclipse.org/ Retrieved, 2007.
[10] D. Hendrix. Designing a First-year Project Course to En-

gage Freshman Software Engineers: An Experience Report.
In Proceedings of the 19th Conference on Software Engi-
neering Education and Training (CSEET), 2006.

[11] P. Henriksen. Greenfoot: Combining object visualization
with interaction. In Companion to the 19th Annual ACM
SIGPLAN Conference on Object Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages
73–82, Vancouver, BC, Canada, November 2004.

[12] D. Ingalls and A. Kay. Back to future: the story of Squeak,
a practical SmallTalk written in itself. In Proceedings
of the 12th ACM SIGPLAN Conference on Objected Ori-
ented Programming, Systems, Languages, and Applications
(OOPSLA), pages 318–326, Atlanta, Georgia, USA, Octo-
ber 1997. ACM Press, New York.

[13] International Technology Education Association. Techno-
logical Literacy, 2000.

[14] JGrasp, http://www.jgrasp.org/ Retrieved, 2007.
[15] A. Kay. Etoys and SimStories in Squeak,

http://www.squeakland.org/projects/etoys/etoyssimstories.004.pr
Retrieved, 2007.

[16] A. Kay. Squeak EToys, Children & Learning, Online Arti-
cle http://www.squeakland.org/pdf/etoys n learning.pdf Re-
trieved, 2007.

[17] Kay, Alan. Computers, Networks and Education. Scientific
American, September 1991, p. 138-148.

[18] LEGO Mindstorms. http://mindstorms.lego.com/ Retrieved,
2007.

[19] J. Maloney and M. Resnick. Scratch: A Sneak Preview. In
Proceedings of the Second International Conference on Cre-
ating, Connecting, and Collaborating through Computing,
pages 104–109, Kyoto, Japan, 2004.

[20] MIT Media Lab: Life Long Kindergarten,
http://llk.media.mit.edu/projects.php Retrieved, 2007.

[21] National Academy of Engineering and National Research
Council. Technically Speaking: Why All Americans Need
to Know More About Technology. National Academy Press,
Washington, DC, 2002.

[22] Nebraska. http://web.media.mit.edu/ tstern/netscratch/index.html
Retieved, 2007.

[23] NetScratch. http://web.media.mit.edu/ tstern/netscratch/index.html,
Retrieved, 2007.

[24] One Laptop per Child, http://www.laptop.org/ Retrieved,
2007.

[25] S. Papert. Mindstorms: Children, Computers, and Powerful
Ideas. Basic Books, Inc., 1980.

[26] Physics Education and Technology.
http://phet.colorado.edu/new/index.php Retrieved, 2007.

[27] Pico Crickets. http://www.picocrickets.com/ Retrieved,
2007.

[28] K. Powers. Through the looking glass: teaching CS0 with
Alice. SIGCSE Bull. 39, 1 (Mar. 2007), 213-217.

[29] M. Resnick. A Networked, Media Rich Programming Envi-
ronment to Enhance Technological Fluency at After-School
Centers in Economically-Disadvantaged Communities. NSF
Proposal, 2003.

[30] Science Venture, http://scienceventure.uvic.ca/home/ Re-
trieved, 2007.

[31] A. A. St Pierre. Young Minds Stroming Through Challeng-
ing Computer Science Concepts. In Proceedings of Western
Canadian Conference on Computing Education (WCCCE),
2007.

[32] Tsawout First Nations Computer Workshop,
http://outreach.cs.uvic.ca/cside/novcamp/index.html
Retrieved, 2007.

[33] K. Van Haaster. Teaching and Learning BlueJ: an Evaluation
of a Pedagogical Tool. In Information Science + Informa-
tion Technology Education Joint Conference, Rockhampton,
QLD, Australia, June 2004.

[34] Y. O. Yazır, S. Lonergan, K. Gunion, and Y. Coady. Look-
ing Through a Glass Onion: Transparent Layers for Con-
crete Abstractions, Objected Oriented Programming, Sys-
tems, Languages, and Applications Workshop 1: Process in
Object Oriented Pedagogy, October 2007.


