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The unconfined compression experiments are commonly used for characterizing the
mechanical behavior of hydrated soft tissues such as articular cartilage. Several analyti-
cal constitutive models have been proposed over the years to analyze the unconfined com-
pression experimental data and subsequently estimate the material parameters.
Nevertheless, new mathematical models are still required to obtain more accurate numer-
ical estimates. The present study aims at developing a linear transversely isotropic poro-
viscoelastic theory by combining a viscoelastic material law with the transversely
isotropic biphasic model. In particular, an integral type viscoelastic model is used to
describe the intrinsic viscoelastic properties of a transversely isotropic solid matrix. The
proposed constitutive theory incorporates viscoelastic contributions from both the fluid
flow and the intrinsic viscoelasticity to the overall stress-relaxation behavior. Moreover,
this new material model allows investigating the biomechanical properties of tissues
whose extracellular matrix exhibits transverse isotropy. In the present work, a compre-
hensive parametric study was conducted to determine the influence of various material
parameters on the stress–relaxation history. Furthermore, the efficacy of the proposed
theory in representing the unconfined compression experiments was assessed by compar-
ing its theoretical predictions with those obtained from other versions of the biphasic
theory such as the isotropic, transversely isotropic, and viscoelastic models. The uncon-
fined compression behavior of articular cartilage as well as corneal stroma was used for
this purpose. It is concluded that while the proposed model is capable of accurately rep-
resenting the viscoelastic behavior of any hydrated soft tissue in unconfined compression,
it is particularly useful in modeling the behavior of those with a transversely isotropic
skeleton.
[DOI: 10.1115/1.4032059]

1 Introduction

Over the past few decades, a large number of numerical and
experimental studies have been conducted to understand the multi-
phase biomechanical properties of soft hydrated tissues such as
articular cartilage, intervertebral disk, and cornea. The in vitro
unconfined and confined compression experiments are among the
most widely used methods. From a theoretic viewpoint, while dif-
ferent variations of the classical mixture theory have been used to
numerically represent unconfined compression experimental meas-
urements [1], the isotropic biphasic model is the most commonly
used [2]. This model was first proposed in 1980 for the behavior of
the articular cartilage by utilizing the mixture theory formulation of
Green and Naghdi [3] and Bowen [4]. The biphasic mixture theory
assumes that the tissue is composed of a solid phase with linear
elastic behavior and an incompressible viscous fluid phase. These
assumptions result in a system of coupled differential equations
which can be solved analytically to determine the mechanical
response of the tissue. It is well-known that the biphasic theory
ascribes the compression creep and stress–relaxation behavior of a
hydrated tissue to the flow-dependent viscoelasticity, which is
caused by the fluid flow within the porous solid skeleton. Despite
close agreement between the model predictions and experimental
measurements in confined compression, there is substantial differ-
ence between the two when the tissue is tested in unconfined

compression [2,5–7]. Incorporating intrinsic viscoelasticity, anisot-
ropy, inhomogeneity, and/or nonlinear bimodular behavior of a soft
tissue are among possible ways that have been proposed to enhance
the agreement between the biphasic theory predictions and experi-
mental data [6,8–17].

The primary ingredients of the extracellular matrix of the
hydrate soft tissue are collagen fibrils and a proteoglycan matrix,
both of which are known to display viscoelastic behavior [18–20].
Therefore, in addition to the frictional interaction between the
solid and fluid phase, the intrinsic viscoelasticity of the tissue can
dissipate energy. In a series of articles, Mak et al. [8,9] proposed a
biphasic poroviscoelastic model which accounts for the intrinsic
viscoelasticity of the solid phase, i.e., flow-independent viscoelas-
ticity. Cohen et al. [12] proposed a linear transversely isotropic
biphasic model based on the idea that the resistance of the solid
matrix against radial expansion in unconfined compression pro-
duces large tensile strain in transverse direction (transversely iso-
tropic behavior). DiSilvestro et al. investigated the ability of the
linear biphasic theory, the linear poroviscoelastic model, and
the linear transversely isotropic model to simulate simultaneously
the lateral displacement and the stress-relaxation response of artic-
ular cartilage in unconfined compression. They concluded that
only the linear biphasic poroviscoelastic model could curve-fit
successfully the experimental results [7]. Soulhat et al. [13] pro-
posed a fibril-network reinforced model in which collagen fibrils
can only resist tensile stresses. The parameters of this composite
model for unconfined compression are directly related to those of
the transversely isotropic biphasic model [12]. Soltz and Ateshian
[14] combined the conewise linear elasticity (CLE) model of
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Curnier et al. [21] and the linear isotropic biphasic model together
in order to account for the tension–compression nonlinearity of
solid phase. This model was later extended such that it could cap-
ture the intrinsic viscoelasticity of the solid matrix [17]. In addi-
tion to these studies, there have been many other theoretical
models with the purpose of explaining the mechanical behavior of
articular cartilage and similar hydrated tissue [22–27]. Neverthe-
less, the field lacks a linear transversely isotropic poroviscoelastic
model. This model is especially important when the particular
microstructure of the tissue, e.g., corneal stroma, necessitates the
use of a transversely isotropic material model.

The cornea is a transparent soft tissue which refracts incoming
light rays and acts as a protective shield for the eye. The biome-
chanical properties of cornea have been the subject of much
research [28–36]. These studies have clearly shown that the cor-
nea is a rate-dependent, anisotropic, and viscoelastic biomaterial.
The corneal extracellular matrix, stroma, forms 90% of the thick-
ness and dominates its biomechanical properties. In stroma, flat
sheets of collagen fibrils (called lamellae) lie parallel to the sur-
face while being embedded in a hydrated matrix formed by pro-
teoglycans and interstitial fluid. Within each lamella, the collagen
fibrils are parallel to each other and are packed in a quasi-regular
hexagonal lattice structure [35]. Because of this particular
arrangement of the lamella, the corneal stromal microstructure is
transversely isotropic with the axis of symmetry normal to its sur-
face. In other words, the properties are the same in all directions
within the plane of material isotropy (tangent plane) but are differ-
ent in the direction normal to this plane. In a recent study,
Hatami-Marbini and Etebu [37] conducted unconfined compres-
sion experiments on corneal stroma and showed that a linear
transversely isotropic biphasic model can be used to analyze
experimental measurements and obtain a relatively accurate esti-
mate for in-plane and out-of-plane corneal material properties as a
function of thickness. Since this model was not able to “fully”
curve-fit the experimental stress-relaxation history, they suggested
that an improved representation of corneal unconfined compres-
sion experiments might be possible by accounting for the intrinsic
viscoelasticity of the tissue constituents [38]. The short-term and
primary objective of the present work is to take the first step for
testing this hypothesis, i.e., proposing a linear transversely iso-
tropic poroviscoelastic model in order to incorporate the intrinsic
flow-independent viscoelasticity. The long-term objectives are to
describe the mechanical behavior of cornea in unconfined com-
pression using this theoretic model and determine its rate-
dependent material parameters. To this end, the present study
develops a linear transversely isotropic poroviscoelastic model,
investigates quantitatively the effects of flow-independent and
flow-dependent viscoelasticity on unconfined compression stress
relaxation history, and compares the predictions of the proposed
model with those of the currently available models such as the lin-
ear transversely isotropic, viscoelastic, and conewise viscoelastic
theory.

2 Model Formulation

The present theory is an extension of previous models proposed
by Cohen et al. [12] and Mak et al. [9], i.e., it incorporates the lin-
ear viscoelasticity of the solid matrix into the transversely iso-
tropic biphasic theory. Although this model may be used to
represent the mechanical response of any hydrated soft tissue, it is
primarily intended to improve the accuracy of theoretic predic-
tions of corneal stromal behavior in unconfined compression.

In biphasic mixture theory, the total stress is written as

r ¼ �pIþ rvs (1)

where I ¼ ð 1 1 1 0 0 0 ÞT, p is the interstitial fluid pres-
sure, and rvs ¼ ð rrr rhh rzz rhz rzr rrh ÞT is the stress
vector of the viscoelastic solid matrix which is expressed by

rvs ¼
ðt

�1
gðt� sÞSeq�1

: deðsÞ (2)

In the above equation, e ¼ ð err ehh ezz 2ehz 2ezr 2erh ÞT is
the strain vector, Seq represents the intrinsic equilibrium compli-
ance matrix, and g(t) is the relaxation function defined as

g tð Þ ¼ 1þ
ðt

�1

H sð Þ
s

e�t=sds (3)

where HðsÞ is the relaxation spectrum commonly denoted by the
box spectrum [39]

HðsÞ ¼ c s1 � s � s2

0 otherwise

�
(4)

It is noted that c is a dimensionless constant and s1 and s2 define
the period of time during which relaxation occurs. For the box
spectrum, the reduced relaxation function simplifies to

gðtÞ ¼ 1þ cðEð�t=s1Þ � Eð�t=s2ÞÞ, where EðxÞ ¼ �
Ð1
�x e�t=t dt

and gð0Þ ¼ 1þ clnðs2=s1Þ, and gð1Þ ¼ 1.
In ðr; h; zÞ cylindrical coordinates and when the r � h plane is

the plane of isotropy, the intrinsic equilibrium compliance matrix
of a transversely isotropic material is given by

Seq ¼

srr srh srz 0 0 0

srh srr srz 0 0 0

srz srz szz 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 s66

0
BBBBBB@

1
CCCCCCA

(5)

where srr ¼ 1=Err; srh ¼ ��rh=Err; srz ¼ ��rz=Err; szz ¼ 1=Ezz;
s44 ¼ 1= Ghz, and s66 ¼ 2ðsrr � srhÞ. The independent elastic con-
stants are the respective in-plane and out-of-plane elastic moduli
Err and Ezz, the respective in-plane and out-of plane Poisson’s
ratios �rh and �rz, and the out-of-plane shear modulus Ghz. Darcy’s
law gives the constitutive equation describing the relation between
the fluid flux and the interstitial fluid pressure

/f ðvf � vsÞ ¼ �jrp (6)

where /f is the fluid phase volume fraction, vf is the fluid phase
velocity, vs is the solid phase velocity, and j is the permeability
coefficient. The boundary conditions (see Fig. 1) for a circular
button of radius r0 in a ramp–relaxation unconfined compression
experiment with frictionless conditions at the loading platens are

rrrjr¼r0
¼ pjr¼r0

¼ urjr¼0 ¼ 0

ezz ¼ _etHðtÞ � _eðt� t0ÞHðt� t0Þ
(7)

where H(t) is Heaviside function, _e is the applied constant strain

rate, and t0 is the ramp time. Let u ¼ ð ur uh uz ÞT denotes the dis-
placement vector where ur ¼ urðr; tÞ; uh ¼ 0, and uz ¼ z ezz are
the radial, tangential, and transverse displacement components,
respectively [12,40]. Using the above equations and after some
manipulation, the governing equations of the biphasic model [40]
simplify to a set of coupled differential equations for radial dis-
placement and pressure in time domain. Applying Laplace trans-
form to these equations, we obtain

@2�ur

@r2
þ @�ur

r@r
� 1

r2
þ f

� �
�ur ¼

f

2
r�ezz

@�p

@r
¼ s

j
�ur þ

�r

2
�ezz

� �
(8)
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where j is the permeability coefficient, overbar represents Lap-
lace transformed quantities, s is the Laplace transform variable,
and

f ¼ r2
0s

Ê j ð1þ clnðð1þ ss2Þ=ð1þ ss1ÞÞ
Ê ¼ 2ðsrrszz � s2

rzÞn; n ¼ ðszzðsrr þ srhÞ � 2s2
rzÞ
�1

(9)

The solution of equations (8) gives

�ur ¼ �ezz

2srz þ szzð Þ srr � srhð ÞnI1

ffiffiffi
f
p

r=r0

� �
Ê
ffiffiffi
f
p

I0

ffiffiffi
f
p� �
� 2I1

ffiffiffi
f
p� � � �ezzr

2r0

�p ¼ Ên
2srz þ szzð Þ

2
1þ cln

1þ ss2

1þ ss1

� �� �

�
ffiffiffi
f

p I0

ffiffiffi
f
p

r=r0

� �
� I0

ffiffiffi
f
p� �

Ê
ffiffiffi
f
p

I0

ffiffiffi
f
p� �
� 2I1

ffiffiffi
f
p� ��ezz (10)

where �ezz ¼ ð1� e�st0Þe0=s2, e0 ¼ _et0, and I0½�� and I1½�� are the
first- and second-order modified Bessel functions, respectively.

It is noted that although the present study only discusses
ramp–relaxation unconfined compression experiments (7), the
solution for other loading conditions is readily available by
replacing their corresponding �e in Eq. (10). For instance, replacing
�ezz with e0=s gives the displacement and pressure for a step com-
pressive strain of magnitude e0. The average axial stress �r
(defined as total axial force per unit area) in Laplace domain is
obtained from

�r ¼ 1

pr2
0

ðr0

0

��p þ �rzzð Þ2prdr (11)

and a numerical Laplace Inversion algorithm [41] is used to invert
the above solution (Eqs. (10) and (11)) from Laplace domain to
time domain.

3 Results

It is first noted that the model proposed here reduces to the lin-
ear transversely isotropic biphasic theory by setting c¼ 0 and to
linear isotropic biphasic model by letting c¼ 0, Err ¼ Ezz ¼ E,
and �rh ¼ �rz ¼ �, and s44 ¼ s66 ¼ E=2ð1þ �Þ. The linear trans-
versely isotropic poroviscoelastic model has nine material con-
stants, i.e., Err, Ezz, �rh, �rz, Ghz, j, c, s1, and s2. The shear
modulus does not appear in predicting the behavior of cylindrical
specimens in unconfined compression (Eqs. (10) and (11)), and
shear tests are required for estimating Ghz [42]. The effects of the
remaining model parameters are discussed in the following.

In Figs. 2–7, time is normalized with respect to gel diffusion
time tg ¼ ½r2

0=ðÊ jÞ� and stress is normalized with respect to the
equilibrium stress req. The influence of the parameter t0=tg on the
normalized stress–relaxation behavior is shown in Fig. 2. It is
seen that increasing the ratio of ramp time t0 and diffusion time tg
results in a smaller peak stress and subsequently shorter relaxation
period. The ramping time t0 (which is proportional to the applied
strain rate when the total strain is constant), the permeability coef-
ficient j, and the sample radius r0 only affect the t0=tg parameter.
Therefore, for experiments with constant strain rate, the amount
of flow-dependent relaxation is inversely proportional to the per-
meability coefficient j, and directly proportional to the square of
sample radius r0.The gel diffusion time also depends on the first
component of the equilibrium stiffness matrix Ê which is a func-
tion of Err, Ezz, �rh, and �rz (see Eq. (9)). Therefore, in addition to

Fig. 2 The effect of the parameter t0=tg on the unconfined
compression stress-relaxation behavior

Fig. 3 The effect of the parameter Err=Ezz on the unconfined
compression stress-relaxation behavior

Fig. 4 The effect of the Poisson’s ratio mrh on the unconfined
compression stress-relaxation behavior

Fig. 1 A schematic plot of the unconfined compression test. A
cylindrical button of tissue with radius r0 is subjected to ramp
displacement of Dh over ramp time of t0. The measured reaction
force shows a stress-relaxation behavior which reaches a peak
value Fmax and relaxes to equilibrium force Feq.
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its influence on the gel diffusion time, Ê affects the mechanical
response of the solid skeleton. The influence of equilibrium stiff-
ness matrix components is studied in Figs. 3–5. The normalized
reaction force for different values of Err=Ezz is depicted in Fig. 3.
With increasing the ratio of out-of-plane and in-plane equilibrium
moduli, a higher peak stress is obtained. Nevertheless, because of
the inverse relation between Err and tg, the stress–relaxation
behavior becomes more similar to that of the slow rate unconfined
compression experiments. Figures 4 and 5 show the effect of the
Poisson’s ratio �rh and �rz on the stress–relaxation time history. It
is seen that while both affect the mechanical response, the out-of-
plane Poisson’s ratio has a much more significant influence on the
shape of the viscoelastic behavior of the specimen. This is an
important observation since Poisson’s ratios are often fixed prior
to curve-fitting the experimental measurements [12,37].

Figures 6 and 7 show how the intrinsic viscoelasticity, charac-
terized by c, s1, and s2, affects the stress–relaxation behavior of a
linear transversely isotropic biphasic poroviscoelastic material.
The parameter c determines the strength of viscoelasticity, and
parameters s1 and s2 define the time range over which relaxation
occurs. It is seen that with increasing c and s2, the flow-
independent viscoelasticity becomes more pronounced and the
material reaches a higher peak stress. The relaxation time constant
s1 exhibits no significant effect when it is varied from 0.001 to 1 s
and gives a similar curve as shown in Fig. 7.

4 Discussion

The primary objective of the present work was to develop a lin-
ear transversely isotropic biphasic poroviscoelastic model for the
mechanical behavior of the hydrated soft tissue in unconfined
compression. Previous studies have shown that the linear isotropic

biphasic model [2,5] is unable to represent the unconfined com-
pression mechanical behavior of the cornea and cartilage [12,37].
In order to improve the agreement between numerical models and
experimental measurements, several theoretic models including
linear isotropic poroviscoelastic biphasic models, linear trans-
versely isotropic biphasic model, and bimodular poroviscoelastic
biphasic model have been proposed [7,9,10,12,17]. Nevertheless,
there is no previous work on a linear transversely isotropic bipha-
sic poroviscoelastic model. The linear transversely isotropic
biphasic model has previously been used to model the
stress–relaxation of articular cartilage in unconfined compression
experiments [12]. Although, compared to the linear isotropic
biphasic model [5], this model was shown to provide a better nu-
merical representation of unconfined compression experimental
measurements, it did not get much attention in the cartilage litera-
ture. The microstructure of the corneal extracellular matrix is
transversely isotropic and consists of collagen lamellae primarily
lying parallel to the surface of the tissue [35,43]. Therefore, the
mechanical behavior of corneal stroma needs to be analyzed at
least with a transversely isotropic material model. Recently,
Hatami-Marbini and Etebu showed that the transversely isotropic
biphasic model can be used to analyze the unconfined compres-
sion experimental data and determine the material properties of
the corneal stroma [37]. Nevertheless, they observed that this
model was not able to fully represent the experimental stress-
relaxation behavior. Collagen fibrils and the proteoglycan matrix,

Fig. 5 The effect of the Poisson’s ratio mzr on the unconfined
compression stress-relaxation behavior

Fig. 6 The effect of the parameter c on the unconfined com-
pression stress-relaxation behavior

Fig. 8 The mechanical behavior of articular cartilage in a typi-
cal unconfined compression experiment (Huang et al.) and the
theoretical curve-fits obtained from four different biphasic mod-
els, i.e., the linear isotropic biphasic, isotropic viscoelastic
biphasic, transversely isotropic biphasic, and transversely iso-
tropic viscoelastic (present model) theories. The time is plotted
in logarithmic scale in order to highlight the capability of differ-
ent models in representing the experimental measurements.

Fig. 7 The effect of the parameter s2 on the unconfined com-
pression stress-relaxation behavior
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the primarily constituents of the corneal extracellular matrix, are
viscoelastic [18–20]. Also, uniaxial tensile experiments on corneal
strips confirmed that the tissue has viscoelastic behavior [38].
Therefore, it can be hypothesized that a linear transversely iso-
tropic poroviscoelastic model will give a better theoretical repre-
sentation of the constitutive behavior of the corneal tissue and
result in a more accurate assessment of its material parameters.
Accurate material constitutive models are crucial for conducting
realistic numerical simulations of the complex biomechanical
behavior of soft tissue; they may even lead to a way of systemati-
cally investigating the viability of therapeutic interventions by
computational models. The present study focuses on developing
the poroviscoelastic theory, conducting parametric study, and
comparing its predictions with other available analytic models.

The poroviscoelastic model formulation includes the contribu-
tions from both the fluid flow and the intrinsic viscoelasticity to
the overall stress–relaxation of the hydrated tissue under uncon-
fined compression. The model has nine material constants: five
elastic parameters, one permeability coefficient, and three visco-
elastic parameters. Since unconfined compression experiments
create no shear deformation, the shear modulus does not enter the
formulation and needs to be determined separately [42]. In Figs.
2–7, the influence of the remaining constitutive material constants
is thoroughly investigated. Here, similar relaxation function was
considered for the components of the equilibrium stiffness matrix.
This convenient assumption simplifies the mathematical complex-
ities but is hard to be experimentally verified. Furthermore,
although Figs. 4 and 5 show that Poisson’s ratios play a significant
role in the unconfined compression behavior, they are often set to
fixed values, i.e., �rz ¼ 0 and �rh ¼ 0:49, before analyzing the ex-
perimental data. This is done because of the observation that the
equilibrium load intensities in confined and unconfined compres-
sion tests are equal and the incompressibility of soft hydrated tis-
sues [12,37]. If the Poisson’s ratios are prescribed, the out-of-
plane and in-plane moduli are the remaining components of the
equilibrium stiffness tensor. While the flow-independent in-plane
viscoelasticity of the cornea can be determined from uniaxial
experiments [38], the intrinsic out-of-plane viscoelasticity
includes the fluid flow and is difficult to be characterized experi-
mentally. The transverse deformation of the corneal buttons
involves compaction of negatively charged proteoglycans while
the in-plane extension of the corneal strips causes relative sliding
of collagen fibrils. While the latter is an energy dissipating pro-
cess, the former is expected to be reversible and subsequently rel-
atively less dissipating [8,9]. It is interesting to note that assuming
�rz ¼ 0 removes the complicated dependence of equilibrium stiff-
ness matrix on Err, Ezz, and �rh and allows developing another ver-
sion of the transversely isotropic poroviscoelastic model such that
intrinsic viscoelasticity only occurs in in-plane modulus Err. We
leave the discussion of this version of model for a future work
which will focus on curve-fitting the experimental results and
determining the material parameters of cornea. Nevertheless, we
discuss our preliminary results in the following and also compare
the predictions of the proposed model with current material mod-
els in the literature.

Here, we consider two examples: unconfined compression experi-
ments conducted by Huang et al. on articular cartilage [44] and the
experiments preformed on corneal stroma. Huang et al. performed
unconfined compression stress–relaxation experiments on cartilage
cylindrical plugs of diameter 4.78 mm at 0:96=s strain rate. We also
conducted a similar study on the cornea by testing cylindrical stro-
mal plugs with diameter of 5 mm using an RSA-G2 machine (TA
Instruments, New Castle, DE). Similar to our previous study [37],
the thickness of the specimens was first obtained by applying a tare
load. Then, a compressive strain of 5% with a strain rate equal to
0:1=s was applied. The details of unconfined compression experi-
ments on cornea along with a discussion on corneal material con-
stants will be presented in a future publication. In order to find the
material constants and curve-fit the experimental data, a multidimen-
sional curve-fitting was carried out using an objective function

fobj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RiðrmdlðtiÞ � r exp ðtiÞÞ=r exp ðt1Þ

p
, where t1 is the time at

which equilibrium is reached, and rmdlðtiÞ and r exp ðtiÞ represent the
respective theoretic and experimental reaction stress at time ti. Dif-
ferent optimization algorithms, such as modified particle swarm
optimizer, differential evolution, and leapfrogging, were used and
compared together to obtain a unique set of parameters ensuring the
minimum value of objective function (results not shown).

Figure 8 shows the experimental measurements of Huang et al.
(which were obtained from an image processing code) along with
the theoretic fits obtained using different constitutive models, i.e.,
linear isotropic, transversely isotropic, isotropic viscoelastic, and
transversely isotropic viscoelastic models. It is seen that the linear
transversely isotropic poroviscoelastic model is able to represent
the experimental response very accurately (R2 ¼ 0:99). The fit
parameters are Err¼ 7.9 MPa, Ezz¼ 1.34 MPa, �rh ¼ 0:49; �rz ¼ 0;
j¼ 7:8� 10�15 m4/N s, c¼0.13, s1 ¼ 0:054 s, and s2 ¼ 330 s. It
is noted that goodness of fit obtained here with transversely iso-
tropic poroviscoelastic model is similar to that reported using a
biphasic-CLE-QLV model [44]. It remains to be determined
whether this is the case for other modes of deformation and if the
present model can be used as an alternative mathematical model
for describing the general behavior of articular cartilage. Never-
theless, as it was discussed earlier, because of the particular
microstructure of corneal stroma, a transversely isotropic material
model is very well-suited for representing its mechanical
response. We have previously used a linear transversely biphasic
model to obtain the material constants of the stroma. In Fig. 9, the
typical behavior of the porcine corneal stroma under unconfined
compression is shown. In this plot, the symbols show the total
experimental reaction stress and the lines show the numerical
model predictions. Similar to the articular cartilage, the proposed
model resulted in a significant improvement in curve-fitting the
unconfined compression experiments (R2¼0.99) with material
constants Err¼2.0 MPa, Ezz¼20 KPa, �rh ¼ 0:49; �rz ¼ 0;
j¼ 11� 10�14 m4/N s, c¼0.42, s1 ¼ 0:001 s, and s2 ¼ 22 s.
While the proposed transversely isotropic poroviscoelastic model
provided a much better representation of the experiments con-
ducted at higher strain rates, the difference between the predic-
tions from different theories becomes less significant as loading
rate reduces, which agrees with previous reports [44]. This could
be because the flow-independent viscoelasticity is less important
for experiments conducted at slow rate. The more complex mod-
els, such as biphasic-CLE-QLV model, behave similarly and are
not able to capture the exact behavior of the samples in experi-
ments in which the flow-dependent viscoelasticity is the dominant

Fig. 9 The mechanical behavior of the cornea in unconfined
compression and the theoretical curve-fits obtained from four
different biphasic models, i.e., the linear isotropic biphasic, iso-
tropic viscoelastic biphasic, transversely isotropic biphasic,
and transversely isotropic viscoelastic (present model) theo-
ries. The time is plotted in logarithmic scale in order to high-
light the capability of different models in representing the
experimental measurements.
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factor [44]. Finally, it is noted that besides not considering the
depth-dependent properties, the present model did not consider fi-
nite deformation and/or nonlinear properties. Incorporating these
features could be important but will make the constitutive model
more complex and mathematically involved.

5 Conclusions

The present study combined the transversely isotropic and linear
viscoelastic biphasic models in order to develop a linear trans-
versely isotropic poroviscoelastic theory. The influence of material
constants of this constitutive model on unconfined compression
stress-relaxation behavior was investigated by conducting paramet-
ric studies. Furthermore, it was shown that the proposed model
results in a better numerical representation of experimental meas-
urements conducted on articular cartilage and corneal stroma, espe-
cially when they are performed at high compressive strain rates.
While the present model can be used for predicting the unconfined
compression behavior of any soft hydrated tissue, it is deemed to be
the appropriate constitutive model for tissues (e.g., stromal cornea)
with a transversely isotropic microstructure. Since the model has
flow-dependent and flow-independent material constants, multiple
experiments on the same sample may result in a unique and accu-
rate estimation of these constants. In a future study, we will test the
applicability of this model to characterize the viscoelastic material
properties of the corneal stroma. An accurate estimate of the consti-
tutive behavior of any soft tissue, as given by the proposed model,
is vital for the success of general purpose finite element modeling
and may be a significant step forward toward developing predictive
numerical models for diagnosis and evaluating their biomechanical
properties.
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