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Abstract

We prove existence of stationary Markov perfect equilibria in an infinite-horizon
model of legislative policy making in which the policy outcome in one period deter-
mines the status quo for the next. We allow for a multidimensional policy space and
arbitrary smooth stage utilities, and we assume preferences and the status quo are sub-
ject to arbitrarily small shocks. We prove that all such equilibria are essentially in pure
strategies and that proposal strategies are continuous almost everywhere. We estab-
lish upper hemicontinuity of the equilibrium correspondence, and we derive conditions
under which each equilibrium of our model determines a unique invariant distribution
characterizing long run policy outcomes. We provide a convergence theorem giving
conditions under which the invariant distributions generated by stationary equilibria
must be close to the core in a canonical spatial model.
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1 Introduction

In this paper we study policy making within a legislative body under the assumption that
an agreement to replace the status quo in the current period influences the status quo in the
next period. We develop a benchmark model of legislative interaction that accounts for the
endogenous determination of the status quo, for the multidimensional aspects of public policy,
for a wide range of policy preferences, and for the kinds of random shocks (e.g., on preferences
and the environment) to which political interaction is subjected over time. We address
some of the central theoretical difficulties arising in this dynamic environment, namely,
the existence of equilibrium, regularity properties of the equilibrium set, and the long-run
convergence of the equilibrium policy process. The model is intentionally austere, in that we
do not incorporate the rich spectrum of political institutions observed in the real world, but
our approach is very general and can accommodate fine institutional detail. Furthermore,
although we are motivated by the application to legislatures and democratic politics, the
issues we address are fundamental and would arise in a host of dynamic bargaining contexts,
such as wage negotiation in labor markets, or collusion among members of a cartel, or
deliberations among a board of directors, or treaty talks among states.

The model is fully dynamic, with play of the game generating an infinite sequence of
policies over time. Each period begins with a status quo policy and the random draw
of a legislator, who may propose any feasible policy, which is then subject to an up or
down vote. The policy outcome in that period is the proposed policy if it receives the
support of a “decisive” coalition of legislators, the status quo otherwise, and the status quo
in the next period is determined by the outcome that prevails in the current period. This
process continues ad infinitum, and in equilibrium legislators must anticipate future policy
consequences of their decisions. When voting on a proposal, a legislator must compare
the distribution over policy streams generated by the proposed policy with the distribution
generated by the status quo, and legislators must select their proposed policies optimally
in light of the future, while factoring in whether a proposed policy will garner the support
of a decisive coalition. Although we do not preclude the possibility of equilibria supported
by complex, history-dependent punishments, our focus is on stationary (Markov perfect)
equilibria. This strengthens our existence result, at a technical level; from a practical point of
view, stationarity significantly facilitates the estimation of empirical models in applications.1

We do not impose specific assumptions about the policy space or functional forms for leg-
islators’ utility functions. Instead, we allow the set of alternatives to be a very general subset
of any finite-dimensional Euclidean space defined by arbitrary smooth feasibility constraints,
and we assume smooth stage utility functions but do not impose any further restrictions on
preferences. Thus, we capture standard models with resource and consumption constraints,
such as the classical spatial model of politics, public good economies, and distributive models
in which a fixed surplus is allocated across legislators, and we obtain even a finite policy
space as a special case. In addition to these features of the model, we assume that legislators’
stage utilities are subjected to transitory, publicly observed preference shocks in each period;

1Examples of empirical applications exploiting stationarity are Ericson and Pakes (1995), and Aguirre-
gabiria and Mira (2007). See Maskin and Tirole (2001) for an elaboration and further grounds for interest
in stationary equilibria.
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and when the policy space is infinite, we assume the transition from policy outcomes to next
period’s status quo is stochastic, e.g., next period’s status quo is realized as the sum of the
current period’s policy outcome and a stochastic shock. The second of these two assumptions
captures the fact that the impact of current policies may be relatively clear in the present
but impossible to predict with certainty. If legislators choose the level of a durable public
good that depreciates over time, for example, then it is reasonable to expect that the rate of
depreciation, and therefore the stock of the public good at the beginning of the next period,
is subject to uncertainty. Both of these two types of noise can be arbitrarily small.

We deduce the existence of stationary equilibria in pure strategies. Continuation val-
ues of the legislators are differentiable, and equilibrium proposal strategies are continuous
almost everywhere. Moreover, we show that all stationary equilibria are essentially pure
and that, in fact, equilibria are strict in the sense that proposers almost always have unique
optimal proposals. The proof of existence of equilibrium requires the usual compactness and
continuity conditions, and we rely on the two types of noise in order to establish these condi-
tions.2 The status quo transition probability gives us compactness when the policy space is
infinite (it is not needed when the policy space is finite), an approach that is not novel to our
paper; similar techniques have been used in the problems of intergenerational transfers in
growth economies (Bernheim and Ray (1989) and Nowak (2006)) and existence of stationary
equilibria in stochastic games. The role of the preference shocks in the continuity argument,
however, is novel. Specifically, these shocks allow us to establish existence of equilibrium
despite the fact that in our model, the action of the proposer uniquely determines the pair
of alternatives (the proposal and status quo) compared at the voting stage of the game.
Such deterministic transitions have proved incongruous with general existence of equilibria
in stochastic games, and extant approaches in the literature assume stronger continuity con-
ditions on state transitions and rely either on correlation of strategies or the relaxation of
stationarity.3 In our approach, given arbitrary continuation values for the legislators, the
best response problem of a proposer can be formulated as a constrained optimization problem
in which the objective function of the proposer includes his continuation value and in which
the other legislators’ continuation values appear in the constraints. As these continuation
values are endogenous, the optimization problem of the proposer need not be convex, and
the solution set need not be upper hemicontinuous as a function of continuation values. We
apply the transversality theorem, however, to show that for almost all preference shocks, the
proposer’s problem satisfies the linear independence constraint qualification, giving us con-
tinuity of optimal proposals for almost all shocks. We thus establish existence of stationary
equilibria without recourse to correlation or departures from stationarity.

Two types of noise also appear in the industrial organization literature on dynamic mod-
els of competition between firms (e.g., Aguirregabiria and Mira (2007) and Doraszelski and
Satterthwaite (2009)). Doraszelski and Satterthwaite (2009), for example, assume noise on
the transition from firm decisions in the current period to firm states in the next period,

2The existence counterexample due to Harris et al. (1995), once formulated as a stochastic game, implies
that some such measure must be taken to be assured of existence.

3Nowak and Raghavan (1992) prove existence of correlated equilibria, and Chakrabarti (1999) provides
results on semi-Markov stationary equilibria. Both require norm continuity of the state transition; see Nowak
(2007) for a recent overview and Duggan and Kalandrakis (2007) for a detailed literature review.
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as well as idiosyncratic shocks to each firm’s scrap value/setup cost. In their setting, the
idiosyncratic shocks are private information and are used to purify entry/exit decisions of
firms. In our setting the preference shocks are publicly observed, but similarly ensure that
proposers’ best responses are strict, enhancing the computational tractability of our model;
we address this in separate work (Duggan et al. (2008), Duggan and Kalandrakis (2009b)).4

In contrast to our equilibrium existence argument, however, the preference shocks do not
play a role in the continuity of each firm’s optimal level of investment as a function of contin-
uation values, which these authors ensure using a separate sufficient condition.5 Moreover,
these authors assume a finite set of states for each firm, circumventing compactness issues. A
byproduct of our existence argument is upper hemicontinuity of the equilibrium correspon-
dence with respect to the parameters of the model. Of note, we include the policy space itself
as a parameter, allowing us to consider finite approximations of an infinite policy space, and
we apply this upper hemi-continuity result in Duggan and Kalandrakis (2009b) to obtain
an equilibrium of the continuum model by taking the limit of equilibria generated by finite
approximations of the policy space.

We also give conditions under which each equilibrium admits a unique invariant distri-
bution with desirable ergodic properties, providing an unambiguous prediction of long run
policy outcomes generated by the equilibrium. We specialize to the multidimensional spatial
model in which legislative preferences are close to admitting a core policy that cannot be
overturned by a decisive coalition, and we provide bounds on equilibrium policies induced by
proximity to the spatial model in which a core policy exists. Our equilibrium bounds from
the core hold when the stochastic shocks in our model are small and legislative preferences
are close to admitting a unique core policy, the ideal point of a “core legislator,” and so we
approximate a setting in which a social-choice analysis yields an unambiguous prediction on
the basis of individual preferences alone (abstracting from the institutional details of the bar-
gaining process). We show that the invariant distributions over policy outcomes generated by
stationary legislative equilibria must be close, in the sense of weak convergence, to the point
mass on the core policy. In the one-dimensional special case, the core is always non-empty and
coincides with the ideal policy of the median legislator, and the equilibria of our model gener-
ate long run policy outcomes close to the median legislator’s ideal point with high probability.
Thus, we reconcile the static prediction of the median voter theorem with the strategic incen-
tives of farsighted agents in the context of dynamic bargaining. In the multidimensional set-
ting, we allow the core to be empty as long as legislative preferences approximate the canon-
ical model in which a core policy exists. We therefore generalize the results of Ferejohn et al.
(1984), who show that myopic majority voting concentrates probability near the core policy of
the canonical model, to a setting in which voting is farsighted and policy transitions are gov-
erned by the optimal proposals of strategic agents. Our results hold for an arbitrary, fixed dis-
count factor—they do not rely on any assumptions regarding the patience of the legislators—
distinguishing them from “core equivalence” results of Banks and Duggan (2000, 2006a). In

4The role of pure strategies for the computational tractability of dynamic games is highlighted by Herings
and Peeters (2004) and Nowak (2007) and emphasized by Doraszelski and Satterthwaite (2009) in the context
of a dynamic oligopoly model.

5Their Condition 1 ensures this by imposing a concavity condition directly on the transition probability
on firm states.
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the framework of those papers, the game ends once an agreement is reached, so the influence
of the core is mitigated unless agents are patient, in which case an alternative close to the core
is proposed immediately. In the dynamic framework of this paper, however, the legislators
may be impatient and policies far from the core may be reached with positive probability
following any history; but with high probability they will be close to the core in the long run.

In Section 2, we give a detailed review of the literatures in political bargaining and
stochastic games, as well as the related literature in dynamic industrial organization. In
Section 3, we present the model formally and describe our solution concept. In Section 4, we
state our existence, characterization, and robustness results. In Section 5, we study ergodic
properties of equilibria. In Section 6, we analyze the long run equilibrium policies of our
model as the stochastic shocks become small and the preferences of the legislators are close to
admitting a core policy. We conclude in Section 7, and we collect all proofs in Appendix A.

2 Literature Review

Most of the existing work in political economy on bargaining considers an infinite-horizon
game where in each period one agent proposes a division of surplus and that proposal is either
accepted, in which case the game ends with the proposed outcome, or rejected, in which case
bargaining continues for at least one more round. Baron and Ferejohn (1989) extend the
models of Rubinstein (1982) and Binmore (1987) to cover legislative politics by allowing for
an arbitrary number of legislators and requiring the support of a majority to pass a proposal.
A substantial literature cutting across economics and political science has grown from these
papers, but most assume that bargaining terminates once a proposal passes. While these
models can be used to examine policy choices across legislative sessions by simply repeating
the bargaining game each session, this is appropriate only if policies remain in place for a
single session with an exogenously fixed default outcome at the beginning of the next. This
is often the case in budgetary negotiations, but the model is inadequate for the analysis of
the enactment of legal statutes or continuing legislation, where policy remains in place for
the indefinite future and endogenously determines the status quo in subsequent periods.

A growing literature considers the effects of endogenizing the status quo. In this frame-
work, each period begins with a status quo, then one agent makes a proposal, and that
proposal is either accepted, in which case it becomes the current policy and the status quo
for the next period, or rejected, in which case the current status quo remains in place until
next period. In any case, the process is repeated next period, and so on. Extant studies
provide constructions of stationary equilibria in special cases of the model. Baron (1996)
analyzes the one-dimensional version of the model with single-peaked stage utilities. Kalan-
drakis (2004, 2009) establishes existence and continuity properties of equilibrium strategies
in the distributive model, obtains a fully strategic version of McKelvey’s (1979) dictatorial
agenda setting result in that setting, and studies the composition of equilibrium coalitions
and the effect of risk-aversion on equilibrium.6 Baron and Herron (2003) give a numerical
calculation of equilibrium in a three-legislator, finite-horizon model. Fong (2005) considers

6In contrast, Epple and Riordan (1987) allow for history dependent strategies and derive folk theorem
results in the distributive model.
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a three-legislator model in which policies consist of locations in a two-dimensional space
and allocations of surplus. Cho (2005) analyzes policy outcomes in a similar environment
but with a stage game emulating aspects of parliamentary government. Similar in spirit
to the above, Battaglini and Coate (2007b) characterize stationary equilibria in a model of
public good provision and taxation with identical legislators and a stock of public goods
that evolves over time. Battaglini and Coate (2007a) consider a dynamic model of public
spending and taxation in which the state variable is the amount of public debt. All of the
above analyses of stationary equilibria consist of explicitly constructing equilibrium strate-
gies, which, given the dependence of proposals on the status quo, can be extremely complex.
Battaglini and Palfrey (2007) study a discrete three-player distributive model and Battaglini
et al. (2010) study a durable public good environment, finding that equilibrium predictions
are roughly consistent with experimental data.7 Diermeier and Fong (2008) characterize the
pure strategy stationary equilibria in a discretized distributive model in which one player
has monopoly agenda setting power and players are patient.

A number of related papers diverge in various ways from the above literature and our
model. Acemoglu et al. (2008) prove existence and characterize pure strategy stationary
equilibria in a finite model with endogenous status quo, assuming a small transition cost and
sufficiently patient players but allowing the voting rule to vary with the state. Bernheim
et al. (2006) analyze a model of a single policy choice in which the proposal on the floor is
subject to change over time, and after a fixed number of rounds, the implemented policy is
determined by a final up or down vote between the proposal offered in the last round and the
previous proposal on the floor. The authors assume a finite policy space and strict prefer-
ences over policies for all legislators, so that backward induction yields a unique equilibrium
outcome. They then extend the model to a finite number of policy choices over time, with
the finite horizon again permitting backward induction. Penn (2009) considers a dynamic
voting game with randomly generated policy proposals and probabilistic voting on these
proposals. Lagunoff (2005a,b) investigates a class of stochastic games that incorporate a so-
cial choice solution concept and analyzes endogenous political institutions. Finally, Gomez
and Jehiel (2005) consider a class of stochastic games and characterize efficiency properties
of equilibrium when players are patient. Unlike our model, they assume a finite number of
states and transferable utility.

3 Legislative Model

Framework We posit a policy space X ⊆ ℜd and a finite set N of legislators,
i = 1, . . . , n, who determine policy over an infinite horizon. Legislative interaction pro-
ceeds as follows in each period t = 1, 2, . . .. A status quo policy q ∈ ℜd and a vector
θ = (θ1, . . . , θn) ∈ ℜnm of preference parameters are realized and publicly observed. A legis-
lator i is drawn at random, with fixed probabilities p1, . . . , pn,8 to propose a policy y ∈ X(q),

7The latter authors find some evidence of non-Markovian behavior, though observed long run levels of
the public good match equilibrium predictions well.

8It is straightforward to extend the analysis to allow proposal probabilities to depend measurably on the
status quo q. To obtain our equilibrium bounds from the core, in Section 6, we would assume, e.g., that the
core legislator’s recognition probability has a positive lower bound.
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where X(q) ⊆ ℜd represents the set of feasible policies at status quo q. The legislators vote
simultaneously to accept y or reject it in favor of the status quo q.9 The proposal passes if
a coalition C ∈ D of legislators vote to accept, and it fails otherwise; here, D ⊆ 2N \ {∅} is
a collection of decisive coalitions satisfying only the minimal monotonicity requirement that
if one coalition is decisive and we add legislators to that coalition, then the larger coalition
is also decisive. Formally, we assume that if C ∈ D and C ⊆ C ′ ⊆ N , then C ′ ∈ D .10 The
policy outcome for the current period, denoted x in general, is y if the proposal passes and
is q otherwise. Each legislator j receives utility uj(x, θj), where θj ∈ ℜm is a utility shock
for legislator j. Finally, the status quo q′ for the next period is drawn from the density
g(·|x), a new vector θ′ = (θ′1, . . . , θ

′
n) of preference shocks is drawn from the density f(·)

and publicly observed, and the above procedure is repeated in period t + 1. Payoffs in the
dynamic game are given by the expected discounted sum of stage utilities, and we denote
the discount factor of legislator j by δj ∈ [0, 1).

We impose a number of regularity conditions on the model. For future reference, we par-
tition them into assumptions on the set of feasible policies, preference shocks, and status quo
transition. (A1) We assume that the set of feasible policies at status quo q, denoted X(q), is
cut out by a finite number k of functions hℓ : ℜd×ℜd → ℜ indexed by K = {n+1, . . . , n+k},
where we partition K into inequality constraints, Kin, and equality constraints, Keq. Fur-
thermore, we assume X(q) always contains the status quo, so that

X(q) = {q} ∪ {x ∈ ℜd : hℓ(x, q) ≥ 0, ℓ ∈ Kin, hℓ(x, q) = 0, ℓ ∈ Keq}.

We further assume that X is compact, that X(q) ⊂ X for all status quos q, and that hℓ is
measurable in q and r-times continuously differentiable in x for all ℓ ∈ K, where we main-
tain the assumption that r ≥ max{2, d}.11 For technical reasons, we impose a weak linear
independence on the gradients of binding feasibility constraints. Formally, let K(x, q) denote
the subset of ℓ ∈ K, including equality constraints, such that hℓ(x, q) = 0; we then assume
that for all q and for all x ∈ X(q) \ {q}, {Dxhℓ(x, q) : ℓ ∈ K(x, q)} is linearly independent.
With assumption (A1), we capture standard models with resource and consumption con-
straints, such as the classical spatial model of politics, public good economic environments,
and distributive models in which an amount of surplus is to be allocated among the legisla-
tors’ districts. Equality constraints allow us to capture quite general policy spaces, and in
particular we obtain an arbitrary finite set of feasible policies as a special case.

The presence of preference shocks in the model captures uncertainty about the legislators’

9Equilibrium policies would be unaffected if voting were sequential. In that version of the model, we
could drop our stage-dominance refinement on voting strategies, below, but the formal description of voting
strategies would be somewhat more complicated.

10We capture majority rule in the obvious way, by setting D = {C ⊆ N : |C| > n

2
}, and we obtain unanim-

ity rule and other quota rules similarly. See Banks and Duggan (2000, 2006a) for examples of more complex
voting rules captured by these assumptions. Our results extend to the case in which the voting rule depends
on the status quo, i.e., D(q), as long as the correspondence D : ℜd

⇉ 2N is measurable. To formulate our
equilibrium bounds from the core, in Section 6, we require that D is independent of the status quo.

11Of course, we allow r = ∞. Later, we assume stage utilities and the status quo density g(q|·) are r-times
continuously differentiable, and we deduce that equilibrium continuation values are r-times continuously
differentiable. By allowing r to exceed max{2, d}, we see that continuation values inherit the differentiability
properties imposed on these primitives.
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future policy preferences. (A2) We assume that the stage utility ui : ℜd×ℜm → ℜ is r-times
continuously differentiable and that Dθi

[ui(x, θi) − ui(x
′, θi)] 6= 0 for all distinct x, x′ ∈ ℜd

and every legislator i. This assumption plays a key role in the derivation of Lemmas 1 to 3 in
the appendix ensuring, among other things, that legislators have unique optimal proposals
for all status quos q and almost all preference shocks θi. An example is m = d and ui(x, θi) =
ûi(x)+θi ·x, where ûi : ℜd → ℜ is r-times continuously differentiable. If X is a finite set, say
{x1, . . . , xm}, then we capture the special case in which θi = (θi,1, . . . , θi,m) ∈ ℜm consists of
additive preference shocks of the form ui(xj , θi) = ûi(xj) + θi,j . We assume that the vector
of preference shocks θ = (θ1, . . . , θn) is drawn independently across periods from a density f
with respect to Lebesgue measure, and we assume a bound bf and an open set Θ ⊆ ℜnm con-
taining the support of f such that |ui(x, θi)|f(θ) ≤ bf for all i ∈ N , all θ ∈ Θ, and all x ∈ X.

Noise on the status quo reflects uncertainty about the way policy decisions today will
be implemented in the future. (A3) We assume that for each x the distribution of q is
absolutely continuous with respect to some Borel measure, that the density g(q|x) relative
to this measure has support contained in X, that g : ℜd × ℜd → ℜ with values g(q|x) is
jointly measurable in (q, x), and that g is bounded on X × X. For future use, we let µθ

denote Lebesgue measure on ℜmn and µq the fixed Borel measure on ℜd, and we let µ
denote the product measure on ℜd × (ℜnm) with marginal µq on ℜd and µθ on ℜnm, i.e.,
µ = µq × µθ. Furthermore, we assume a bound bg such that for all q, we have: g(q|x)
is r-times continuously differentiable in x; if r < ∞, then all derivatives of order 1, . . . , r
are bounded in norm by bg, and the r-th derivative of g(q|x) with respect to x is Lipschitz
continuous with modulus bg; and if r = ∞, then derivatives of all orders 1, 2 . . . are bounded
in norm by bg. Our setup allows for the possibility that µq is discrete, and in the special case
that the policy space X is finite, we can specify g so that the transition is deterministic, e.g.,
outcome x in the current period determines status quo q = x in the next period. For later
reference, let b = (bf , bg) denote the vector of bounds described above.

Our approach to existence involves the addition of noise to policy outcomes and legislator
utilities, but we emphasize that the status quo and the utility shocks at the beginning of a
period t are commonly known, so that a proposer knows whether any given policy will pass
or fail if proposed. Furthermore, once a vote is taken, the policy outcome is pinned down
for the current period: the legislators know, contingent on the outcome of voting, what the
policy in the current period will be, and a new status quo is drawn for next period only
after legislators receive their current utilities. Thus, our formulation of noise in the model is
consistent with the view that while legislators are completely informed in the current period,
there is some uncertainty about future policy preferences and the policy environment. We
view these as natural modeling assumptions. In any case, the variance of the distributions
f and g(·|x) may be arbitrarily small. Thus, we allow for the selection of preference shocks
and the status quo to be arbitrarily close to deterministic, so that the element of noise in
the model can be made negligible from a substantive standpoint.

Strategies and Payoffs A strategy in the game consists of two components, one giving
the proposals of legislators when recognized to propose and the other giving the votes of
legislators after a proposal is made. While these choices can conceivably depend on histories
arbitrarily, we seek subgame perfect equilibria in which legislators use stationary Markov
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strategies, which we denote σi = (πi, αi). Our main focus will be on pure strategies, which,
as we show in Theorem 2, is without loss of generality. Thus, legislator i’s proposal strategy
is a measurable mapping πi : ℜd × Θ → ℜd, where πi(q, θ) is the policy proposed by i given
status quo q and utility shocks θ. And legislator i’s voting strategy is a measurable mapping
αi : ℜd×ℜd×Θ → {0, 1}, where αi(y, q, θ) = 1 if i accepts proposal y given status quo q and
utility shocks θ and αi(y, q, θ) = 0 if i rejects. We let σ = (σ1, . . . , σn) denote a stationary
strategy profile. We may equivalently represent voting strategies by the set of feasible pro-
posals a legislator would vote to accept. We define this acceptance set for i as Ai(q, θ; σ) =
{y ∈ X(q) : αi(y, q, θi) = 1}. Letting C denote a coalition of legislators, we define

AC(q, θ; σ) =
⋂

i∈C

Ai(q, θ; σ) and A(q, θ; σ) =
⋃

C∈D

AC(q, θ; σ)

as the coalitional acceptance set for C and the legislative acceptance set, respectively. The
latter consists of all policies that would receive the votes of all members of at least one
decisive coalition, and would therefore pass if proposed. The strategy profile σ is no-delay
if for all i, all q, and all θ, πi(q, θ) ∈ A(q, θ; σ), so that proposals are always accepted.

Given strategy profile σ, we define legislator i’s dynamic policy preferences by

Ui(x, θi; σ) = (1 − δi)ui(x, θi) + δivi(x; σ),

where vi(x; σ) is i’s continuation value at the beginning of period t+ 1 from policy outcome
x in period t.12 Our measurability assumptions on strategies imply that continuation values
are also measurable, and continuation values have the form

vi(x; σ) =

∫

q

∫

θ

∑

j

pjUi(πj(q, θ), θi; σ)f(θ)g(q|x)dµ (1)

for every no-delay strategy profile.

To extend these ideas to allow for mixing and non-deferential voting, we let πi : ℜd ×
Θ → P(ℜd) denote a mixed proposal strategy, where P(ℜd) is the set of Borel probability
measures on ℜd. We equip this space with the weak* topology, and we assume πi is Borel
measurable. Here, πi(q, θ) represents the distribution of i’s policy proposal given status quo
q and shocks θ. We define voting strategies as measurable mappings αi : ℜd × ℜd × Θ →
[0, 1], where now αi(q, θ) is the probability, ranging between zero and one, that i accepts
proposal y given q and θ. A mixed strategy for legislator i is then σi = (πi, αi), and we let
σ = (σ1, . . . , σn) denote a mixed strategy profile. Given a profile σ of mixed strategies, we
define induced preferences Ui(y, θi; σ) as above, but the legislators’ continuation values now
have the following more complicated form:

vi(x; σ) =

∫

q

∫

θ

∑

j

pj

∫

y

[

α(y, q, θ; σ)Ui(y, θi; σ) (2)

+(1 − α(y, q, θ; σ))Ui(q, θi; σ)
]

πj(q, θ)(dy)f(θ)g(q|x)dµ,
12Note that these continuation values are “ex ante,” in the sense that they are calculated at the beginning

of the period, before q and θ are realized.
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where

α(y, q, θ; σ) =
∑

C∈D

(

∏

j∈C

αj(y, q, θ)

)





∏

j /∈C

(1 − αj(y, q, θ))





is the probability that a proposal y is accepted by a decisive coalition of legislators. Note
that, in (2), we now integrate over the policies proposed by each legislator i, and given a
realization y from the mixed proposal strategy we now account for the possibility that y may
pass with a probability intermediate between zero and one.

Legislative Equilibrium We focus on a class of stationary Markov perfect equilibria,
a refinement that precludes more complicated forms of history-dependence. Due to their
relative simplicity, such strategies minimize the difficulty of strategic calculations and may
therefore possess a focal quality. Intuitively, we require that legislators always propose
optimally and that they always vote in their best interest. It is well-known that the latter
requirement is unrestrictive in simultaneous voting games, however, as arbitrary outcomes
can be supported by Nash equilibria in which no voter is pivotal. To address this difficulty,
we follow the standard approach of refining the set of Nash equilibria in voting subgames by
requiring that legislators delete votes that are dominated in the stage game. Thus, we say a
strategy profile σ is a pure stationary legislative equilibrium if the following conditions hold:

• for all shocks θ, every status quo q, every proposal y, and every legislator i,

αi(y, q, θi) =

{

1 if Ui(y, θi; σ) ≥ Ui(q, θi; σ)
0 else.

• for all shocks θ, every status quo q, and every legislator i, πi(q, θ) solves

max
y∈A(q,θ;σ)

Ui(y, θ; σ).

This notion will be the main equilibrium concept of our analysis. It requires that legislators
use pure strategies; it precludes delay, because the optimal proposal problem of a proposer
is restricted to the legislative acceptance set; and it not only imposes the requirement that
legislators eliminate stage-dominated voting strategies, but it also builds in the feature that
voters defer to the proposer when indifferent. Formally, we say a profile σ is deferential if
for all i, all q, all θ, and all y ∈ X, Ui(y, θi; σ) = Ui(q, θi; σ) implies αi(y, q, θi) = 1. Thus,
our notion of equilibrium is relatively restrictive.

In contrast, we also define the following, conceptually less restrictive notion of equilib-
rium. We say a profile σ of mixed strategies is a mixed stationary legislative equilibrium if

• for all shocks θ, every status quo q, every proposal y, and every legislator i,

αi(y, q, θi) =

{

1 if Ui(y, θi; σ) > Ui(q, θi; σ)
0 if Ui(y, θi; σ) < Ui(q, θi; σ).

9



• for all shocks θ, every status quo q, and every legislator i, πi puts probability one on
solutions to

max
y∈X∪{q}

α(y, q, θ; σ)Ui(y, θi; σ) + (1 − α(y, q, θ; σ))Ui(q, θi; σ).

One difference between this notion of equilibrium and that of pure stationary legislative equi-
librium is that it allows a legislator, when he has multiple optimal proposals, to mix over those
proposals. A second difference is that it allows a legislator to accept with arbitrary proba-
bility when indifferent between a proposed policy and the status quo. Consistent with stage-
game weak dominance, however, the vote of a legislator with a strict preference is pinned
down uniquely. This complicates the optimization problem of a proposer, as the utility max-
imizing policies in the legislative acceptance set may no longer pass with probability one.

We say that a mixed strategy profile σ is equivalent to a strategy profile σ if for all
q and almost all θ, the policy outcome determined by (q, θ) is πi(q, θ) with probability
one. Formally, for all q, there exists a measure zero set Θ(q) ⊆ Θ such that for all i and all
θ /∈ Θ(q), we have: (i) if πi(q, θ) 6= q, then i proposes πi(q, θ) and this passes with probability
one, i.e., πi(q, θ)({πi(q, θ)}) = α(πi(q, θ), q, θ; σ) = 1, and (ii) if πi(q, θ) = q, then no proposal
other than πi(q, θ) passes with positive probability, i.e.,

∫

X\{q}
α(y, q, θ; σ)πi(q, θ)(dy) = 0.

We consider two cases in the preceding definition because there are two, payoff equivalent
ways the status quo can prevail during a given period—the status quo can be proposed and
pass or a proposal can be rejected—either of which suffices for the definition of equivalence.
We will see that every mixed stationary legislative equilibrium is essentially pure, in the
sense just defined, so that the added conceptual flexibility afforded by mixed strategies is
not realized in equilibrium.

4 Existence and Robustness

In this section, we take up the existence and characterization of pure and mixed stationary
legislative equilibria, and we analyze the robustness of equilibria. The main result of this
section is that there is a stationary legislative equilibrium satisfying a number of desirable
regularity properties.

Theorem 1 There exists a pure stationary legislative equilibrium, σ, possessing the fol-
lowing properties.

1. Continuation values are smooth: for every legislator i, vi(x; σ) is r-times continuously
differentiable as a function of x.

2. Proposals are almost always strictly best: for every status quo q, almost all shocks θ,
every legislator i, and every y ∈ A(q, θ; σ) distinct from the proposal πi(q, θ), we have
Ui(πi(q, θ), θi; σ) > Ui(y, θi; σ).

3. Proposal strategies are almost always continuous: for every status quo q, almost all
shocks θ, and every legislator i such that πi(q, θ) 6= q, πi(q, θ) is continuous at (q, θ).

10



4. Binding voters, if any, are almost always not redundant: for every status quo q, al-
most all shocks θ, and every legislator i, if πi(q, θ) 6= q and there exists j such that
Uj(πi(q, θ), θj; σ) = Uj(q, θj; σ), then

{ℓ ∈ N : Uℓ(πi(q, θ), θℓ; σ) ≥ Uℓ(q, θℓ; σ)} \ {j} /∈ D .

Part 1 of Theorem 1 establishes that equilibrium continuation values inherit the differ-
entiable structure of the components of the model, ui, hℓ, and g. By part 2, the equilibrium
exhibited in Theorem 1 is, in a sense, strict: for almost all realizations of noise on preferences
and the status quo, a proposer has a unique optimal policy choice. Part 3 of the theorem
establishes a potentially useful technical property of equilibrium policy proposals: although
equilibrium policy strategies will generally be discontinuous, they are continuous on an open
set of full measure.13 Part 4 of Theorem 1 establishes conditions under which a proposer will
form minimal winning coalitions. We show that for all q and almost all θ, if the proposer is
“constrained,” in the sense that the optimal policy proposal renders any legislator indifferent
between the proposal and the status quo, then all legislators who are indifferent between the
proposal and the status quo are necessary coalition partners: the proposal fails if we remove
any such legislator’s assent. Thus, no legislator outside a decisive coalition that support an
equilibrium proposal can be indifferent between the proposal and the status quo. This is
reminiscent of Riker’s (1962) size principle, which maintains that winning coalitions are of
minimal size necessary in order for a proposal to pass, and no larger. Part 4 can be viewed as
a formalization of the size principle in a general, non-cooperative, dynamic model of policy
making. Note that there is nothing in the logic of equilibrium that precludes the possibility
that a larger than minimum winning coalition of legislators strictly prefer a legislator’s pro-
posal to the status quo, though in such cases part 4 implies that there is almost always no
legislator who is exactly indifferent between the proposal and the status quo.

As expected, the proof of Theorem 1 proceeds by defining a suitable mapping, establishing
the existence of a fixed point, and then verifying that it corresponds to a stationary legislative
equilibrium with the claimed properties. To give intuition for the key steps in the proof,
we focus on the case r = ∞. Let C∞(ℜd,ℜn) denote the space of smooth mappings from
ℜd to ℜn, endowed with the topology of C∞-uniform convergence on compacta.14 Given a
vector v = (v1, . . . , vn) ∈ C∞(ℜd,ℜn) of continuation value functions, define Ui(y, θ; v) and
Ai(q, θ; v), in the obvious way, as the induced utilities and acceptance sets when continuation
values are given by v. Consider a legislator i’s optimal proposal problem,

max
y∈A(q,θ;v)

Ui(y, θi; v), (3)

13In part 3 of Theorem 1, we state that equilibrium proposal strategies are almost everywhere contin-
uous in order to conserve space. See the working paper version, Duggan and Kalandrakis (2007), for a
more in-depth analysis where we prove almost everywhere differentiability of proposal strategies. There,
we actually demonstrate that for almost all realizations of noise, the optimal proposal problem of an agent
can be written as a standard optimization problem with mixed constraints; furthermore, we show that the
linear independence constraint qualification holds almost always, giving us a characterization of equilibrium
proposals in terms of the Kuhn-Tucker first order conditions.

14See the appendix for the precise definition of this topology.
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and let πi(q, θ; v) denote a selection from the solutions to this program. This selection de-
termines a vector of “best response” continuation values, v̂ = (v̂1, . . . , v̂n), for the legislators,
and we define ψ as the mapping that takes the vector v to the vector v̂, i.e., ψ(v) = v̂.
The existence proof consists in verifying that ψ satisfies the conditions of Glicksberg’s fixed
point theorem. The noise on the status quo plays the standard role of smoothing out con-
tinuation values and allowing us to restrict the domain and range of ψ to a compact subset
of C∞(ℜd,ℜn). To see how this technique is applied in our setting, note that the new
continuation value v̂i of legislator i is defined by

v̂i(x) =

∫

q

∫

θ

∑

j∈N

pjUi(πj(q, θ; v), θi; v)f(θ)g(q|x)dµ, (4)

and note further that the current period’s policy choice x enters this continuation value only
through the density g(q|x). Thus, v̂ = ψ(v) is, in essence, the convolution of the function
∫

θ

∑

j∈N pjUi(πj(q, θ; v), θi; v)f(θ)dµθ, which is generally discontinuous in q, with the func-
tion g(q|x). The result is a smooth function of the policy outcome x. Furthermore, if we
define V as the compact space consisting of all functions v ∈ C∞(ℜd,ℜn) such that v is
appropriately bounded, then it is straightforward to verify that ψ maps V into itself.

As discussed in the introduction, the proof of existence must overcome a difficult conti-
nuity issue. Given continuation values v, the best response continuation values v̂ in (4) are
determined by the solutions, πj(q, θ; v), to the optimal proposal problems of the legislators.
The objective function Ui(·, θi; v) in (3) incorporates the continuation value of the proposer,
and best responses are further intermediated by the other legislators’ continuation values
through the constraints A(q, θ; v). Since these quantities are endogenous, we cannot assume a
priori that the optimal proposal problems are well-behaved,15 and it is not in general possible
to take a continuous selection from a legislator’s optimal proposal problem. The preference
shocks allow us, however, to take an almost everywhere continuous selection, which is suffi-
cient for our purposes. We begin with the observation, underlying part 2 of Theorem 1, that
for any given v, for every status quo q, and almost all shocks θ, the proposer’s maximization
problem has a unique solution. Thus, the selection πi(q, θ; v) is uniquely pinned down almost
everywhere. The intuition behind this uniqueness result is straightforward: if legislator i is
indifferent between proposing two policies for one realization of θi, then, generically, a per-
turbation θ′i of θi will break that indifference. To be more precise, note that the constraint in
i’s optimal proposal problem in (3) can be reformulated to exclude the constraint requiring
that i accept his own proposal, so we can write the constraint set as A(q, θ−i; v), which is
independent of θi. Then a small perturbation to θ′i leads to a unique maximizer z. This is
depicted in Figure 1, where policies x and y maximize Ui(·, θi; v) over A(q, θ−i; v), the shaded
region in the figure. Key here is the fact that a perturbation of θi does not affect the payoffs
of other legislators or, therefore, the effective constraints of i’s maximization problem.

Having proved uniqueness of the selection πi(q, θ; v) almost everywhere, the preference
shock delivers continuity of the mapping ψ as follows. Using differentiability of Ui(y, θi; v),
we apply the transversality theorem to deduce that for any given v ∈ C∞(ℜd,ℜn), for every

15See Duggan et al. (2008) for examples showing that dynamic utilities do not inherit the convexity
properties of the legislators’ stage utilities.
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Figure 1: Genericity of unique maximizer

status quo q, almost all shocks θ, and every policy y ∈ A(q, θ; v) distinct from q, the linear
independence constraint qualification (LICQ) is satisfied at y.16 This is depicted in Figure
2. Here, for simplicity, we suppose the legislative acceptance set is the intersection of leg-
islators 1’s and 2’s acceptance sets, which are shaded. Although the gradients of legislators
1 and 2 are linearly dependent at y, so LICQ is violated, a small shock to θ1 will lead to a
perturbation of the acceptance set of legislator 1, given by the dashed curve in the figure.
We then have the generic situation, in which LICQ is satisfied over the legislative acceptance
set, save possibly the status quo. This in turn implies lower hemicontinuity of the legislative
acceptance set correspondence A(q, θ; v) for all q and almost all θ, and by the theorem of
the maximum, a legislator’s optimal proposal πi(q, θ; v) will be jointly continuous in (q, θ; v)
for all q and almost all θ.17 This implies that for all q, the inner integral in (4), namely,

∫

θ

∑

j∈N

pjUi(πj(q, θ; v), θi; v)f(θ)g(q|x)dµθ,

is continuous as a function of (x, v). Then continuity of v̂i(x) = ψ(v)i(x) in (x, v) follows from
Lebesgue’s dominated convergence theorem. It is straightforward to apply this argument to
all higher derivatives, delivering continuity of the mapping ψ in the topology of C∞-uniform
convergence on compacta, thereby permitting the application of Glicksberg’s theorem.

The next result justifies our focus on pure stationary equilibria. It establishes that every
mixed equilibrium is equivalent to a pure one. Furthermore, because every pure equilibrium
is a special case of mixed, it shows that every pure stationary legislative equilibrium satisfies
the properties of Theorem 1.

Theorem 2 Every mixed stationary legislative equilibrium is equivalent to a pure sta-
tionary legislative equilibrium satisfying the properties in parts 1–4 of Theorem 1.

16This means that the gradients of all binding feasibility constraints and all indifferent voters are linearly
independent. See the appendix for the precise definition.

17This step is where preference shocks play their key role: allowing us to take an almost everywhere
continuous selection from the optimal proposal problems. Note that they do not serve as a correlation device
in the normal sense, as they are payoff relevant and for almost all shocks, the stage game (taking play in
future periods as given) has a unique equilibrium.
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Figure 2: Genericity of LICQ

Much of the intuition for this result has already been discussed. Given a mixed stationary
legislative equilibrium, with continuation value v, our earlier observation that the solution,
πi(q, θ), to a legislator’s optimal proposal problem in (3) is almost always unique carries over
without change. This does not immediately rule out the possibility of non-degenerate mixed
strategies, however, because one or more legislators may be indifferent between πi(q, θ) and
the status quo, and these legislators could conceivably vote to accept with probability less
than one. But our subsequent claim that LICQ holds at every policy y ∈ A(q, θ; v) distinct
from q relied only on the differentiability of the equilibrium continuation values v, and in-
spection of (2) reveals that even in a mixed equilibrium, continuation values will inherit the
differentiability assumed in the model: the current period’s policy x enters the righthand side
of (2) only through the function g(q|x), which is appropriately smooth in x. An implication
is that the proposer can find policies arbitrarily close to πi(q, θ) that are strictly better than
the status quo for a decisive coalition of legislators. Such proposals will pass with probability
one in equilibrium, and existence of an optimal proposal (a necessary condition for equilib-
rium) demands that πi(q, θ) will also pass with probability one. Since πi(q, θ) is the unique
solution to (3), any optimal mixed proposal strategy must put probability one on that policy.

A desirable property of the equilibrium set is robustness with respect to the param-
eters of the model. In our framework, a model is represented by an ordered tuple γ =
((pγ

i , u
γ
i , δ

γ
i )i∈N , X

γ, (hγ
ℓ )ℓ∈Kγ , fγ,Θγ, gγ, µγ), where Kγ indexes equality and inequality con-

straints and for each q, Xγ(q) is the corresponding set of feasible policies, which is contained
in Xγ. Let Γ be a metric space of possible parameterizations satisfying the maintained as-
sumptions (A1)–(A3) from Section 3, and moreover assume there there is a fixed compact
X ⊆ ℜd as in (A1) independent of γ ∈ Γ, there are uniform bounds b = (bf , bg) for which
(A2) and (A3) hold, and there is a single measure µq fulfilling (A3) for all γ ∈ Γ. In
addition, we assume that the parameterization is continuous: (i) pγ

i and δγ
i are continuous

in γ, (ii) uγ
i (x, θi) is jointly continuous in (x, θi, γ), (iii) for each q, Xγ(q) is continuous in γ

with the Hausdorff metric on closed subsets of ℜd, (v) for all θ, fγ(θ) is continuous in γ, and
(vi) for all q, gγ(q|x) is continuous in (x, γ). Note that our parameterization is especially
general with respect to the set of feasible policies, for we do not assume that feasible policies
are generated by a common set of parameterized constraints. Moreover, we do not assume
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that the number of feasible constraints is bounded across Γ, and so our notion of continuity
allows us to approximate a general policy space with a sequence of finite approximations cut
out be an increasing number of constraints.

We define the equilibrium correspondence E : Γ ⇉ Cr(ℜd,ℜn) so that E(γ) consists
of the set of pure stationary legislative equilibrium continuation values v ∈ Cr(ℜd,ℜn).
Theorem 1 shows thatE is nonempty-valued. The next result establishes that the equilibrium
correspondence E is upper hemicontinuous. The proof follows, in the expected way, from a
more general version of the above continuity argument, as the mapping φ varies continuously
in the parameters of the model.

Theorem 3 The correspondence E : Γ ⇉ Cr(ℜd,ℜn) is upper hemicontinuous.

Thus, equilibrium predictions of the model are robust in the sense that a small pertur-
bation of the parameters of our model cannot produce new equilibria far from the original
equilibrium set.18 The usefulness of this result for applications may not be immediately
apparent. Because we take the feasible set as a parameter, Theorem 3 allows us to compute
equilibria along a sequence of finite approximations and to obtain an equilibrium of a model
with a continuum of alternatives in the limit. In fact, Theorem 3 of Duggan and Kalandrakis
(2009b) establishes that the equilibrium continuation values generated by a sequence of finite
approximations must have a convergent subsequence, and, using the above result, that the
limit corresponds to an equilibrium of the continuum model.

5 Ergodic Properties of Equilibria

A stationary legislative equilibrium, say σ∗, determines a stochastic process on policies,
and we may then consider the equilibrium dynamics of policy outcomes in our model. Given
Borel measurable Y ⊆ ℜd, let IY denote the indicator function of Y . We define the transition
probability on policy outcomes by

P (x, Y ) =

∫

q

∫

θ

∑

i∈N

piIY (π∗
i (q, θ))f(θ)g(q|x)dµ,

which is the probability, conditional on policy outcome x this period, that next period’s
outcome will lie in the set Y . We define the associated Markov operator T on the space of
bounded, Borel measurable functions φ : X → ℜ by Tφ(x) =

∫

φ(z)P (x, dz). The adjoint T ∗

operates on the Borel measures on X, denoted ξ, and is defined by T ∗ξ(Y ) =
∫

P (x, Y )ξ(dx).
This describes the distribution of outcomes in the next period, given a distribution ξ of pol-
icy outcomes in the current period. The iterates of T ∗, denoted T ∗t, give the distribution of
policy outcomes t periods hence and are key in describing the long run policy outcomes of
the model. Say P satisfies Doeblin’s condition if there is a finite Borel measure ϕ, a natural
number t, and ǫ > 0 such that ϕ(Y ) ≤ ǫ implies P t(x, Y ) ≤ 1 − ǫ, where P t is the t-period
transition defined inductively by P t(x, Y ) =

∫

P t−1(y, Y )P (x, dy). Intuitively, this means

18To be clear, we do not prove lower hemicontinuity, i.e., that a small perturbation of parameters will
produce equilibria close to the original equilibria. That property is not typically expected of equilibrium
correspondences, and our framework is no exception.

15



that if a set is small according to ϕ, then P cannot assign a high probability to the set for
any initial policy x. We can then define a measurable set Y to be invariant if for ϕ-almost
every x ∈ Y , we have P (x, Y ) = 1. Finally, we say P is aperiodic if there do not exist a
natural number β ≥ 2 and nonempty, pairwise disjoint, measurable subsets C1, . . . , Cβ such
that for all j = 1, . . . , β and all x ∈ Cj, we have P (x, Cj+1 mod β) = 1. This condition is
useful in deducing strong convergence properties for the Markov chain on policies.

In the next section, we provide a sharp characterization of long run equilibrium policies
when the model is close to a canonical spatial model for which there exists a core policy.
Here, we consider general properties of the long run distribution of equilibrium policies while
imposing minimal structure on the model. It is straightforward to show that T maps contin-
uous functions to continuous functions and, therefore, satisfies the Feller property.19 Since
X is compact, P then admits at least one invariant distribution ξ∗, so that ξ∗ = T ∗ξ∗. Thus,
each stationary legislative equilibrium determines an “ergodic Markov equilibrium,” in the
sense of Duffie et al. (1994). In fact, the main result of this section establishes that P sat-
isfies Doeblin’s condition, so that from any initial distribution ξ on X, the sequence of long
run average distributions, 1

m

∑m
t=1 T

∗tξ, m = 1, 2, . . ., converges to an invariant distribution
in the total variation norm (Doob (1953)).20 While it provides a minimal characterization
of long run policy outcomes, however, this result is weak in several respects: it concerns
the long run average distributions, rather than the distribution of policy outcomes in each
period t; the limiting invariant distribution can depend on the initial distribution; and the
rate of convergence is only known to be arithmetic. In particular, we have not precluded the
possibility that there are multiple invariant distributions.

Under further restrictions on the transition probability, standard results on Markov pro-
cesses can be applied to address these shortcomings. Although the equilibrium transition
probability is endogenous, we can obtain the desired properties by imposing restrictions on
the exogenous density g(q|x). We first address the convergence issues raised above by assum-
ing that every policy x lies in the support of g(·|x), so that x itself is a possible status quo in
the next period. This weak assumption is sufficient for aperiodicity of P and delivers fast con-
vergence to an invariant distribution from any initial policy. With this assumption, we obtain
convergence of per period policy distributions instead of the long run average distributions,
and we obtain geometric convergence in the total variation norm. We then address the possi-
bility of multiple invariant distributions by requiring overlapping supports of the status quo
densities. Specifically, we assume that for every pair of policies x, x′ ∈ X, there is a status quo
q that lies in the supports of g(·|x) and g(·|x′). Though this assumption is restrictive from a
theoretical perspective, we allow for the status quo densities to place arbitrarily low (but pos-
itive) probability at such a status quo, consonant with applications. This delivers uniqueness
of the invariant distribution corresponding to a given stationary legislative equilibrium.

Theorem 4 Let σ∗ be a stationary legislative equilibrium and T be the associated Markov
operator with adjoint T ∗.

19The transition probability P satisfies the Feller property if for all bounded, continuous φ : X → ℜ, the
mapping Tφ : X → ℜ is also bounded and continuous.

20This result is similar in spirit to that of Hellwig (1980), who uses Doeblin’s condition to establish ergodic
properties of temporary equilibria.
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1. P satisfies Doeblin’s condition, and given any initial distribution ξ, the sequence of
long run average distributions, 1

m

∑m
t=1 T

∗tξ, converges arithmetically to an invariant
distribution ξ∗ in the total variation norm: there is a constant c > 0 such that for all
m, we have

∣

∣

∣

∣

1
m

∑m
t=1 T

∗tξ − ξ∗
∣

∣

∣

∣ ≤ c
m
.

2. If for every policy x ∈ X, we have g(x|x) > 0, then P is aperiodic and given any initial
distribution ξ, the sequence of per period policy distributions converges geometrically to
an invariant distribution ξ∗ in total variation norm: there are constants c and ρ, with
c > 0 and 0 < ρ < 1, such that for all t, we have ||T ∗tξ − ξ∗|| ≤ cρt.

3. If for every pair of policies x, x′ ∈ X there exists q ∈ X such that g(q|x)g(q|x′) > 0,
then P admits a unique invariant distribution, say ξ∗. Given any initial distribution
ξ, the sequence of iterates, T ∗tξ, converges geometrically to ξ∗ in the total variation
norm: there are constants c and ρ, with c > 0 and 0 < ρ < 1, such that for all t, we
have ||T ∗tξ − ξ∗|| ≤ cρt.

Note that part 1 holds very generally and does not exploit the details of equilibrium
strategies we have established in Theorem 1. Part 2, in contrast, does rely on the equilib-
rium incentives of proposers: given any invariant set Y and any legislator i with positive
recognition probability, there is some preference shock θi such that i’s dynamic utility is
maximized over the closure of Y at a unique alternative, say x. When the policy outcome
is x, there is a positive probability that next period’s status quo is near x, i’s preference
shock is near θi, and the selected proposer is i, who then maintains a policy outcome near
x. This incentive precludes cyclic subsets and implies aperiodicity. Part 3 yields an unam-
biguous prediction of long run policy outcomes determined by an equilibrium, allowing us
to compare observed data to the distribution predicted by an equilibrium. This result is
especially helpful both for purposes of estimation when moment conditions are derived from
the long-run distribution over outcomes and for the conduct of counterfactual experiments
when, e.g., evaluating the long run effects of institutional features. Part 3 does not exploit
the structure of equilibrium strategies, and we conjecture that in more structured environ-
ments, uniqueness of the ergodic distribution may follow under even weaker conditions on
the status quo density. Note that the conditions of Theorem 4 do not preclude multiple
equilibria, each possibly determining a different invariant distribution. In the next section,
we address this issue in models approximating a canonical spatial model.

6 Equilibrium Bounds from the Core

In this section, we deduce restrictions on the equilibria of our model based on proximity to
a canonical spatial model. In particular, we consider models in which the stochastic shocks
are small and the profile of legislators’ stage utilities is close to a quadratic profile admitting
a core policy, say x̂. We establish that the stage utility of the legislator with ideal policy
x̂ in the canonical model provides an arbitrarily tight lower bound on his equilibrium dy-
namic utility, and we show that the invariant distribution over policy outcomes generated
by stationary legislative equilibria must be close, in the sense of weak convergence, to the
point mass on x̂. This core convergence result is ostensibly similar to results of Banks and
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Duggan (2000, 2006a), but they assume legislators become arbitrarily patient to show that
alternatives near the core are passed with probability one in the first period, after which the
game ends. In contrast, we make no assumptions about the patience of legislators, other
than discount factors are (close to) common. In addition, equilibrium policy outcomes may
“drift” away from x̂ in our model, but they drift slowly as the model is closer to canonical,
and the core legislator is able to pass policies close to his ideal point whenever recognized
to propose. Finally, while these authors assume the existence of a core policy such as x̂ in
the canonical model we posit, the policy x̂ does not belong to the core of our model for
almost all realizations of the legislators’ preference shocks, even in the one-dimensional case
in which a core policy (different than x̂) is guaranteed to exist for all preference shocks.

Our results bear on an earlier literature on dynamic social choice that considers the lo-
cation of policies relative to the core. Ferejohn et al. (1984) posit a transition probability on
the space of policies generated by myopic majority voting: given a policy xt in period t, the
distribution over policies in period t + 1 is determined by first randomizing over majority
coalitions and then uniformly drawing xt+1 from the set of policies myopically preferred to xt

by all members of the coalition. The authors establish that this transition probability admits
a unique invariant distribution, and that if individual preferences are Euclidean and x̂ is close
to satisfying the conditions for the core, then the invariant distribution generated by myopic
voting piles probability close to x̂. In contrast, policy dynamics in our model are governed by
equilibrium behavior among farsighted players in a non-cooperative game-theoretic frame-
work. Thus, for example, even if the policy outcome xt is close to being a core policy relative
to the stage utilities of the legislators, the equilibrium policy in the following period is deter-
mined by the legislators’ strategic preferences, which incorporate expectations of future play;
and it is not clear apriori that the stability properties of xt with respect to stage utilities are
maintained when legislators condition their votes on future expectations. Furthermore, in
our model the transition on policies is intermediated by stochastic shocks to the status quo
and to the stage utilities of legislators. Due to the noise on the status quo, the distribution of
policies will not generally converge to a point mass in the long run, and the concept of the core
cannot even be defined independently of preference shocks. It is not immediately clear how a
game-theoretic convergence result in the spirit of Ferejohn et al. (1984) should be formulated;
our approach is to consider models in which legislator stage utilities are close to admitting
a core policy x̂ and in which the shocks to the status quo and stage utilities are small.

In the analysis, we fix the policy space X ⊆ ℜd and the measure µq on ℜd. We also fix
a voting rule D that is proper, i.e., for all C ∈ D , we have N \ C /∈ D , and strong, i.e.,
for all C ⊆ N , either C ∈ D or N \ C ∈ D . A well-known example is majority rule with
n odd. When n is even, it is trivial to modify majority rule by designating one legislator
who breaks ties.21 Because we consider models with arbitrarily small noise, we cannot
maintain bounds on derivatives of densities that are uniform across models. Therefore,
given a vector b = (bf , bg) of bounds, let Γb be the class of models fulfilling (A1) with
X ⊆ ℜd, satisfying (A2)–(A3) with respect to the vector of bounds b, and fulfilling (A3)
with µq. Let Γ∞ =

⋃{Γb : b ∈ ℜ2
+} be the union of these classes.

21More generally, any voting rule D can be extended to a strong rule D̂ defined as follows: C ∈ D̂ if and
only if either C ∈ D or v ∈ C and N \ C /∈ D , where legislator v is a designated tie-breaker.
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We consider an arbitrarily fixed canonical spatial model specified by a profile (x̂i)i∈N of
ideal policies, a core legislator k with x̂k ∈ X, and a common discount factor δ < 1 such that
legislators’ stage utilities are quadratic and admit a core policy, the ideal point of legislator
k. Formally, letting uc

i be quadratic with ideal policy x̂i ∈ X, i.e., uc
i(x) = −||x̂i − x||2, we

assume that for all x ∈ ℜd, {i ∈ N : uc
i(x) > uc

i(x̂k)} /∈ D . Given ǫ > 0, we say the model
γ = ((pi, ui, δi)i∈N , X, (hℓ)ℓ∈K , f,Θ, g, µ) ∈ Γ∞ is ǫ-canonical if:

(i) max{|ui(x, 0) − uc
i(x)| : i ∈ N, x ∈ X} < ǫ,

(ii) max{min{||x− x̂k|| : x ∈ X(q)} : q ∈ X} < ǫ,

(iii) |δi−δ|
1−δi

< ǫ,

(iv) suppf ⊆ Bǫ(0),

(v) for all x ∈ X, suppg(·|x) ⊆ Bǫ(x).

The canonical model can be interpreted as a limiting version of our model in which stage
utilities are quadratic and admit a core policy, the core policy is feasible from every status
quo, discount factors are common, the distribution of the preference shock θ is degenerate
at zero, and the transition from current policy, x, to next period’s status quo, q = x, is
deterministic; in particular, the absence of stochastic transitions places the canonical model
outside of our framework.

In the appendix, Lemmas 7 and 8 establish that in an ǫ-canonical model for ǫ small, the
core legislator is almost decisive: a proposed policy will pass only if it does not give legislator
k a dynamic utility much less than his dynamic utility from the status quo; and if a policy
gives k a dynamic utility slightly higher than the status quo, then it will pass if proposed. The
proof relies on a result of Banks and Duggan (2006b) establishing that the core legislator is
decisive over lotteries in the canonical spatial model: a decisive coalition of legislators prefers
one lottery to another if and only if the core legislator does. This result must be applied with
care, however, for in an ǫ-canonical model the core may be empty, discount factors may not
be common, and the legislator’s preferences are subject to shocks. For this reason, we find
that the core legislator is nearly decisive when the model is close to canonical; this implies
that in equilibrium, the core legislator can implement policies that nearly maximize his dy-
namic utility when recognized to propose, and that policy outcomes cannot deliver dynamic
utility much lower than the status quo for the core legislator when someone else is recognized.
Although these lemmas are stated in terms of strategic preferences, we use them to obtain
Lemma 9, which provides a lower bound for the core legislator in terms of stage utility. This
lower bound holds with slack, due to the facts that the status quo is realized with noise and
that the core legislator is only nearly decisive, but that slack disappears as ǫ becomes small.

The main result of this section characterizes equilibria in models that are close to canon-
ical: the core legislator becomes pivotal, in the sense that his stage utility provides a lower
bound for his dynamic payoffs, and long run equilibrium policies are concentrated close to
the core with high probability. This does not imply that the dynamics of the model become
trivial: given any ǫ-canonical model, any equilibrium of the model, and any status quo q,
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the path of play will lead away from q with positive probability, and optimal proposals and
votes obey the usual dynamic incentives. Indeed, even starting from the core of the canon-
ical model, policy outcomes will drift away with positive probability as stage utilities are
perturbed, legislators other than k are recognized, and new status quos are realized. We
show, however, that from any initial condition, the equilibrium path of play will gravitate
toward the core with high probability as the model gets closer to the canonical model.22 In
what follows, we say a sequence {γm} of models in Γ∞ canonical if there is a sequence {ǫm}
such that γm is ǫm-canonical for all m, lim inf pm

k > 0, and ǫm → 0.23

Theorem 5 Assume that D is proper and strong and that {γm} is a canonical sequence,
and for each m, let σm ∈ E(γm) be a stationary legislative equilibrium.

1. For all sequences {θm} and {ym} satisfying θm ∈ suppfm and ym ∈ X for all m, we
have lim infm→∞ Uk(y

m, θm
k ; σm) ≥ uk(y, 0), and lim infm→∞ vk(y

m; σm) ≥ uk(y, 0).

2. Every sequence {ξm} of equilibrium invariant distributions converges weak* to the unit
mass on x̂k.

Part 1 follows directly from Lemma 9. The proof of part 2 proceeds by showing that along
the sequence, the core legislator k proposes policies close to x̂k with probability one. Using
part 1, we show that for any finite number of periods T and for large enough m, the proposals
of all legislators must stay arbitrarily close to x̂k for all T periods following a proposal by
the core legislator. This, with the fact that the core legislator’s proposal probability has a
strictly positive lower bound that is uniform across m, enables us to show that the invariant
probability cannot place positive mass far from x̂k as m goes to infinity, as required.

7 Conclusion

We establish existence of stationary Markov perfect equilibria satisfying a number of desirable
regularity properties in a general model of legislative policy making. Our analysis imposes no
constraints on the dimensionality of the policy space, we do not assume convexity conditions
on policy preferences, and we allow for any voting rule that can be expressed in terms of a
collection of decisive coalitions. The main technical assumption we impose is differentiability,
which, in combination with uncertainty about future policy preferences and noise in the im-
plementation of future policies, allows us to bring methods of differentiable topology to bear
on the existence problem. Specializing to the unidimensional model, or the multidimensional
model in which legislator preferences are close to a canonical form, we find that a median
voter theorem holds: as the stochastic shocks in the model become small, the long run equi-
librium policies are concentrated near the median, or the core policy in higher dimensions,
with high probability. For reasons of space, we have limited the scope of our analysis to a
benchmark model that is institutionally austere, in the sense that we abstract away from

22See Duggan and Kalandrakis (2009b) for a numerical illustration of core convergence in a two-
dimensional, quadratic model with nine legislators.

23We use the obvious convention γm = ((pm
i

, um
i

, δm
i

)i∈N , X, (hm

ℓ
)ℓ∈Km , fm, Θm, gm, µ) and Xm(q) for the

set of policies feasible at q.
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much of the detail of real-world political systems. It encapsulates all of the difficult technical
issues we would encounter in more complex models, while offering advantages of efficiency in
presentation. But our approach to existence and related issues is quite general and extends
to a much larger class of models that can capture a substantial amount of institutional de-
tail. It is trivial to augment the model with a finite set of states that control stage utilities,
discount factors, the feasible policies, the voting rule, and the identity of the proposer and
that evolve according to an exogenous Markov process; this allows us to capture institu-
tional features such as a legislative committee system and permits the analysis of electoral
incentives in policy-making. Such richer versions of the model open the opportunity for the
fine-tuned analysis of constitutional design issues using computational analysis (e.g., Duggan
et al. (2008) on the effect of the presidential veto) or structural estimation (e.g., Duggan and
Kalandrakis (2009a) on the dynamics of US presidential and congressional elections).

A Proofs of Theorems

The appendix is organized as follows. We first prove four lemmas that establish continuity
properties and necessary conditions for solutions to the optimization problem of the pro-
poser. We proceed to define the mapping ψ, described in Section 4, and with Lemma 5 we
establish that this mapping is continuous and that its domain and range can be restricted
to a compact set. We then prove existence of legislative equilibrium in Theorem 1 by an
application of Glicksberg’s theorem, and parts 1–4 of the theorem follow immediately from
Lemmas 1–3. In Lemma 6, we show that all legislative equilibrium continuation values are
fixed points ψ. The proof of Theorem 2, which reduces all mixed legislative equilibria to pure,
relies mainly on Lemmas 1 and 4. Theorem 3, on upper hemicontinuity of the equilibrium
correspondence, follows from Lemmas 5 and 6. Theorem 4 uses the continuity of optimal
proposals along with known results on ergodicity of Markov chains. Theorem 5 follows with
the help of Lemmas 7–9, which develop the near decisiveness of the core legislator.

Let Cr(ℜd,ℜn) be the r-times continuously differentiable functions from ℜd into ℜn with
the topology of Cr-uniform convergence on compacta. To describe this topology, let s be a
natural number and Y ⊆ ℜd, and define the norm ||φ||s,Y on Cs(ℜd,ℜn) as sup{||∂φ(x)|| : x ∈
Y }, where ∂φ is the s-th derivative of φ.24 Then a sequence {φm} of functions converges to φ
in Cr(ℜd,ℜn) if and only if for every s = 0, 1, . . . , r and every compact set Y ⊆ ℜd, we have
||φm − φ||s,Y → 0. We say φm → φ in C∞(ℜd,ℜn) if and only if it converges in Cr(ℜd,ℜn)
for all r = 0, 1, . . .. Given v = (v1, . . . , vn) ∈ Cr(ℜd,ℜn), define the induced utility

Ui(y, θi; v) = (1 − δi)ui(y, θi) + δivi(y),

where future payoffs are as though generated by v, and define the associated acceptance sets

Ai(q, θ; v) = {y ∈ X(q) : Ui(y, θi; v) ≥ Ui(q, θi; v)}.
Let C ⊆ N be any coalition and C ⊆ 2N any nonempty collection of coalitions, and, following
the conventions of Section 3, define

AC(q, θ; v) =
⋂

i∈C

Ai(q, θ; v) and AC (q, θ; v) =
⋃

C∈C

⋂

i∈C

Ai(q, θ; v).

24We reserve the notation Dφ for the two-dimensional Jacobian matrix of φ.
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When C = ∅, we adopt the convention that AC(q, θ; v) = X(q). Lastly, let

max
y∈AC (q,θ;v)

Ui(y, θ; v) Pi(C , q, θ; v)

be the optimal proposal problem of legislator i, given status quo q and preference shocks
θ, if the collection of decisive coalitions were C and continuation values were v. When C

consists of a single coalition, C, we use the obvious shorthand Pi(C, q, θ; v), substituting C
for C in the notation defined above. Henceforth, the vector of functions v will be assumed
to range over Cr(ℜd,ℜn), unless otherwise restricted.

Our first lemma establishes, among other things, that the legislators’ optimal proposals
are essentially unique.

Lemma 1

1. For all C , the correspondence AC : ℜd ×Θ×Cr(ℜd,ℜn) ⇉ ℜd has nonempty, compact
values; and for all q, AC (q, θ, v) has closed graph in (θ, v),

2. Fix v ∈ C0(ℜd,ℜn). For all i and all C , there is a measurable function πC
i (·; v) : ℜd ×

Θ → ℜd such that for all q and all θ, πC
i (q, θ; v) solves Pi(C , q, θ; v),

3. Fix v ∈ C0(ℜd,ℜn). For all q, there is a measure zero set Θ1(q; v) ⊆ Θ such that for
all θ /∈ Θ1(q; v), all i, and all C , πC

i (q, θ; v) is the unique solution to Pi(C , q, θ; v).

Proof We have AC (q, θ; v) 6= ∅ for all (q, θ, v), as the status quo q belongs to Ai(q, θ; v) for
all i ∈ N . Compactness of AC (q, θ; v) follows since it is a closed subset of X∪{q}, a compact
set. By Mas-Colell’s (1985) Theorem K.1.2, the function Ui(y, θi; v) is jointly continuous in
(y, θi, v). It follows that for all q, Ai(q, θ; v) has closed graph in (θ, v), and AC (q, θ; v) inherits
this property. This completes the proof of part 1. To prove part 2, fix v ∈ C0(ℜd,ℜn), and
consider any i and C . We first argue that the correspondence X(·) of feasible policies is
weakly measurable. Let Kin = {n + 1, . . . , n + |Kin|} index the inequality constraints and
Keq = {n+|Kin|+1, . . . , k} index equality constraints. Define the mappingH : ℜd×ℜd → ℜk

by H(y, q) = (hn+1(y, q), . . . , hk(y, q)}, and define the set F = (ℜd
+)|K

in| × ({0})|Keq|. Note
that H is a Caratheodory function by assumption, and X(q) = {x ∈ ℜd : H(x, q) ∈ F}.
Define the correspondence ϕ : ℜd

⇉ ℜd by ϕ(q) = {x ∈ ℜd : H(x, q) /∈ F}. Then Aliprantis
and Border’s (1999) Lemma 17.7 implies that ϕ is measurable, and we also have X(q) =
ℜd \ϕ(q). To confirm weak measurability of X(·), consider any open G ⊆ ℜd, and note that
{q ∈ ℜd : X(q)∩G 6= ∅} = {q ∈ ℜd : ϕ(q) ⊆ ℜd\G}, which is indeed measurable, as claimed.
Now, since Ui(·; v) is a Caratheodory function and X(·) is weakly measurable, Aliprantis and
Border’s (1999) Theorem 17.18 yields a measurable selection πC

i (·; v) : ℜd×Θ → ℜd from the
correspondence of solutions to Pi(C , q, θ; v), as required. To prove part 3, fix v ∈ C0(ℜd,ℜn),
and consider any q, any i, and any C . Given preference shocks θ−i, let

A−i
C

(q, θ−i; v) =
⋃

C∈C

AC\{i}(q, θ; v)
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denote the set of policies acceptable to all members, except possibly i, of some coalition in
the collection C . Note that if y solves Pi(C , q, θ; v), then it also solves

max
y
Ui(y, θi; v)

s.t.y ∈ A−i
C

(q, θ−i; v).

Note that if y 6= y′, then Dθi
[Ui(y, θi; v)−Ui(y

′, θi; v)] = (1− δi)Dθi
[ui(y, θi)−ui(y

′, θi)] 6= 0.

Thus, Mas-Colell’s (1985) Theorem I.3.1 yields a measure zero set Θ
i,C ,θ−i

1 (q; v) ⊆ ℜd such

that for all θi /∈ Θ
i,C ,θ−i

1 (q; v), the program Pi(C , q, θ; v) admits a unique solution. Then

Θi,C
1 (q; v) =

⋃

θ−i∈ℜ(n−1)d

(

Θ
i,C ,θ−i

1 (q; v) × {θ−i}
)

is measure zero. Finally, since N is finite,

Θ1(q; v) =
⋃

i∈N

⋃

C⊆2N

Θi,C
1 (q; v)

is measure zero, as desired.

Before we state the next lemma, we develop necessary notation and recall some def-
initions. For the moment, fix continuation values v and status quo q. For any subsets
C ⊆ N and L ⊆ K, define the functions UC(·; q, v) : ℜd × Θ → ℜ|C| by UC(y, θ; q, v) =
(Uj(y, θj; v) − Uj(q, θj ; v))j∈C and hL(·; q) : ℜd → ℜ|L| by hL(y, q) = (hℓ(y, q))ℓ∈L. Define the
mapping FC,L : (ℜd \ {q}) × Θ → ℜ|C|+|L| by

FC,L(y, θ; q, v) =

[

UC(y, θ; q, v)
hL(y; q)

]

,

where here (and whenever relevant) we view vectors as column matrices, making FC,L(y, θ; q, v)
a (|C|+ |L|)×1 matrix. Derivatives are expanded via rows, e.g., DyU

C(y, θ; q, v) is a |C|×d
matrix. With regard to the program Pi(C, q, θ; v), consider y ∈ AC(q, θ; v) and let C ⊆ C
and K ⊆ K, with Keq ⊆ K, represent the voting and feasibility constraints, respectively,
that hold with equality at y. We suppress the dependence of these sets on the pair (q, θ).
Taking the coalition C as fixed, we say that y satisfies the linear independence constraint
qualification (LICQ) at (q, θ) if DyF

C,K(y, θ; q, v) has full row rank. The next lemma estab-
lishes that for all q and almost all θ, LICQ holds at every policy other than the status quo.

Lemma 2 Fix v. For all q, there exists a measure zero set Θ2(q; v) ⊆ Θ such that for
all θ /∈ Θ2(q; v), all i, and all C, and all y ∈ AC(q, θ; v) \ {q}, y satisfies LICQ at (q, θ).

Proof Fix v, and consider any q and any C ⊆ N and K ⊆ K such that C ∪ K 6= ∅.
The derivative of the mapping FC,K(·; q, v) at (y, θ) ∈ ℜd \ {q}×Θ is the (|C|+ |K|)× (d+
|C|m+ (n− |C|)m) matrix

DFC,K(y, θ; q, v) =

[

DyU
C(y, θ; q, v) [Dθj

UC(y, θ; q, v)]j∈C 0

Dyh
K(y; q) 0 0

]

.
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The C rows of [Dθj
UC(y, θ; q, v)]j∈C are linearly independent since Dθj

UC(y, θ; q, v) is a

|C| ×m matrix with entry (1 − δj)Dθj
[uj(y, θj) − uj(q, θj)] 6= 0 in the row corresponding to

j ∈ C and zeros in the remaining rows. For all (y, θ) such that FC,K(y, θ; q, v) = 0, K must

be contained in the binding feasibility constraints at y, and therefore the rows of DhK(y, q)

are linearly independent by assumption. Thus, DFC,K(y, θ; q, v) has full row rank. We

conclude that FC,K is transversal to {0}. For each θ, define FC,K
θ : ℜd \ {q} → ℜ|C|+|K| by

FC,K
θ (y; q, v) = FC,K(y, θ; q, v). Note that FC,K is r-times continuously differentiable and
r ≥ d > max {0, d− (|C| + |K|)}. Thus, it follows by the transversality theorem that for

almost all θ, FC,K
θ is transversal to {0}. Let ΘC,K

2 (q; v) be the measure zero set of θ’s where
this does not hold, and let Θ2(q; v) be the finite union of these sets over all C and K with
C ∪K 6= ∅, which also has measure zero.

The next lemma shows that for all q and almost all θ, if any legislator is indifferent be-
tween the optimal proposal and the status quo, then all such legislators are necessary in order
for the proposal to be approved by a coalition in C : if one is removed, then the resulting
coalition no longer belongs to C . Note that the proof of the lemma does not rely on Lemma 2.

Lemma 3 Fix v. For all q, there is a measure zero set Θ3(q; v) ⊆ Θ such that for all
θ /∈ Θ3(q; v), all i, and all C , if πC

i (q, θ; v) 6= q and we define

C∗ = {j ∈ N : Uj(π
C

i (q, θ; v), θj; v) ≥ Uj(q, θj ; v)},

then for all nonempty C with Uj(π
C
i (q, θ; v), θj; v) = Uj(q, θj; v) for all j ∈ C, we have

C∗ \ C /∈ C .

Proof Fix v, and consider any q. We claim there is a measure zero set Θ̃3(q; v)
such that for all θ /∈ Θ̃3(q; v), all i, all C, and all j /∈ C ∪ {i}, if πC

i (q, θ; v) 6= q, then
Uj(π

C
i (q, θ; v), θj; v) 6= Uj(q, θj; v). Indeed, fix i arbitrarily, and consider any coalition C.

Note that for all j /∈ C ∪ {i}, πC
i (q, θj, θ−j ; v) is independent of θj . Thus, if θ−j satis-

fies πC
i (q, θ; v) 6= q, then the equality Uj(π

C
i (q, (θ−j, θ

′
j); v), θ

′
j; v) = Uj(q, θ

′
j ; v) holds for a

measure zero set of shocks θ′j . In particular, define the function Fj : Θ → ℜ by Fj(θ
′
j) =

Uj(π
C
i (q, (θ−j, θ

′
j); v), θ

′
j; v)−Uj(q, θ

′
j ; v); sinceDFj(θ

′
j) = (1−δj)Dθ′j

[uj(π
C
i (q, (θ−j , θ

′
j); v), θ

′
j)−

uj(q, θ
′
j)] 6= 0, it follows that zero is a regular value of Fj , and we conclude by the preim-

age theorem (see Mas-Colell’s (1985) Theorem H.2.2) that F−1
j (0) is a (m− 1)-dimensional

set. We infer that there is a measure zero set Θ̃
i,C,j,θ−j

3 (q; v) ⊆ ℜd such that for all θj /∈
Θ̃

i,C,j,θ−j

3 (q; v), we have Uj(π
C
i (q, (θ−j, θj); v), θj; v) 6= Uj(q, θj; v). Then

Θ̃i,C,j
3 (q; v) =

⋃

{

θ ∈ Θ : θj ∈ Θ̃
i,C,j,θ−j

3 (q; v), πC
i (q, θ; v) 6= q

}

is measure zero. Since N is finite,

Θ̃3(q; v) =
⋃

{

Θ̃i,C,j
3 (q; v) : i ∈ N,C ⊆ N, j /∈ C ∪ {i}

}

is also measure zero, as desired. We now define Θ3(q; v) = Θ1(q; v)∪ Θ̃3(q; v). Consider any
θ /∈ Θ3(q; v), any i, and any C , and suppose that πC

i (q, θ; v) 6= q. Define C∗ as in the state-
ment of the lemma. Consider any nonempty C satisfying Uj(π

C
i (q, θ; v), θj; v) = Uj(q, θj; v)
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for all j ∈ C. Since θ /∈ Θ1(q; v), part 3 of Lemma 1 implies Ui(π
C
i (q, θ; v), θi; v) > Ui(q, θi; v),

so that i /∈ C. Suppose, to obtain a contradiction, that C ′ = C∗ \ C ∈ C , and take any
j ∈ C. Note that πC

i (q, θ; v) solves Pi(C
∗, q, θ; v), and since Pi(C

′, q, θ; v) removes at
least one constraint, we have Ui(π

C′

i (q, θ; v), θi; v) ≥ Ui(π
C
i (q, θ; v), θi; v). Since C ′ ∈ C ,

we have πC′

i (q, θ; v) ∈ AC (q, θ; v). Then, since θ /∈ Θ1(q; v), part 3 of Lemma 1 im-
plies πC′

i (q, θ; v) = πC
i (q, θ; v) 6= q. But then j /∈ C ′ ∪ {i} and Uj(π

C′

i (q, θ; v), θj; v) =
Uj(π

C
i (q, θ; v), θj; v) = Uj(q, θj ; v) contradict θ /∈ Θ̃3(q; v). We conclude that C∗ \ C /∈ C .

The next lemma shows that, generically, any feasible policy x that is weakly preferred to
the status quo by a decisive coalition of legislators can be approximated by feasible policies
that are strictly preferred to the status quo by a decisive coalition.

Lemma 4 Fix v. For all q, there is a measure zero set Θ4(q; v) ⊆ Θ such that for
all θ /∈ Θ4(q; v), all i, all C , and all y ∈ AC (q, θ; v) \ {q}, there exists a sequence {ym} in
AC (q, θ; v) such that ym → y and for all j and all m, Uj(y

m, θj; v) 6= Uj(q, θj; v).

Proof Fix v, consider any q, and define Θ4(q; v) = Θ2(q; v). Consider any θ /∈ Θ4(q; v),
any i, any C , and any y ∈ AC (q, θ; v) \ {q}. Let C∗ = {j ∈ N : Uj(y, θj; v) ≥ Uj(q, θj ; v)}.
Since y ∈ AC (q, θ; v), we have C∗ ∈ C . Let C and K denote the voting and feasibility
constraints, respectively, that bind at y in program Pi(C

∗, q, θ; v). Since y 6= q and θ /∈
Θ2(q; v), y satisfies LICQ at (q, θ). Define the mapping F : ℜd+1 → ℜ|C|+|K| by

F (x, ǫ) =

[

(Uj(x, θj ; v) − ǫ− Uj(q, θj; v))j∈C

(hℓ(x, q))ℓ∈K

]

,

and note that F (y, 0) = 0. By LICQ, DxF (y, 0) has full row rank, and the implicit func-
tion theorem (see Loomis and Sternberg (1968)) yields open sets P ⊆ ℜ around zero and
Y ⊆ ℜd around y and a continuous mapping φ : P → Y such that φ(0) = y and for all ǫ ∈ P ,
F (φ(ǫ), ǫ) = 0. Defining the sequence {ym} by ym = φ(1/m), continuity of φ implies ym → y.
For all ℓ ∈ Kin \K, we have hℓ(y, q) > 0, and continuity of hℓ implies that for high enough
m, hℓ(y

m, q) > 0. And F (ym, 1/m) = 0 implies that for all ℓ ∈ K, we have hℓ(y
m, q) = 0.

Thus, ym ∈ X for sufficiently high m. For all j ∈ C∗ \ C, so that Uj(y, θj; v) > Uj(q, θj; v),
continuity of Uj implies that for sufficiently high m, we have Uj(y

m, θj ; v) > Uj(q, θj; v). And
F (ym, 1/m) = 0 implies that for all j ∈ C, we have Uj(y

m, θj ; v) − Uj(q, θj; v) = 1/m > 0.
Therefore, ym ∈ AC∗(q, θ; v) ⊆ AC (q, θ; v) for sufficiently high m. Furthermore, for all
j /∈ C∗ such that Uj(y, θj; v) < Uj(q, θj ; v), continuity implies that for high enough m,
Uj(y

m, θj ; v) < Uj(q, θj ; v). Thus, we have established the existence of a subsequence {ym}
in AC (q, θ; v), such that ym → y and Uj(y

m, θj; v) 6= Uj(q, θj; v) for all j, as required.

As in Section 4, we now index models by γ = ((pγ
i , u

γ
i , δ

γ
i )i∈N , X

γ, (hγ
ℓ )ℓ∈Kγ , fγ,Θγ, gγ, µγ);

we let Γ denote the metric space of parameterizations satisfying the assumptions of the leg-
islative model, with X in (A1) fixed, uniform bounds b = (bf , bg) fulfilling (A2)–(A3), and
the measure µq in (A3) fixed; and we continue to assume that the parameterization is contin-
uous in the sense of that section. We define the induced utility Uγ

i (y, θi; v) in model γ in the
obvious way, and so that Ui is jointly continuous in (y, θi, v, γ). Given model γ ∈ Γ and con-
tinuation value functions v, Lemma 1 allows us to define measurable mappings πγ

i (·; v) : ℜd×
Θ → ℜd such that for all q and almost all θ, πγ

i (q, θ; v) solves P
γ
i (D , q, θ; v), i.e., it solves the

proposer’s optimization problem at (q, θ) in model γ when the voting rule is given by D and
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continuation values are given by v. We use these optimal proposal mappings to define a best
response continuation value mapping ψ as follows: define ψ : C0(ℜd,ℜn)×Γ → C0(ℜd,ℜn) by

ψ(v, γ)(x) =

∫

q

∫

θ

∑

j

pγ
jU

γ
i (πγ

j (q, θ; v), θi; v)f
γ(θ)gγ(q|x)dµ.

where ψ(v, γ) ∈ C0(ℜd,ℜn) follows from the fact that ψ(v, γ) depends on x only through
the gγ(q|x), which is continuous. When γ is fixed, we may write ψγ(v) for the value ψ(v, γ).

The next lemma establishes that the domain and range of ψ can be restricted to a com-
pact space and that ψ is continuous on this domain. Recall that bf bounds |uγ

i (x, θi)|fγ(θ)
on Θγ , and bg bounds the norms of derivatives of gγ(q|x) with respect to x on X, and let
bh = µq(X). Furthermore, let bg, bh ≥ 1. Define V to consist of functions v ∈ Cr(ℜd,ℜn)
such that (i) if r < ∞, then the derivatives of v of order 0, 1, . . . , r are bounded in norm
by

√
nbfbgbh, and the r-th derivative of v is Lipschitz continuous with modulus

√
nbfbgbh;

and (ii) if r = ∞, then the derivatives of v of all orders 0, 1, 2, . . . are bounded in norm by√
nbfbgbh. Denote by M(ℜd,ℜn) the set of Borel measurable mappings from ℜd to ℜn.

Lemma 5

1. The space V is nonempty, convex, and compact.

2. Consider γ ∈ Γ and φ ∈M(ℜd,ℜn) such that for all i, φi is bounded in absolute value
by bf over X. Define the mapping φ̂ ∈ M(ℜd,ℜn) by φ̂(x) =

∫

q
φ(q)gγ(q|x)dµq for all

x. Then φ̂ ∈ V .

3. The mapping ψ : V × Γ → V is continuous.

Proof The space V is obviously nonempty and convex. In case r < ∞, Mas-Colell’s
(1985) Theorem K.2.2 implies that V is compact as well in the topology of Cr-uniform con-
vergence on compacta. In case r = ∞, compactness of V in the topology of C∞-uniform
convergence on compacta follows from Mas-Colell’s Theorems K.2.2.1 and K.2.2.2.

For part 2, consider any γ ∈ Γ and φ ∈ M(ℜd,ℜn) such that for all i, φi is bounded
in absolute value by bf . Define φ̂ as in the statement of the lemma. By Aliprantis and

Burkinshaw’s (1990) Theorem 20.4, each function φ̂i is partially differentiable. Let ∂α denote
a partial derivative operator with respect to the coordinates of x of any order s = 1, 2, . . . , r
with multi-index α. Using Aliprantis and Burkinshaw’s result, we write

∂αφ̂(x) =

∫

q

φ(q)∂αgγ(q|x)dµq. (5)

Since this depends on x only through ∂αgγ(q|x), which is continuous, it follows that ∂αφ̂i is
continuous. Indeed, consider a sequence {xm} in ℜd converging to x. Then the integrand in
∂αφ̂i(x

m), as a function of q, converges pointwise to the integrand in ∂αφ̂i(x). Furthermore,
we assume that the s-th derivative of gγ(q|x) with respect to x is bounded in norm by bg,
which implies |∂αgγ(q|xm)| ≤ bg for all m. Since the support of gγ(·|x) lies in X, a compact
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set, it follows that ∂αgγ(q|x) is identically zero for all q /∈ X. Therefore, since φ is bounded
in absolute value by bf on X, we have |φ(q)∂αgγ(q|x)| ≤ bfbgIX(q) for all q, and the claimed

continuity follows from Lebesgue’s dominated convergence theorem. Therefore, φ̂ is r-times
continuously differentiable. To prove that φ̂ ∈ V , first suppose r < ∞, and let ∂ be a
derivative operator of order s = 0, 1, . . . , r, where we view ∂φ̂(x) as a n × ds matrix and
∂gγ(q|x) as a 1 × ds row vector. Then, viewing φ̂(x) and φ(q) as n × 1 column vectors, we
have from (5) that ∂φ̂(x) =

∫

q
φ(q)∂gγ(q|x)dµq, and consequently,

||∂φ̂(x)|| ≤
∫

q

||φ(q)∂gγ(q|x)||dµq ≤
∫

q

||φ(q)|| ||∂gγ(q|x)||dµq,

where the first inequality follows from Jensen’s inequality and the second follows from
Aliprantis and Border’s (1999) Lemma 6.6. Note that ||φ(q)|| ≤ √

nbf . Again, ∂gγ(·|x)
is identically zero outside X, and we therefore have

||∂φ̂(x)|| ≤
∫

X

√
nbf ||∂gγ(q|x)||dµq ≤

∫

X

√
nbfbgdµq =

√
nbfbgbh.

Let ∂ be the r-th order derivative with respect to x, and note that for all x and y,

||∂φ̂(x) − ∂φ̂(y)|| =

∣

∣

∣

∣

∣

∣

∣

∣

∫

q

φ(q)(∂gγ(q|x) − ∂gγ(q|y))dµq

∣

∣

∣

∣

∣

∣

∣

∣

≤
∫

q

||φ(q)|| ||∂gγ(q|x) − ∂gγ(q|y)||dµq

≤
∫

X

√
nbf ||∂gγ(q|x) − ∂gγ(q|y)||dµq

≤
√
nbfbgbh||x− y||,

where the last inequality follows from our assumption that the r-th derivative of gγ(q|x) with
respect to x is Lipschitz continuous with modulus bg and that bh = µ(X). Thus, ∂φ̂ is Lip-
schitz continuous with modulus

√
nbfbgbh, fulfilling (i). Now suppose r = ∞, and consider

any s ≥ 1. As above, we have ||∂φ̂(x)|| ≤ √
nbfbgbh, fulfilling (ii) and implying φ̂ ∈ V .

For part 3, first consider any (v, γ) ∈ V × Γ, and define the mapping w : ℜd → ℜn by

wi(q) =

∫

θ

∑

j

pγ
jU

γ
i (πγ

j (q, θ; v), θi; v)f
γ(θ)dµθ (6)

for all i and all q. Recall that |uγ
i (x, θi)|fγ(θ) ≤ bf for all i, all θ ∈ Θγ, and all x ∈ X. Since

πγ
i (q, θ; v) ∈ Xγ(q) ⊆ X, we then have for all i and all q ∈ X,

|wi(q)| ≤
∫

θ

∑

j

pγ
j

[

(1 − δγ
i )|uγ

i (π
γ
j (q, θ; v), θi)| + δγ

i |vi(π
γ
j (q, θ; v))|

]

fγ(θ)dµθ,

which is bounded above by bf . Noting that ψ(v, γ)(x) =
∫

q
w(q)gγ(q|x)dµq, it follows from

part 2 of the lemma that ψ(v, γ) ∈ V . We conclude that ψ : V × Γ → V , as desired.

27



To prove continuity of ψ, consider sequences {vm} in V and {γm} in Γ with vm → v∗ ∈
Cr(ℜd,ℜn) and γm → γ∗ ∈ Γ. We use superscript m for variables corresponding to model
γm, and we use a superscript asterisk for variables corresponding to γ∗. We claim that for
all q, all i, and all θ /∈ Θ∗

1(q; v
∗) ∪ Θ∗

2(q; v
∗), πm

i (q, θ; vm) → π∗
i (q, θ; v

∗). If not, then because
πm

i (q, θ; vm) lies in the compact set X for high enough m, we may go to a subsequence, still
indexed by m, such that πm

i (q, θ; vm) → x 6= π∗
i (q, θ; v

∗). Since πm
i (q, θ; vm) ∈ Am

D
(q, θ; vm)

for all m, part 1 of Lemma 1 implies that x ∈ A∗
D
(q, θ; v∗). And since θ /∈ Θ∗

1(q; v
∗), part

3 of Lemma 1 implies that U∗
i (π∗

i (q, θ; v
∗), θi; v

∗) > U∗
i (x, θi; v

∗). We consider two cases.
First, suppose π∗

i (q, θ; v
∗) 6= q, so by θ /∈ Θ∗

4(q; v
∗), Lemma 4 implies that there exists

y ∈ A∗
D
(q, θ; v∗) arbitrarily close to π∗

i (q, θ; v
∗) such that U∗

j (y, θj; v
∗) 6= U∗

j (q, θj ; v
∗) for all

j. Thus, there exists a decisive coalition C ∈ D such that U∗
j (y, θj; v

∗) > U∗
j (q, θj; v

∗)
for all j ∈ C. Furthermore, by U∗

i (π∗
i (q, θ; v

∗), θi; v
∗) > U∗

i (x, θi; v
∗) and continuity of

U∗
i , we may suppose U∗

i (y, θi; v
∗) > U∗

i (x, θi; v
∗). Since y ∈ X∗(q), and since Xm(q) →

X∗(q) Hausdorff, there exists a sequence {ym} in ℜd such that ym ∈ Xm(q) for all m
and ym → y. By joint continuity, we then have for all j ∈ C and for high enough m,
Um

j (ym, θj; v
m) > Um

j (q, θj ; v
m), implying ym ∈ Am

D
(q, θ; vm). But by joint continuity, we

also have Um
i (ym, θ; vm) > Um

i (πm
i (q, θ; vm), θi; v

m) for high enough m, contradicting the
fact that πm

i (q, θ; vm) solves Pm
i (D , q, θ; vm). For the second case, suppose π∗

i (q, θ; v
∗) = q.

Then π∗
i (q, θ; v

∗) = q ∈ Am
D

(q, θ; vm) for all m. By joint continuity, we have Um
i (q, θ; vm) >

Um
i (πm

i (q, θ; vm), θi; v
m) for high enough m, again contradicting the fact that πm

i (q, θ; vm)
solves Pm

i (D , q, θ; vm). This establishes the claim.

We next claim that for all i and all θ, {Um
i (·, θ; vm)} converges uniformly to U∗

i (·, θ; v∗) on
each compact set Y ⊆ ℜd. If not, then there exists ǫ > 0 and a sequence {xm} in Y such that

|(1 − δm
i )um

i (xm, θi) + δm
i v

m
i (xm) − (1 − δ∗i )u

∗
i (x

m, θi) − δ∗i v
∗
i (x

m)| ≥ ǫ

for all m. By compactness of Y , we may go to a convergent subsequence, indexed by m, with
xm → x ∈ Y . But vm → v uniformly, and with continuity of our parameterization, we have

lim
m→∞

(1 − δm
i )um

i (xm, θi) + δm
i v

m
i (xm) = (1 − δ∗i )u

∗
i (x, θi) + δ∗i v

∗
i (x)

= lim
m→∞

(1 − δ∗i )u
∗
i (x

m, θi) + δ∗i v
∗
i (x

m),

a contradiction. This establishes the claim.

Finally, let v̂m = ψ(vm, γm) and v̂∗ = ψ(v∗, γ∗). Let ∂ denote a derivative operator
with respect to the coordinates of x of any order s = 0, 1, . . . , r. Consider any compact set
Y ⊆ ℜd. We must show that ∂v̂m converges uniformly to ∂v̂∗ on Y . If not, then there exists
ǫ > 0, a subsequence {∂v̂m}, still indexed by m, and a corresponding sequence {xm} in Y
such that for all m, ||∂v̂m(xm)−∂v̂∗(xm)|| ≥ ǫ. By compactness of Y , we may go to a further
subsequence, still indexed by m, such that xm → x for some x ∈ Y . Then Aliprantis and
Burkinshaw’s (1990) Theorem 20.4 implies that for all i and all m,

∂v̂m
i (xm) =

∫

q

∫

θ

∑

j

pm
j U

m
i (πm

j (q, θ; vm), θi; v
m)fm(θ)∂gm(q|xm)dµ.

Consider the generic case of (q, θ) such that for all j, πm
j (q, θ; vm) → π∗

j (q, θ; v
∗). By uniform

convergence, from our preceding claim, Um
i (πm

j (q, θ; vm), θi; v
m) → U∗

i (π∗
i (q, θ; v

∗), θi; v
∗).
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This gives us pointwise convergence of the integrand of ∂v̂m
i (xm) for almost all (q, θ):

∑

j

pm
j U

m
i (πm

j (q, θ; vm), θi; v
m)fm(θ)∂gm(q|xm) →

∑

j

p∗jU
∗
i (π∗

j (q, θ; v
∗), θi; v

∗)f ∗(θ)∂g∗(q|x).

Since ∂gm(q|xm) is zero outside X and since vm ∈ V , the terms in the above sequence are
bounded in norm by the integrable function bfbgbhIX . By Lebesgue’s dominated convergence
theorem, and using Aliprantis and Burkinshaw’s (1990) Theorem 20.4, we therefore have

∂v̂m
i (xm) →

∫

q

∫

θ

∑

j

p∗jU
∗
i (π∗

j (q, θ; v
∗), θi; v

∗)f ∗(θ)∂g∗(q|x)dµ = ∂v̂∗i (x).

By continuity of ∂v̂∗i , we also have ∂v̂∗i (x
m) → ∂v̂∗i (x), but then |∂v̂i(x

m) − ∂v̂∗i (x
m)| → 0.

Since i was arbitrary, we have ||∂v̂m(xm)− ∂v̂∗(x)|| → 0, a contradiction. We conclude that
{∂v̂m} converges to ∂v̂∗ uniformly on Y , and therefore v̂m → v̂∗, as required.

We can at last turn to the proof of Theorem 1.

Proof of Theorem 1 The statement of Theorem 1 implicitly fixes a model γ ∈ Γ. By
part 1 of Lemma 5, V is nonempty, convex, and compact. By part 3 of Lemma 5, ψγ maps
V to V and the mapping ψγ : V → V is continuous. Therefore, Glicksberg’s (1952) theorem
yields a fixed point v∗ ∈ V such that ψγ(v∗) = v∗. We then construct equilibrium strategies
as follows: for all i, we specify πi(q, θ) = πD

i (q, θ; v∗), and we specify αi(y, q, θ) = 1 if
y ∈ Ai(q, θ; v

∗) and αi(y, q, θ) = 0 otherwise. Evidently, the strategy profile σ = (πi, αi)i∈N

so defined is a pure stationary legislative equilibrium. Part 1 of Theorem 1 follows from
v∗ ∈ V , and parts 2, 3, and 4 follow from part 3 of Lemma 1, part 3 of Lemma 3, and part
1 of Lemma 3, respectively.

The proof of Theorem 1 relied on the fact that every fixed point of ψγ corresponds to a
stationary legislative equilibrium in model γ. Our final lemma establishes the converse.

Lemma 6 For all (v, γ) ∈M(ℜd,ℜn) × Γ, if v ∈ E(γ), then v ∈ V and v = ψγ(v).

Proof Let (v, γ) ∈ M(ℜd,ℜn) × Γ be such that v ∈ E(γ), and let σ be the stationary
legislative equilibrium generating v, so that v = v(·; σ). As in the proof of part 3 of Lemma
5, define the measurable mapping w : ℜd → ℜn by (6) for all i and all q, so that v(x) =
∫

q
w(q)gγ(q|x)dµq for all x. As argued in the proof of part 3 of Lemma 5, we then have

v ∈ V . Part 3 of Lemma 1 therefore implies that for all i and almost all (q, θ), we have
πi(q, θ) = πγ

i (q, θ; v). This in turn implies that v = ψ(v, γ).

We now complete the proofs of Theorems 2–4.

Proof of Theorem 2 The statement of Theorem 2 implicitly fixes a model γ ∈ Γ, which
we suppress notationally. Consider an arbitrary mixed stationary legislative equilibrium σ,
and let the measurable mapping v : ℜd → ℜn be defined by the equilibrium continuation
values as v(x) = (v1(x; σ), . . . , vn(x; σ)). To facilitate the proof, define

Wi(y, q, θ; σ) = α(y, q, θ; σ)Ui(y, θ; σ) + (1 − α(y, q, θ; σ))Ui(q, θ; σ)

as the objective function of the proposer given strategy profile σ.
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Now consider any q, and set Θ(q) = Θ1(q; v) ∪ Θ4(q; v). Consider any θ /∈ Θ(q).
Since θ /∈ Θ1(q; v), part 3 of Lemma 1 implies that πD

i (q, θ; v) is the unique solution to
Pi(D , q, θ; v). We consider two cases. First, suppose that πD

i (q, θ; v) = q. If we have
∫

X\{q}
α(y, q, θ; σ)πi(q, θ)(dy) > 0, then there is a set Y ⊆ X \ {q} such that πi(q, θ)(Y ) > 0

and for all y ∈ Y , α(y, q, θ; σ) > 0. By definition of equilibrium, the latter implies
Y ⊆ AD(q, θ; v). Then Ui(q, θi; σ) > Ui(y, θi; σ) for all y ∈ Y , which implies Wi(y, q, θ; σ) <
Ui(q, θi; σ) = Wi(q, q, θ; σ) for all y ∈ Y , contradicting the fact that πi places probability
one on maximizers of Wi(·, q, θ; σ). Therefore,

∫

X\{q}
α(y, q, θ; σ)πi(q, θ)(dy) = 0. Second,

suppose πD
i (q, θ; v) 6= q. We claim that

sup
y∈X

Wi(y, q, θ; σ) ≥ Ui(π
D

i (q, θ; v), θi; v).

To see this, note that since θ /∈ Θ4(q; v), Lemma 4 yields a sequence {ym} in X such that
ym → πD

i (q, θ; v) and for all m, there is a decisive coalition Cm satisfying Uj(y
m, θj , v) >

Uj(q, θj; v) for all j ∈ Cm. By definition of equilibrium, it then follows that αj(y
m, q, θj) = 1

for all j ∈ Cm, which implies α(ym, q, θ; σ) = 1. By continuity, we then have Wi(y
m, q, θ; σ) =

Ui(y
m, θi; v) → Ui(π

D
i (q, θ; v), θi; v), as claimed. Thus, by definition of equilibrium, the

mixed proposal strategy πi must achieve an expected payoff of at least Ui(π
D
i (q, θ; v), θi; v).

Next, we claim that πi(q, θ)({πD
i (q, θ; v)}) = 1 and α(πD

i (q, θ; v), q, θ; σ) = 1. Consider
any y 6= πD

i (q, θ; v), and note that if y /∈ AD(q, θ; v), then α(y, q, θ; σ) = 0, which im-
plies Wi(y, q, θ; σ) = Ui(q, θi; v) < Ui(π

D
i (q, θ; v), θi; v). And if y ∈ AD(q, θ; v) \ {q}, then

Ui(π
D
i (q, θ; v), θi; v) > max{Ui(y, θi; v), Ui(q, θi; v)}, which implies the inequalityWi(y, q, θ; σ)

< Ui(π
D
i (q, θ; v), θi; v). Therefore, we conclude that πi(q, θ) indeed puts probability one on

πD
i (q, θ; v). If we had α(πD

i (q, θ; v), q, θ; σ) < 1, then the inequality Ui(π
D
i (q, θ; v), θi; v) >

Ui(q, θi; v) would imply Wi(π
D
i (q, θ; v), q, θ; σ) < Ui(π

D
i (q, θ; v), θi; v), contradicting our pre-

vious claim. Thus, conclude α(πD
i (q, θ; v), q, θ; σ) = 1, as desired.

Finally, we specify pure proposal strategies by πi(q, θ) = πD
i (q, θ; v), and we specify pure

voting strategies by αi(y, q, θ) = 1 if y ∈ AD
i (q, θ; v) and αi(y, q, θ) = 0 otherwise. The pure

stationary strategy profile σ = (πi, αi)i∈N generates the same policy outcomes as σ for almost
all (q, θ) and, therefore, the same continuation values. By construction, proposal and voting
strategies satisfy the equilibrium conditions of Section 3, and therefore σ is a pure stationary
legislative equilibrium. Evidently, σ is equivalent to σ, and by Lemma 6, the equilibrium
continuation value function v lies in V and is a fixed point of ψγ . Then the property of part
1 of Theorem 1 follows immediately, and the properties of parts 2, 3, and 4 follow from part
3 of Lemma 1, part 3 of Lemma 3, and part 1 of Lemma 3, respectively.

Proof of Theorem 3 Consider sequences {γm} in Γ and {vm} in Cr(ℜd,ℜn) such that
γm → γ ∈ Γ, vm → v ∈ Cr(ℜd,ℜn), and for all m, vm ∈ E(γm). By Lemma 6, we have
vm = ψ(vm, γm) for all m. Taking limits, we have vm → v and, by part 3 of Lemma 5,
ψ(vm, γm) → ψ(v, γ). Thus, v = ψ(v, γ), which implies v ∈ E(γ), establishing closed graph
of E. By Lemma 6, the range of ψ lies in V , a compact space, and therefore closed graph of
E implies upper hemicontinuity.

Proof of Theorem 4 Let σ∗ be a stationary legislative equilibrium. For all x ∈ X and
all measurable Z ⊆ X × Θ, let Q(x, Z) =

∫

q

∫

θ
IZ(q, θ)f(θ)g(q|x)dµ denote the probability
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that next period’s (q, θ) lies in Z, conditional on policy choice x this period. To verify
Doeblin’s condition, define the finite Borel measure η on ℜd by

η(Y ) =

∫

π−1
i (Y )∩(X×Θ)

f(θ)dµ.

Set ǫ = 1
1+b

, and consider any x ∈ ℜd and any measurable Y ⊆ ℜd. Note that η(Y ) ≤ ǫ

implies bη(Y ) ≤ b
1+b

, and furthermore, we have

P (x, Y ) =
∑

j∈N

pjQ(x, π−1
j (Y )) =

∑

j∈N

pjQ(x, π−1
j (Y ) ∩ (X × Θ)) ≤ bη(Y ) ≤ 1 − ǫ,

where we use the assumption that the support of g(·|x) lies in X. Therefore, P (x, Y ) ≤ 1−ǫ,
establishing Doeblin. By Futia’s (1982) Theorem 4.9, the Markov operator T is quasi-
compact, and it follows that the adjoint T ∗ is also quasi-compact. (See Futia (1982), proof
of Theorem 3.3.) For an arbitrary initial distribution µ, Futia’s (1982) Theorems 3.2 and
3.4 then yield convergence to an invariant distribution µ∗ at the rate claimed in part 1.

Suppose that for all x ∈ X, we have g(x|x) > 0. Let C1, . . . , Cβ be pairwise disjoint, mea-
surable sets such that for all j = 1, . . . , β and all x ∈ Cj, we have P (x, Cj+1 mod β) = 1, and
suppose β > 2. Let Cj denote the closure of Cj, which is compact. We first claim that for
j 6= ℓ, we have Cj∩Cℓ = ∅. Otherwise, consider x ∈ Cj∩Cℓ. Since g(x|x) > 0 and g is contin-
uous, we can choose xj ∈ Cj, xℓ ∈ Cℓ, and an open set G containing x such that for all q ∈ X,
we have g(q|xj) > 0 and g(q|xℓ) > 0. Let i satisfy pi > 0. Because P (xj, Cj+1 mod β) = 1, it
follows thatG×Θ contains a measure zero set Zj such that for all (q, θ) ∈ (G×Θ)\Zj, we have
πi(q, θ) ∈ Cj+1 mod β. Similarly, G×Θ contains a measure zero set Zℓ such that for all (q, θ) ∈
(G×Θ) \Zℓ, we have πi(q, θ) ∈ Cℓ+1 mod β . But G×Θ has positive measure, so there exists
(q, θ) ∈ G×Θ such that πi(q, θ) ∈ Cj+1 mod β ∩Cℓ+1 mod β, a contradiction. By Mas-Colell’s
(1985) Theorem I.3.1, there exists θi with positive marginal density such that Ui(y, θi; σ

∗)
has a unique maximizer on the set

⋃β
j=1Cj , say x∗ ∈ Cj. In particular, we have shown

Ui(x
∗, θi; σ

∗) > max

{

Ui(y, θi; σ
∗) : y ∈

⋃

ℓ:ℓ 6=j

Cℓ

}

, (7)

and continuity of Ui(·; σ∗) yields an open set G containing θi such that the strict inequality in
(7) continues to hold for all θ′i ∈ G. Furthermore, since g(x∗|x∗) > 0 and g is continuous, there
is an open set H containing x∗ such that for all θ′i ∈ G and all q ∈ H , we have g(q|x∗) > 0 and

Ui(q, θ
′
i; σ

∗) > max

{

Ui(y, θi; σ
∗) : y ∈

⋃

ℓ:ℓ 6=j

Cℓ

}

. (8)

We claim that for all (q, θ′) such that θ′i ∈ G and q ∈ H , we have πi(q, θ
′) /∈ Cj+1 mod β.

Indeed, optimality of πi(q, θ
′) implies Ui(πi(q, θ

′), θ′i; σ
∗) ≥ Ui(q, θ

′
i; σ

∗), and then (8) implies
πi(q, θ

′) /∈ Cj+1 mod β. Using continuity of g and x∗ ∈ Cj , there exists x̃ ∈ Cj such that for
all q ∈ H , we have g(q|x̃) > 0. But then with probability Q(x̃, H × G × ℜ(n−1)d) > 0, we
have πi(q, θ

′) /∈ Cj+1 mod β, contradicting P (x̃, Cj+1 mod β) = 1. Thus, P is aperiodic, and
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Doob’s (1953) Case (f) obtains. Since Doeblin’s condition holds, we can partition X into
a finite number of ergodic sets E1, . . . , Eα and a transient set (X \⋃α

j=1Ej), and for every
ergodic set Ej , there is a unique invariant probability measure ξj such that ξj(Ej) = 1 (Doob
(1953), pp. 210–211). By Doob’s (1953) equation (5.13), we have for all measurable Y ⊆ X,

lim
t→∞

P t(x, Y ) =

α
∑

j=1

lim
t→∞

P t(x,Ej)ξj(Y ),

where ξx(·) =
∑α

j=1 limt→∞ P t(x,Ej)ξj(·) is an invariant probability measure. In fact, the
limit is uniform and approached exponentially fast (see his explanation below equation
(5.15)), and therefore there exist c′ and ρ < 1 such that for all x ∈ X and all t,

sup
Y

|P t(x, Y ) − ξx(Y )| ≤ c′ρt,

where the supremum is over measurable subsets of X. Given an initial probability measure
ξ on X, define ξ∗ by ξ∗(Y ) =

∫

ξx(Y )ξ(dx). Then Jensen’s inequality yields

|T ∗tξ(Y ) − ξ∗(Y )| ≤
∫

|P t(x, Y ) − ξx(Y )|ξ(dx) ≤ c′ρt.

Defining c = 2c′, we therefore have ||T ∗tξ(·) − ξ∗(·)|| = 2 supY |T ∗tξ(Y ) − ξ∗(Y )| ≤ cρt, as
required for part 2.

Since Doeblin’s condition holds, we again partition X into a finite number of ergodic
sets E1, . . . , Eα and a transient set. We will first show that there is just one ergodic set E,
i.e., α = 1. Suppose there are distinct ergodic sets, E and E ′, and consider any x ∈ E and
x′ ∈ E ′. By assumption, there exists (q̃, θ̃) such that g(q̃|x)g(q̃|x′)f(θ̃) > 0, and continuity
then implies Z = {(q, θ) : g(q|x)g(q|x′)f(θ) > 0} is a nonempty, open subset of X × Θ. Let
i satisfy pi > 0. Because P (x,E) = 1, there is a measure zero set W ⊆ Z such that for all
(q, θ) ∈ Z \W , we have πi(q, θ) ∈ E. But similarly, there is a measure zero set W ′ ⊆ Z such
that for all (q, θ) ∈ Z \W ′, we have πi(q, θ) ∈ E ′. But Z has positive measure, so there exists
(q, θ) ∈ Z \ (W ∪W ′), and we have πi(q, θ) ∈ E∩E ′, a contradiction. Thus, there is a unique
ergodic set E ⊂ X. An identical argument establishes that E cannot be partitioned into
cyclically moving subclasses, that is, pairwise disjoint, measurable subsets C1, . . . , Cβ ⊆ E,
with β ≥ 2, such that for all j = 1, . . . , β and all x ∈ Cj , we have P (x, Cj+1 mod d) = 1. If
such a partition were possible, then for each x ∈ C1 and x′ ∈ C2, there would exist (q, θ)
such that πi(q, θ) ∈ C1 ∩ C2, a contradiction. Thus, a strong version of Doeblin’s condition
holds, delivering part 3 (see Doob (1953), page 221, on condition (D0)).

We now prove Theorem 5. Recall that we have fixed a canonical model (k, (x̂i)i∈N , δ) sat-
isfying x̂k ∈ X. Given model γ ∈ Γ∞, strategies σ, and a pair (x̃, θ̃) ∈ X ×Θ in any period,
we write the expected payoff Ui(x̃, θ̃i; σ) as the integral of ui(x, θi) with respect to a Borel
probability measure µi on X × Θ as follows. We define µ0 as the unit mass on (x̃, θ̃), µ1 by

µ1(Y ×H) =
∑

j

pj

∫

q

∫

θ

IY (πj(q, θ))IH(θ)f(θ)g(q|x̃)dµ (9)
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for all open Y ⊆ ℜd and open H ⊆ ℜmn, and for t ≥ 2, we define µt by

µt(Y ×H) =

∫

x

∫

θ

∑

j

pj

[
∫

q

∫

θ′
IY (πj(q, θ

′))IH(θ′)f(θ′)g(q|x)dµ
]

dµt−1. (10)

Thus, given policy outcome x̃ and preference shocks θ̃ in the current period, µt is the joint
distribution on policies and preference shocks t periods hence. We notationally suppress the
dependence of µt on (x̃, θ̃), but we make this dependence clear from context. We then define
µi = (1−δi)

∑∞
t=0 δ

t
iµ

t. As is well-known, the probability measures µt and µi extend uniquely

to the Borel sigma-algebra on X×Θ. We refer to µi as the continuation distribution of (x̃, θ̃)
at σ in γ for legislator i. Note that the definition of µt is independent of i, while µi depends
on i through the discount factor δi. When discount factors are common, the continuation
distribution is common to all legislators, and in this case we write µc for (1 − δ)

∑∞
t=0 δ

tµt.
Note that for all t ≥ 1, the marginal probability measure µt

θ on Θ is given by f and that the
supports of the conditionals µt(·|θ) lie in X.

The next result gives us a partial characterization of equilibria of an ǫ-canonical model
γ ∈ Γ∞ in terms of dynamic utilities. In the sequel, let β0(ǫ) be the supremum of |ui(x, θi)−
ui(x, 0)|, and let β1(ǫ) be the supremum of |ui(x, θi)|, over i ∈ N , x ∈ X, and θ ∈ Bǫ(0).
Note that lim supǫ→0 β

0(ǫ) = 0 and lim supǫ→0 β
1(ǫ) <∞.

Lemma 7 Assume D is proper and strong. For all λ > 0, there exists ǫ(λ) > 0 such that
for all ǫ > 0 with ǫ < ǫ(λ), all ǫ-canonical models γ ∈ Γ∞, all stationary strategy profiles σ,
all θ ∈ suppf , and all y, z ∈ X, the following hold: (i) if Uk(y, θk; σ) > Uk(z, θk; σ) +λ, then
{i ∈ N : Ui(y, θi; σ) > Ui(z, θi; σ)} ∈ D, and (ii) if {i ∈ N : Ui(y, θi; σ) ≥ Ui(z, θi; σ)} ∈ D,
then Uk(y, θk; σ) > Uk(z, θk; σ) − λ.

Proof To prove the lemma, we show (i), as (ii) follows analogously. If (i) does not hold,
then there exist λ > 0, a canonical sequence {γm}, and corresponding stationary strategy
profiles σm, shocks θm ∈ suppfm, and policies ym, zm ∈ X such that Um

km(ym, θm
km; σm) >

Um
km(zm, θm

km; σm) + λ but Cm = {i ∈ N : Um
i (zm, θm

i ; σm) ≥ Um
i (ym, θm

i ; σm)} ∈ D . For
each m, let µm,0 be the unit mass on (ym, θm), and let µm,t denote the joint distribution
on policies and preference shocks t ≥ 1 periods in the future defined as in (9) and (10).
Let µm

i = (1 − δm
i )
∑∞

t=0(δ
m
i )tµm,t be the continuation distribution for legislator i, and let

µm
c = (1 − δ)

∑∞
t=0(δ)

tµm,t be the corresponding continuation distribution in the canonical
model. Likewise, define νm

c to be the continuation distribution in the canonical model cor-
responding to policy choice and shock (zm, θm). Using compactness of X, and going to a
further subsequence (still indexed by m) if necessary, we may assume that µm

c → µc and
νm

c → νc weak*. Obviously,

∣

∣

∣

∣

∫

uc
i(x)dµ

m
c −

∫

uc
i(x)dµc

∣

∣

∣

∣

→ 0 and

∣

∣

∣

∣

∫

uc
i(x)dν

m
c −

∫

uc
i(x)dνc

∣

∣

∣

∣

→ 0

by weak* convergence. Defining Im,t
i =

∫

x,θ
um

i (x, θi)dµ
m,t, we verify the following inequali-
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ties:25

∣

∣

∣

∣

Um
i (ym, θm

i ; σm) −
∫

x,θ

uc
i(x)dµ

m
c

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

x,θ

um
i (x, θi)dµ

m
i −

∫

x,θ

um
i (x, θi)dµ

m
c

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

x,θ

(um
i (x, θi) − um

i (x, 0))dµm
c

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

x,θ

(um
i (x, 0) − uc

i(x))dµ
m
c

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

(1 − δ)

[ ∞
∑

t=1

((δm
i )t − δt)Im,t

i

]

− (δm
i − δ)

[ ∞
∑

t=0

(δm
i )tIm,t

i

]

∣

∣

∣

∣

∣

+ β0(ǫm) + ǫm

= |δm
i − δ|

∣

∣

∣

∣

∣

[

(1 − δ)
∞
∑

t=1

(

(δm
i )t − δt

δm
i − δ

)

Im,t
i

]

−
[ ∞
∑

t=0

(δm
i )tIm,t

i

]

∣

∣

∣

∣

∣

+ β0(ǫm) + ǫm

≤ |δm
i − δ|

[

β1(ǫm)

1 − δm
i

+
β1(ǫm)

1 − δm
i

]

+ β0(ǫm) + ǫm

≤ 2ǫmβ1(ǫm) + β0(ǫm) + ǫm.

We conclude that |Um
i (ym, θm

i ; σm)−
∫

x,θ
uc

i(x)dµc| → 0. By a similar argument for (zm, θm),
it follows that

lim
m→∞

Um
i (ym, θm

i ; σm) =

∫

x,θ

uc
i(x)dµc and lim

m→∞
Um

i (zm, θm
i ; σm) =

∫

x,θ

uc
i(x)dνc. (11)

Thus,
∫

uc
k(x)dµc ≥

∫

uc
k(x)dνc + λ, and Lemma 2.1 of Banks and Duggan (2006b) implies

C ′ =

{

i ∈ N :

∫

x,θ

uc
i(x)dµc >

∫

x,θ

uc
i(x)dνc

}

∈ D . (12)

Since D is proper, we may select i ∈ C ∩ C ′, but the inequality in (12), with (11), yields
Um

i (ym, θm
i ; σm) > Um

i (zm, θm
i ; σm) for sufficiently high m, contradicting i ∈ C.

We next use Lemma 7 to deduce a lower bound for the equilibrium dynamic utility of
the core legislator k from k’s own proposal and from the proposals of all other legislators.
In the sequel, given λ > 0, ǫ(λ) is chosen as in Lemma 7.

Lemma 8 Assume D is proper and strong. For all λ > 0, all ǫ < ǫ(λ), all ǫ-canonical
models γ ∈ Γ∞, all stationary legislative equilibria σ ∈ E(γ), all q ∈ X, and all θ ∈ suppf ,
the core legislator k’s dynamic utility satisfies (i) for all y ∈ X(q), Uk(πk(q, θ), θk; σ) ≥
Uk(y, θk; σ) − λ, and (ii) for all j 6= k, Uk(πj(q, θ), θk; σ) ≥ Uk(q, θk; σ) − λ.

Proof For (i), note that if Uk(y, θk) − λ > Uk(q, θk; σ), then Lemma 7(i) implies
y ∈ A(q, θ; σ), i.e., y will pass if proposed, generating a dynamic utility of Uk(y, θk; σ). Oth-
erwise, if Uk(y, θk; σ)−λ ≤ Uk(q, θk; σ), then k can propose the status quo and obtain at least
Uk(y, θk; σ)−λ. For (ii), Lemma 7(ii) ensures that any proposal y that receives the approval
of a winning coalition yields at least Uk(q, θk; σ) − λ for the core legislator, as claimed.

25The third inequality in what follows uses the identity (1 − δ)
∑∞

t=1

(

δ
t

i
−δ

t

δi−δ

)

= 1

1−δi

.
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Next, we extend Lemma 8 to deduce a bound in terms of stage utilities. Given an ǫ-
canonical model, let β2(ǫ) be the supremum of |ui(x, 0) − ui(y, 0)| over i ∈ N , x ∈ X, and
y ∈ Bǫ(x). Note that lim supǫ→0 β

0(ǫ) = lim supǫ→0 β
2(ǫ) = 0.

Lemma 9 Assume D is proper and strong. For all ζ > 0, there exist ǫ > 0 such
that for all ǫ with ǫ < ǫ, all ǫ-canonical models γ ∈ Γ∞, all stationary legislative equilibria
σ ∈ E(γ), all θ ∈ suppf , and all y ∈ X, we have Uk(y, θk; σ) ≥ uk(y, 0) − ζ

1−δk
, and

vk(y; σ) ≥ uk(y, 0) − ζ
1−δk

.

Proof Fix ζ > 0. Let λ > 0 satisfy λ < ζ/2, and choose ǫ so that 0 < ǫ < ǫ(λ) and
λ + β0(ǫ) + β2(ǫ) ≤ ζ/2. Consider any ǫ > 0 with ǫ < ǫ, any ǫ-canonical model γ, and any
equilibrium σ ∈ E(γ). Define ψ = max{uk(x, 0) − Uk(x, θk; σ) : x ∈ X, θk ∈ Bǫ(0)}, where
Bǫ(0) is the closure of Bǫ(0), and let (x∗, θ∗k) solve this program. Note that for all y ∈ X and
all θk ∈ Bǫ(0), we must have Uk(y, θk; σ) ≥ uk(y, 0)−ψ. Since ǫ < ǫ(λ), Lemma 8(ii) implies

Uk(x
∗, θ∗k; σ) ≥ (1 − δk)[uk(x

∗, 0) − β0(ǫ)] + δk

∫

θ

∫

q

[Uk(q, θk; σ) − λ]f(θ)g(q|x∗)dµ

≥ (1 − δk)[uk(x
∗, 0) − β0(ǫ)] + δk

∫

q

[uk(q, 0) − ψ − λ]g(q|x∗)dµq

≥ (1 − δk)[uk(x
∗, 0) − β0(ǫ)] + δk[uk(x

∗, 0) − β2(ǫ) − ψ − λ],

where the third inequality uses suppg(·|x∗) ⊆ Bǫ(x
∗). Since Uk(x

∗, θ∗k; σ) = uk(x
∗, 0) − ψ,

the foregoing implies

ψ ≤ δk(λ+ β2(ǫ))

1 − δk
+ β0(ǫ),

and we conclude that for all y ∈ X,

Uk(y, θk; σ) ≥ uk(y, 0) − ψ ≥ uk(y, 0)− λ+ β2(ǫ) + β1(ǫ)

1 − δk
≥ uk(y, 0) − ζ

2(1 − δk)
,

which delivers the first part of the theorem. By Lemma 8, we then have

vk(y) ≥
∫

q

∫

θ

[Uk(q, θk; σ) − λ]f(θ)g(q|y)dµ

≥ uk(y, 0) − λ− ζ

2(1 − δk)
− β2(ǫ)

≥ uk(y, 0) − ζ

1 − δk
,

completing the proof.

Finally, we prove Theorem 5 on core convergence of stationary legislative equilibria.

Proof of Theorem 5 Part 1 follows directly from Lemma 9. To prove part 2, let
{γm} be a canonical sequence, let {σm} be a sequence of stationary legislative equilibria,
and let {ξm} be any selection of invariant distributions generated by {σm}. For each m,
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γm is ǫm-canonical, where ǫm → 0, and we write Pm and P t
m for the transition probability

and t-periods transition, respectively, corresponding to σm in model γm. We must show that
{ξm} converges weakly to the unit mass on x̂k, i.e., for all η > 0, we have ξm(Bη(x̂k)) → 1.
To prove this, we fix η > 0 and proceed in four steps.

First, we claim that the core legislator’s proposals become uniformly close to the limiting
core policy x̂k, i.e., there exists a sequence {ζm} with ζm ↓ 0 such that for all m, all q ∈ X,
and all θ ∈ suppfm, we have πm

k (q, θ) ∈ Bζm(x̂k). Since ǫm → 0, we can choose a sequence
{λm} with λm ↓ 0 such that for all but finitely many m, we have ǫm < ǫ(λm). Let

ψm = max{um
k (y, 0) − Um

k (y, θk; σ
m) : y ∈ X, θk ∈ Bǫm(x̂k)},

where Bǫm(x̂k) is the closed ball. Since {δm
k } has limit less than one, Lemma 9 implies that

ψm → 0. For each m, define

ζm =

√

ǫm + (ǫm)2 + β0(ǫm) + ψm + λm

1 − δm
k

,

and note that ζm → 0. Now fix any m, any q ∈ Xm, any θ ∈ suppfm, and any xm ∈
Xm(q) ∩ Bǫm(x̂k), and consider any y /∈ Bζm(x̂k). We show that y is not the optimal
proposal for legislator k, and since it is an arbitrary policy outside Bζm(x̂k), the claim is
established. Note that um

k is uniformly within ǫm of uc
k, which has a maximum value of zero,

implying ǫm ≥ um
k (xm, 0). Since xm ∈ Bǫm(x̂k), i.e., uc

k(x
m) ≥ −(ǫm)2, we then have

Um
k (xm, θk; σ

m) ≥ um
k (xm, 0) − ψm

≥ (um
k (xm, 0) − uc

k(x
m)) + uc

k(x
m) − ψm

≥ −ǫm − (ǫm)2 − ψm.

Using vm
k (y; σm) ≤ max{um

k (x, 0) + β0(ǫm) : x ∈ X} ≤ ǫm + β0(ǫm), we also have

Um
k (y, θk; σ

m) ≤ (1 − δm
k )[uc

k(y) + ǫm + β0(ǫm)] + δm
k v

m
k (y; σm)

≤ (1 − δm
k )uc

k(y) + ǫm + β0(ǫm).

Since y /∈ Bζm(x̂k), i.e., −(ζm)2 ≥ uc
k(y), we deduce

Um
k (xm, θk; σ

m) − Um
k (y, θk; σ

m) ≥ −ǫm − (ǫm)2 − ψm − [(1 − δm
k )uc

k(y) + ǫm + β0(ǫm)]

≥ (1 − δm
k )(ζm)2 − [2ǫm + (ǫm)2 + β0(ǫm) + ψm]

> λm.

In particular, Um
k (xm, θ; σm) − λm > Um

k (y, θ; σm). Since ǫm < ǫ(λm), Lemma 8(i) ensures

Um
k (πm

k (q, θ), θk; σ
m) ≥ Um

k (xm, θk; σ
m) − λm > Um

k (y, θk; σ
m),

implying πm
k (q, θ) 6= y, as desired. As we can take {ζm} to be decreasing, the claim is fulfilled.

Our second claim is that given a current policy outcome close to the core, the proba-
bility that the outcome next period is close to the core goes to one. To be precise, define
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B(m) = Bζm(x̂k); then we claim that for all ρ > 0, there exists m such that for all m ≥ m
and all x ∈ B(m), we have Pm(x,Bρ(x̂k)) = 1. By Lemmas 8 and 9, we can choose a sequence
{λm} with λm → 0 and such that for all but finitely many m, ǫm < ǫ(λm), and such that for
all x ∈ X, we have Um

k (x, θk; σ
m) ≥ um

k (x, 0)−λm and vk(x; σ
m) ≥ um

k (x, 0)− λm. In partic-
ular, since ǫm < ǫ(λm), it follows that for all i ∈ N , all q ∈ X, and all θ ∈ suppfm, we have
Um

k (πm
i (q, θ), θk; σ

m) ≥ Um
k (q, θk; σ

m)−λm. Furthermore, since ǫm → 0, β0(ǫm) → 0, ζm → 0,
and δm

k → δ < 1, we can pick large enough m such that for all m ≥ m, the following holds:

(1 − δm
k )(−ρ2 + ǫm + β0(ǫm) + δm

k (ǫm + β0(ǫm)) < −(ǫm + ζm)2 − ǫm − 2λm.

Now consider any m ≥ m, any x ∈ B(m), any y /∈ Bρ(x̂k), any q ∈ suppgm(·|x), and any
θ ∈ suppfm. We then have

Uk(q, θk; σ
m) − λm ≥ um

k (q, 0) − 2λm

≥ uc
k(q) − ǫm − 2λm

≥ −(ǫm + ζm)2 − ǫm − 2λm

> (1 − δm
k )(−ρ2 + ǫm + β0(ǫm)) + δm

k (ǫm + β0(ǫm))

≥ (1 − δm
k )(uc

k(y) + ǫm + β0(ǫm) + δm
k vk(y; σ

m)

≥ (1 − δm
k )(um

k (y, θk) + δm
k vk(y; σ

m)

≥ Uk(y, θk; σ
m),

and since Uk(π
m
i (q, θ), θk; σ

m) ≥ Uk(q, θk; σ
m) − λm for all i, this implies y 6= πm

i (q, θ). As
y /∈ Bρ(x̂k) was arbitrary, we conclude that πm

i (q, θ) ∈ Bρ(x̂k), and the claim follows.

Third, we claim that given current policy outcome close to the core, the probability that
future policies will be close to the core goes to one; formally, for all t ≥ 1, there exists m(t)
such that for all m ≥ m(t) and for all x ∈ B(m(t)), we have P t

m(x,Bη(x̂k)) = 1. We prove
the claim by induction on t. The case t = 1 follows immediately by setting ρ = η in the
second claim. Suppose the claim holds for some t = τ ≥ 1, i.e., the induction hypothesis is
that there exists m(τ) such that for all m ≥ m(τ) and all x ∈ B(m(τ)), P τ

m(x,Bη(x̂k)) = 1.
We will show that the claim also holds for t = τ + 1. By the second claim, we can choose
m(τ+1) ≥ m(τ) such that for allm ≥ m(τ+1) and all x ∈ B(m(τ+1)), Pm(x,B(m(τ))) = 1.
Consequently, for all m ≥ m(τ + 1) and all x ∈ B(m(τ + 1)), we have

P τ+1
m (x,Bη(x̂k)) =

∫

P τ
m(y, Bη(x̂k))Pm(x, dy)

≥
∫

B(m(τ))

P τ
m(y, Bη(x̂k))Pm(x, dy)

=

∫

B(m(τ))

Pm(x, dy)

= 1,

where the second to last equality uses the induction hypothesis with B(m(τ+1)) ⊆ B(m(τ)),
and the last follows from the second claim. This completes the proof of the claim.
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Finally, we complete the proof. Part 1 of Theorem 4 shows that for all m, the transition
Pm(x, Y ) satisfies Doeblin’s condition, so there is a finite number of ergodic sets, Em

1 , . . . , E
m
ℓm

,
and each Em

j admits a unique invariant distribution ξm
j . For all m, let Em

jm
satisfy

ξm
jm

(Bη(x̂k)) = min{ξm
j (Bη(x̂k)) | j = 1, . . . , ℓm}.

By Theorem 5.7 of Doob (1953), every invariant distribution ξm corresponding to equilib-
rium σm is a convex combination of the invariant distributions {ξm

j }j=1,...,ℓm
, and it follows

that ξm(Bη(x̂k)) ≥ ξm
jm

(Bη(x̂k)). Thus, in order to prove the theorem, it suffices to show
that limm→∞ ξm

jm
(Bη(x̂k)) = 1. Suppose otherwise in order to derive a contradiction. Going

to a subsequence (still indexed by m), we may assume limm→∞ ξm
jm

(Bη(x̂k)) = 1−φ < 1 and
limm→∞ pm

k = p > 0. Choose a natural number T such that φ > (1 − p)T . Since ξm
jm

is an
invariant distribution, we must have

ξm
jm

(Bη(x̂k)) =

∫

x

P T
m(x,Bη(x̂k))ξ

m
jm

(dx)

=

∫

x

T−1
∑

t=0

∫

y

pm
k

[
∫

q

∫

θ

P T−t
m (πm

k (q, θ), Bη(x̂k))f
m(θ)gm(q|y)dµ

]

P̃ t(x, dy)ξm
jm

(dx)

+

∫

x

P̃ T
m(x,Bη(x̂k))ξ

m
jm

(dx), (13)

where P̃ t
m is defined inductively by setting P̃ 0

m(x, ·) to be the unit mass on x, letting

P̃ 1
m(x, Y ) =

∫

q

∫

θ

∑

i6=k

pm
i IY (πm

i (q, θ))fm(θ)gm(q|x)dµ,

and then defining P̃ t
m(x, Y ) =

∫

P̃ t−1
m (y, Y )P̃ 1

m(x, dy) for t > 1. The last line of (13) reflects
paths of play such that the core legislator k is not recognized in any period t = 1, . . . , T ,
while the previous line collects all paths of play such that the core legislator is recognized for
the first time in the t-th period, t = 1, . . . , T . By our first claim, πm

k (q, θ) ∈ B(m) for all m,
all q ∈ X, and all θ ∈ suppfm. We can then define m = max{m(1), . . . , m(T )} and apply
our third claim to deduce that for all m ≥ m, all t = 1, . . . , T , all q ∈ X, and all θ ∈ suppfm,
we have P t

m(πm
k (q, θ), Bη(x̂k)) = 1. Furthermore, note that

∫

P̃ t
m(x, dy) = (1 − pm

k )t. As a
consequence, (13) implies that for all m ≥ m, we have

ξm
jm

(Bη(x̂k)) ≥
∫

x

T−1
∑

t=0

∫

y

pm
k P̃

t(x, dy)ξm
jm

(dx) =

T−1
∑

t=0

pm
k (1 − pm

k )t.

Taking the limit as m→ ∞, we deduce that

1 − φ ≥
T−1
∑

t=0

p(1 − p)t = 1 − (1 − p)T ,

contradicting φ > (1 − p)T . We conclude that limm→∞ ξm
jm

(Bη(x̂k)) = 1, as desired.
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