
Better Performance Through Thread-local Emulation

Ali Razeen, Valentin Pistol, Alexander Meijer, Landon P. Cox
Duke University

ABSTRACT
Mobile platforms are shifting away from managed code and
toward native code. For example, the most recent versions of
Android compile Dalvik bytecodes to native code at install-
time, and apps frequently use third-party native libraries.
The trend toward native code on mobile platforms calls us to
develop new ways of building dynamic taint-tracking tools,
such as TaintDroid, that achieve good performance. In this
paper, we argue that the key to good performance is to track
only when necessary, e.g., when an app handles sensitive
data. We argue that thread-local emulation is a feature that
captures this goal. In this paper, we discuss the motiva-
tion for thread-local emulation, the software and hardware
techniques that may be used to implement it, results from
preliminary work, and the many challenges that remain.

1. INTRODUCTION
Dynamic information-flow analysis (i.e., taint-tracking)

underlies a wide range of experimental mobile services, in-
cluding secure deletion [19], protecting user privacy [9], and
attesting to data authenticity [11]. TaintDroid [9] is the
most widely used implementation of taint-tracking for mo-
bile platforms, and it owes much of its success to good per-
formance.

TaintDroid tracks tainted data by interposing on byte-
codes within the Dalvik virtual machine, which is a managed-
code runtime like the Java Virtual Machine (JVM) or Com-
mon Language Runtime (CLR). Because managed code typ-
ically runs more slowly than native code, integrating taint-
tracking logic into the Dalvik virtual machine introduces lit-
tle additional slowdown. However, not only do apps increas-
ingly rely on their own fast native code, but with the intro-
duction of the Android Runtime (ART), Android now com-
piles developer-supplied Dalvik bytecodes into native code at
install time [1]. Both trends have rendered TaintDroid’s ap-
proach to tracking obsolete, and raise an important question:
is it possible to build a practical implementation of taint
tracking for mobile platforms dominated by native code?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMobile ’16, February 23–24, 2016, St. Augustine, FL, USA
c© 2016 ACM. ISBN 978-1-4503-4145-5/16/02. . . $15.00

DOI: http://dx.doi.org/10.1145/2873587.2873601

Prior work on taint tracking native code is not promising.
These systems typically deliver prohibitive slowdowns of be-
tween 10 and 30x compared to untracked native code [7, 15].
However, we observe that apps may not spend much of their
time handling tainted data. For example, a blogging app
may handle a user’s password only while authenticating and
not after. Similarly, relative to the time spent pulling and
displaying friends’ content, a social media app may spend
little of its time processing and uploading images taken by
the device’s camera. Thus, if one were only interested in
tracking passwords or images taken with the camera, then
perhaps the system could taint track only during the initial
login process or when the camera is used. By taint track-
ing selectively, the performance penalty may be made pro-
portional to the number of instructions that handle tracked
data.

Nearly a decade ago, the Xen team described a trap-
and-emulate approach to selective taint tracking that uses
page protections to identify when a program accesses tainted
data [13]. Unfortunately, relying on page protections alone
to implement selective taint tracking is insufficient on mobile
platforms. Mobile apps are inherently multi-threaded and
run on devices with multi-core CPUs. Since all threads in a
process must adhere to the same page protections, when any
thread handles tainted data, all of the app’s active threads
must also be emulated.

Thus, for modern mobile systems, we believe that prac-
tical native taint tracking requires thread-local emulation.
Thread-local emulation allows threads that do not handle
tainted data to run at full speed, while slowing down only
those threads that handle tainted data. Thread-local emula-
tion is particularly important for mobile apps, in which the
primary UI thread must not be slowed by taint-tracked back-
ground threads. In this paper, we argue that thread-local
emulation would offer significant benefits to mobile systems,
and we explore some potential ways to implement it.

The rest of this paper is organized as follows. In Section 2,
we provide background on taint tracking. In Section 3, we
describe why a simple trap-and-emulate approach to selec-
tive taint tracking is insufficient for Android. In Section 4,
we describe several ways to implement thread-local emula-
tion. In Section 5, we present results from our preliminary
work. In Section 6, we speculate about how to integrate
taint tracking into Android without relying on the Dalvik
VM. Finally, in Section 7 we present related work, and in
Section 8, we provide our conclusions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357551504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. BACKGROUND: TAINT TRACKING
Taint tracking records data dependencies between pro-

gram storage, such as individual memory addresses and reg-
isters, and one or more taint sources, such as a device’s GPS
sensor or the network. Each storage location has an associ-
ated taint label indicating whether its current value depends
on a taint source. Because taint labels are not part of the
physical- or virtual-machine interface, a taint-tracking sys-
tem must update labels through emulation. That is, the
system must interpose on any operation that transfers in-
formation from one storage location to another, such as a
virtual-machine bytecode or physical-machine instruction.
For example, TaintDroid maintains a 32-bit label for each
object field and program register and updates fields’ and
registers’ labels whenever a Dalvik bytecode executes.

For many years taint tracking was most commonly used
to detect and defeat malware [15, 23], but many recent sys-
tems demonstrate that it is a generally useful technique for
addressing a range of problems. For example, YouProve [11]
uses taint tracking to attest to the authenticity of sensor
data generated by a smartphone, such as audio or images,
even if the data is compressed or cropped. Pebbles [19] uses
taint tracking to logically group data items that are scat-
tered across disparate parts of a storage system into higher-
level units, such as an email or expense report. Grouping
related data items into logical units allows the system to
securely delete sensitive emails and other documents that
span multiple databases and files. CleanOS [20] uses track-
ing to record where sensitive data resides in a device’s mem-
ory and filesystem, so that this data can be evicted to the
cloud if the device is lost or stolen. Finally, taint tracking
has helped monitor how apps use private data [9], verify the
security of point-of-sale apps [10], and improve apps’ energy
efficiency [18].

For nearly all of these systems, efficient taint tracking is
crucial. The extra work required by emulation, i.e., inter-
posing on each operation to update taint labels, imposes an
inherent performance penalty. However, if the additional
work is small relative to the time required to perform the
original operation, then the overall performance penalty will
also be small. This is precisely how TaintDroid achieves
good performance; the Dalvik bytecodes on which it inter-
poses are slow compared to native ARM instructions. At
the same time, the poor performance of Dalvik bytecodes
has led app developers to use more native code, and recent
versions of Android compile bytecodes to native instructions
at install time. This move to native code has had the un-
fortunate side effect of inflating the cost of taint tracking.
Taint tracking native code typically costs between 10 and
30x, whereas TaintDroid’s overhead is less than 20%.

One way to make taint tracking practical again is to do
it selectively. In particular, apps may only rarely handle
tainted data, and thus it may be possible to pay the price of
emulation only when required. For example, if a system is
only interested in tracking data from the GPS sensor, then
apps that do not use location data will not pay a perfor-
mance penalty. Or if an app uses location data, then it will
only slow down while processing location data. Of course,
for apps that make heavy use of tracked data, then the slow-
down will be severe and unavoidable. However, we expect
that many interesting apps will spend little time, relative to
their lifetimes, handling tracked data. A major part of our
ongoing work is testing this hypothesis.

For the rest of this paper, we concern ourselves with only
explicit information flows, and we ignore implicit flows, e.g.,
information flows triggered by a program’s control flow. The
impact of this limitation depends on the use case. Prior work
on implicit flows has shown that for certain applications and
data types, implicit flows can be tracked at a reasonable cost.
For example, SpanDex [8] quantifies and limits the amount
of password information leaked through a malicious app’s
control flow. A general solution to the problem of implicit
flows is unlikely to emerge anytime soon, but tracking im-
plicit flows is unnecessary for many systems. For example,
in YouProve, an app using implicit flows to leak information
does not undermine the system’s goals. YouProve will not
attest to the authenticity of sensor data leaked through im-
plicit flows, which defeats the reason for using it in the first
place.

3. SELECTIVE TAINT TRACKING
To begin, we will assume that a mobile app consists of

Dalvik bytecodes executing within a Dalvik VM and na-
tive libraries executing on the bare metal. TaintDroid pro-
vides taint tracking for bytecodes, but does not handle na-
tive code.

To implement selective taint tracking of native code, we
must capture transitions from Dalvik to native code. An-
droid apps are written in Java and use the Java Native In-
terface (JNI) to invoke native methods. Thus, we must first
modify the JNI bridge and use the mprotect system call to
disallow read and write access to memory pages containing
tainted data when a native method is called from Dalvik.

As long as native code does not access tainted data, it
will run at full speed. However, if native code tries to access
tainted data, the operating system will raise a segmentation
fault (SIGSEGV). The fault handler will transfer control of
the thread to taint-tracking and emulation software running
in the thread’s address space. The emulator executes the
program’s instructions and performs dynamic taint tracking
based on instructions’ semantics. For example, suppose the
emulator encounters the instruction add r0, r1, r2, which
computes the sum of r1 and r2 and stores the result in r0.
In addition to updating the value of r0, the emulator will
update r0’s taint label using r1’s and r2’s labels: Taint(r0)
← Taint(r1) ∪ Taint(r2), where ∪ represents the union
of two taint labels. The emulator executes native code in this
manner until (1) it returns to Dalvik via the JNI bridge, or
(2) all register labels are taint free[13].

While this approach works well for single-threaded pro-
grams, it creates a dilemma for apps that have threads exe-
cuting in parallel. First, to emulate the faulting instruction,
the fault handler must access tainted data. However, when
the handler executes, it is still bound by the protections that
caused the original fault. Accessing tainted data with these
protections in place will trigger a new fault, leading to an
unending series of faults and no forward progress. At the
same time, allowing the fault handler to remove page pro-
tections to avoid an infinite loop would allow non-emulated
threads to access tainted pages without trapping.

To prevent this, we could force all threads to run in em-
ulated mode anytime a thread accessed tainted data. Plac-
ing each thread in emulation mode would allow us to safely
disable page protections and rely on threads’ emulation lay-
ers to protect tainted data. The downside of emulating all
threads is that every thread would pay a significant perfor-

mance penalty, even when they do not access tainted data.
This is particularly problematic for mobile platforms like
Android, on which the main UI thread must remain fast to
ensure good responsiveness. An ideal solution would only
taint track the threads that access tainted data.

4. THREAD-LOCAL EMULATION
Thread-local emulation ensures that a thread will only pay

the performance penalty of emulation if it accesses tainted
data. Implementing thread-local emulation requires a way
to protect tainted data from non-emulated threads while si-
multaneously granting emulated threads access. In this sec-
tion, we discuss possible software and hardware techniques
that may be used to do so.

4.1 Software Techniques
Reading Memory with the Kernel: Each process in

the Linux kernel can access its own address space through
the kernel by reading and writing /proc/self/mem. As the
reads and writes take place in kernel space, they succeed
without being restricted by page protections. Hence, the
emulator can use it to access tainted data. Before emulat-
ing an instruction, it has to check if the instruction uses a
memory location located in a protected page. If so, it has
to perform the access via the kernel interface.

Multiple Virtual Page Mappings: The emulator can
also use a technique proposed by Appel and Li [3]. For each
page with tainted data, the emulator can create new entries
in the process’s page table that map to the same physical
page, but with relaxed protections. Using these new map-
pings, the emulator can access tainted data without turning
off page protections. Since the non-emulated threads will
not be aware of the page table entries created by the emu-
lator, they will not be able to freely access tainted data.

4.2 Hardware Techniques
We may also use hardware-specific features to implement

thread-local emulation. Although this usually means a more
complex implementation, hardware acceleration also gives us
good performance. In this section, we focus on features pro-
vided in the ARM ISA. Although this limits the generality
of the implementation, we consider it acceptable since most
mobile devices use an ARM processor.

ARM Domains: The ARMv7 ISA has a feature known
as memory domains. It allows each 1 MB region of a pro-
cess’s address space to be classified under different logical
sections known as domains. There are a maximum of six-
teen possible domains and each domain has one of three
permissions associated with it. The domain permissions are
set in a per-core CPU register known as the domain control
register, which means that they are set on a per-thread basis.
On an access to a memory location, the CPU core checks the
running thread’s permission for the domain of that location.
If the permission is set to CLIENT, the core relies on page
protections to decide if the access should be allowed. If it is
set to NONE or MANAGER, access is unconditionally denied or
allowed, respectively.

Memory domains may be used to implement thread-local
emulation in the following manner. First, we define a new
domain, TAINT. When a page contains tainted data, the
surrounding memory region is classified under the TAINT

domain. By default, a thread has CLIENT permissions for
TAINT. The emulator, however, is given MANAGER permissions

over TAINT. This means that even though the emulator runs
in the same address space as the process, it can directly
access tainted memory since its permissive MANAGER domain
overrides page protections. Other threads will continue to be
governed by page protections because they use the CLIENT

permission.
Exposing Privileged CPU Features To User-Level

Code: The inclusion of virtualization features in modern
CPUs provides us with interesting opportunities. For in-
stance, Belay et al. proposed Dune [5], a method of ex-
posing privileged CPU features to user-level applications.
In Dune, virtualization hardware features are used to al-
low applications to perform user-level page-table manage-
ment. Applications can easily write their own page table
entries and switch between different page tables. This is
useful as our emulator can create its own page table map-
pings to freely access tainted data without also allowing non-
emulated threads to do so. Unfortunately, Dune is not im-
mediately usable in our work on smartphones for two rea-
sons. First, Dune is implemented for the x86 ISA and not
ARM. Second, as the authors of Dune admit, their page ta-
ble management feature is not thread-safe. They state that
this limitation is a matter of implementation but it is un-
clear how much work it would take to make it thread-safe
in the context of ARM.

5. PRELIMINARY WORK

• Disassemble)
• Emulate)
• Taint)Track{

Taint)Access) 
Protection

Native)Call)
(JNI)

Native)Execution 
Unmodified

Native)Execution 
Emulated

Taint)Access)
Fault

All)Registers)
Untainted

Return

Memory Files

Figure 1: Overview of selective native code taint
tracking with thread-local emulation.

In this section, we present results from our preliminary
work on thread-local emulation for Android. A high-level
overview of our system is illustrated in Figure 1. It follows
a design similar to the one outlined in Section 3 and is cur-
rently implemented on Android 4.1.1.

Taint tracking at the bytecode level is done by TaintDroid.
When an app uses the JNI, a taint protection layer ensures
that memory pages containing tainted data are protected.
If a thread attempts to access tainted data in native code, a
taint access fault (a SIGSEGV) is triggered, which starts the
emulator. The emulator disassembles each instruction, em-
ulates its behavior, and performs taint propagation. When
the CPU registers are no longer tainted, emulation ends and
the thread executes natively.

To test the performance of our system, we developed a
custom microbenchmark application, fully written in na-
tive code. This benchmark reads extended JPEG metadata
(EXIF) from a tainted JPEG file using the libjhead native
library and writes the metadata to standard out. It was
developed based on our observations of the Instagram app.
We found that it processes pictures taken with the camera
in native code. During the processing step, it extracts the

EXIF data using the libjhead library and then applies a
custom image filter.

We ran the benchmark on a Galaxy Nexus smartphone,
and measured the time taken for it to complete, with and
without taint tracking enabled. When taint tracking was
enabled, we performed a full emulation of the benchmark
and tried reading tainted memory with both the kernel and
ARM domains. Our goal was to measure the amount of
slowdown imposed by native-code taint tracking. Each ex-
periment was conducted a hundred times. We report the
median numbers below.

When the emulator reads tainted data through the ker-
nel, the slowdown was 1,048x. In other words, the bench-
mark is over a thousand times slower when taint-tracking
is enabled. As one might have predicted, trapping to ker-
nel space each time we need a data item from a protected
page is prohibitively expensive. When the emulator reads
tainted data using ARM’s memory domains, the slowdown
is just 22x. We noticed similar levels of improvement in
other data-heavy microbenchmarks.

Note that although a 22x slowdown is still significant, this
is the slowdown of a microbenchmark that performs a sin-
gle task. It does not reflect the amortized performance we
expect with a third-party app that processes primarily un-
tainted data.

5.1 Discussion
While implementing thread-local emulation, we noticed

several issues that need to be addressed before we can have
a practical system. In this section, we discuss each of them
in detail.

Exiting Emulation Mode: We only want to emulate
a thread while it is handling tainted data. Although it is
safe to exit emulation when none of the CPU registers con-
tain tainted data, it is not efficient to do so. Suppose we
reach a state of untainted registers. Due to temporal local-
ity, the next instruction may load tainted data again. Hence,
it is wasteful to exit emulation as soon as the registers are
untainted. We noticed this overhead due to unnecessary
switching between native and emulation execution in our
experiments. If we run our JPEG benchmark under selec-
tive taint tracking while using ARM domains, the slowdown
is over 100x. Recall that the slowdown with full emulation is
22x. Our results are consistent with the observations made
by Ho et al. in their selective taint-tracking work [13]. They
mitigate this issue by continuing emulation for 50 more in-
structions after registers become untainted. Emulation exits
only if the registers remain untainted at the end. We are
presently investigating if a similar approach will suffice for
us.

Tainted Data on Stack: The page containing the stack
may become protected due to tainted registers that either
spill onto the stack or are saved when a function call is made.
A protected stack will immediately cause the thread to be
emulated until the stack no longer contains tainted data. We
are evaluating the performance impact of this issue and its
relation to the temporal locality highlighted above. There
are two ways of addressing this issue if it is a significant
cause of overhead: (i) we could use a high number of watch-
points [12] if the hardware supports it to have fine-grained
traps to tainted data, or (ii), we could use non-contiguous
stacks [21] where tainted and untainted data are located in
different pages even though they are on the stack.

False Positives: The page size on Android is 4 KB which
means that page protections are coarse. Just as with the
stack, a page with a single tainted byte will become pro-
tected and any access to untainted data within that page
will cause unnecessary emulation. Although this is a gen-
eral issue with page protections, it can take on special sig-
nificance on Android. Android has a construct called the
Looper [2], a message queuing system used in a multiple-
producer, single-consumer manner. Each application has a
single looper designated as the main looper. It is responsi-
ble for receiving events from different parts of the OS and
delivering it to the application. If the page that contains
the main looper’s buffer becomes protected, the main event
loop of the app will have to run in emulation mode. We
are currently evaluating different options of addressing this
issue, including the use of Dune [5].

The Trend to 64-bit ARM CPUs: We made use of
memory domains, a feature of ARMv7, in our preliminary
work. The ARMv7 ISA is used on 32-bit ARM CPUs. Un-
fortunately, the ARMv8 ISA, used on 64-bit ARM CPUs, no
longer has support for memory domains. Given that newer
smartphones are transitioning to 64-bit ARM CPUs [14],
using memory domains is not a future-proof solution. This
raises the urgency of using the other techniques discussed in
Section 4 to allow the emulator to read tainted data.

6. LIFE WITHOUT DALVIK
In newer versions of Android, apps are still written in Java

and compiled to Dalvik bytecode for distribution. However,
the Dalvik VM is deprecated and is no longer used to in-
terpret the app’s bytecode. Instead, when an app is down-
loaded onto a phone, it is compiled into native code before
execution. The absence of the Dalvik VM means TaintDroid
will no longer work.

That said, the fact that apps are still distributed as byte-
code provides us with an opportunity. We can rewrite its
bytecodes and instrument them so that when the app is
subsequently compiled, it will have taint tracking “baked
in.” This approach was first taken by Bell et al. in Phos-
phor [6], where tracking logic was added to Java applications
running on the JVM by rewriting their bytecode. However,
for performance reasons, we may not directly use their ap-
proach since in Android, the Dalvik bytecode will be further
compiled into ARM assembly prior to execution. Instead of
an always-on taint tracking scheme, as per Phosphor, we
still need thread-local emulation.

To provide thread-local emulation we could first define a
taint label for each class field. Second, we could set all class
fields private and rewrite all direct field accesses as getter-
and setter-method invocations. The getter for a field checks
the field’s taint label. If it is not tainted, then the field is
returned. Otherwise, the getter raises a taint exception and
passes the field’s value in the exception object. This means
that all getter invocations will be surrounded by a try/catch
block. If the getter raises a taint exception, method execu-
tion continues in the catch block which contains the rest of
the method together with the taint-propagation logic.

It is important to note that adding taint-tracking logic
to the bytecode only replaces TaintDroid’s functionality. It
does not handle the cases in which apps may use native
libraries via the JNI.

7. RELATED WORK
Taint tracking on mobile platforms is an ongoing research

topic. Qian et al. proposed NDroid [17], a virtualized en-
vironment based on QEMU to run Android apps and track
taints when they use native code libraries. NDroid relies
on TaintDroid to perform taint propagation at the bytecode
level. It uses software hooks implemented in QEMU to cap-
ture an app’s use of JNI and run native taint tracking. Al-
though NDroid performs native code taint tracking, it does
not run on real smartphone devices, which is a key goal in
our work.

In contrast to dynamic taint analysis, there has also been
work on performing static taint analysis such as FlowDroid [4]
and Amandroid [22]. The aim in both work is to detect mali-
cious apps by performing static analysis on them and check-
ing if they leak sensitive data. As stated in Section 2, we
are interested in dynamic taint tracking as a general tool to
solve a range of problems, instead of just malware detection.
That said, these approaches complement ours. For example,
static analysis may help during the byte code rewriting by
highlighting the portions of the app where taint propagation
logic is necessary.

Paupore et al. presented a preliminary design of a hybrid
taint tracking system for mobile platforms in a recent pa-
per [16]. They propose an always-on taint tracking system
that runs with low overhead using a combination of static
and dynamic taint analysis. The static analysis step runs
first and adds special markers to paths in the app’s man-
aged code that uses sensitive data. When the app executes,
the dynamic taint analysis system uses the markers to per-
form taint propagation. The dynamic taint tracker uses the
Embedded Trace Macrocell (ETM), a hardware feature avail-
able on modern ARM processors, to improve performance.
This feature allows a core to collect execution traces of a
running thread and send it to another core, where it can
be analyzed. The use of ETM allows app execution and
taint propagation to run in parallel, as they are each done
on separate cores. As with FlowDroid and Amandroid, the
techniques used in this work complement our approach.

8. CONCLUSION
In this paper, we described thread-local emulation, a re-

finement of selective taint tracking. In thread-local emu-
lation, only the threads that handle tainted data are emu-
lated to perform dynamic taint tracking; all other threads
run with minimal overhead. The goal of thread-local em-
ulation is to make dynamic taint tracking practical in mo-
bile systems dominated by native code by only performing
taint tracking when necessary. Our preliminary work on im-
plementing thread-local emulation on Android shows good
promise. However, plenty of challenges lie ahead, especially
achieving good performance on recent versions of Android.

9. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers and our

shepherd, Andrew Rice, for their insightful feedback. This
work was partially funded by the National Science Founda-
tion under awards CCF-1335443 and CNS-0747283.

10. REFERENCES
[1] Google I/O 2014 - The ART runtime. https://www.

youtube.com/watch?v=EBlTzQsUoOw?t=37m25s.

[2] Android Developers Documentation. Looper.
http://developer.android.com/reference/android/os/
Looper.html.

[3] A. Appel and K. Li. Virtual Memory Primitives for
User Programs. In Proceedings of ASPLOS ‘91, April
1991.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. le Traon, D. Octeau, and P. McDaniel.
FlowDroid: Precice Context, Flow, Field,
Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps. In Proceedings of PLDI ‘14, June 2014.

[5] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,
D. Mazières, and C. Kozyrakis. Dune: Safe User-level
Access to Privileged CPU Features. In Proceedings of
OSDI ‘12, October 2012.

[6] J. Bell and G. Kaiser. Phosphor: Illuminating
Dynamic Data Flow in Commodity JVMs. In
Proceedings of OOPSLA ‘14, October 2014.

[7] J. Clause, W. Li, and A. Orso. Dytan: A Generic
Dynamic Taint Analysis Framework. In Proceedings of
ISSTA ‘07, July 2007.

[8] L. P. Cox, P. Gilbert, G. Lawler, V. Pistol, A. Razeen,
B. Wu, and S. Cheemalapati. SpanDex: Secure
Password Tracking for Android. In Proceedings of
USENIX Security ‘14, August 2014.

[9] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking system for Realtime
Privacy Monitoring on Smartphones. In Proceedings of
OSDI ‘10, October 2010.

[10] W. Frisby, B. Moench, B. Recht, and T. Ristenpart.
Security Analysis of Smartphone Point-of-Sale
Systems. In Proceedings of WOOT ‘12, August 2012.

[11] P. Gilbert, J. Jung, K. Lee, H. Qin, D. Sharkey,
A. Sheth, and L. P. Cox. YouProve: Authenticity and
Fidelity in Mobile Sensing . In Proceedings of SenSys
‘11, November 2011.

[12] J. L. Greathouse, H. Xin, Y. Luo, and T. Austin. A
Case for Unlimited Watchpoints. In Proceedings of
ASPLOS ‘12, March 2012.

[13] A. Ho, M. Fetterman, C. Clark, A. Warfield, and
S. Hand. Practical Taint-Based Protection using
Demand Emulation. In Proceedings of EuroSys ‘06,
April 2006.

[14] Jerry Hildenbrand, AndroidCentral. Why 64-bit
processors really matter for Android.
http://www.androidcentral.com/
why-64-bit-processors-really-matter-android.

[15] J. Newsome and D. Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature
Generation of Exploits on Commodity Software. In
Proceedings of NDSS ‘05, February 2005.

[16] J. Paupore, E. Fernandes, A. Prakash, S. Roy, and
X. Ou. Practical Always-On Taint Tracking on Mobile
Devices. In Proceedings of HotOS ‘15, May 2015.

[17] C. Qian, X. Luo, Y. Shao, and A. T. Chan. On
Tracking Information Flows through JNI in Android
Applications. In Proceedings of DSN ‘14, June 2014.

[18] H. Shen, A. Balasubramanian, A. LaMarca, and
D. Wetherall. Enhancing Mobile Apps To Use Sensor
Hubs Without Programmer Effort. In Proceedings of

UbiComp ‘15, September 2015.

[19] R. Spahn, J. Bell, M. Z. Lee, S. Bhamidipati,
R. Geambasu, and G. Kaiser. Pebbles: Fine-Grained
Data Management Abstractions for Modern Operating
Systems. In Proceedings of OSDI ‘14, October 2014.

[20] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani,
R. Geambasu, and N. Sarda. Clean OS: Limiting
Mobile Data Exposure with Idle Eviction. In
Proceedings of OSDI ‘12, August 2012.

[21] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer. Capriccio: Scalable Threads for Internet
Services. In Proceedings of SOSP ‘03, October 2003.

[22] F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A
Precise and General Inter-component Data Flow
Analysis Framework for Security Vetting of Android
Apps. In Proceedings of CCS ‘14, November 2014.

[23] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing System-wide Information Flow
for Malware Detection and Analysis. In Proceedings of
CCS ‘07, October 2007.

