View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by CiteSeerX

Fourier Series Formalization in ACL2(r)

Cuong K. Chau Matt Kaufmann Warren A. Hunt, Jr.
Department of Computer Science Department of Computer Science Department of Computer Science
The University of Texas at Austin The University of Texas at Austin The University of Texas at Austin

Austin, TX, USA Austin, TX, USA Austin, TX, USA
ckcuong@cs.utexas.edu kaufmann@cs.utexas.edu hunt@cs.utexas.edu

We formalize some basic properties of Fourier series in the logic of ACL2(r), which is a variant of
ACL2 that supports reasoning about the real and complex numbers by way of non-standard analysis.
More specifically, we extend a framework for formally evaluating definite integrals of real-valued,
continuous functions using the Second Fundamental Theorem of Calculus. Our extended framework
is also applied to functions containing free arguments. Using this framework, we are able to prove
the orthogonality relationships between trigonometric functions, which are the essential properties
in Fourier series analysis. The sum rule for definite integrals of indexed sums is also formalized by
applying the extended framework along with the First Fundamental Theorem of Calculus and the sum
rule for differentiation. The Fourier coefficient formulas of periodic functions are then formalized
from the orthogonality relations and the sum rule for integration. Consequently, the uniqueness of
Fourier sums is a straightforward corollary.

We also present our formalization of the sum rule for definite integrals of infinite series in
ACL2(r). Part of this task is to prove the Dini Uniform Convergence Theorem and the continuity
of a limit function under certain conditions. A key technique in our proofs of these theorems is to
apply the overspill principle from non-standard analysis.

1 Introduction

In this paper, we present our efforts in formalizing some basic properties of Fourier series in the logic
of ACL2(r), which is a variant of ACL2 that supports reasoning about the real and complex numbers
via non-standard analysis [8, [12]. In particular, we describe our formalization of the Fourier coefficient
formulas for periodic functions and the sum rule for definite integrals of infinite series. The formalization
of Fourier series will enable interactive theorem provers to reason about systems modeled by Fourier
series, with applications to a wide variety of problems in mathematics, physics, electrical engineering,
signal processing, and image processing.

We do not claim to be developing new mathematics. However, as far as we know the mechanized
formalizations and proofs presented in this paper are new. The research contributions of this paper are
twofold: a demonstration that a mechanized proof assistant, in particular ACL2(r), can be used to verify
properties of Fourier series; and infrastructure to support that activity, which we expect to be reusable
for future ACL2(r) verifications of continuous mathematics. Our formalizations presented in the paper
assume that there exists a Fourier series, i.e., a (possibly infinite) sum of sines and cosines for any
periodic function. Future work could include proving convergence of the Fourier series for any suitable
periodic function.

The proofs of Fourier coefficient formulas depend on the orthogonality relationships between trigono-
metric functions and the sum rule for integration of indexed sums. A key tool for proving these prop-
erties is the Second Fundamental Theorem of Calculus (FTC-2). Cowles and Gamboa [3] implemented
a framework for formally evaluating definite integrals of real-valued continuous functions using FTC-2.

© C. Chau, M. Kaufmann & W. Hunt
This work is licensed under the
Creative Commons Attribution License.

M. Kaufmann and D. Rager (Eds.): ACL2 Workshop 2015 (ACL2 2015).
EPTCS 192, 2015, pp. 35 doi:10.4204/EPTCS.192.4

https://core.ac.uk/display/357551474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4204/EPTCS.192.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

36 Fourier Series Formalization in ACL2(r)

However, their framework is restricted to unary functions, while formalizing Fourier coefficient formulas
requires integration for indexed families of functions f,(x), which we represent as f(x,n). We call such
n a free argument. Hence, we extend the FTC-2 framework of Cowles and Gamboa to apply to functions
with free arguments. We call the extended framework the FTC-2 evaluation procedure. One may expect
the usual ACL2 functional instantiation mechanism to apply, by using pseudo-lambda expressions [1] to
handle the free arguments. However, in ACL2(r) there are some technical issues and restrictions on the
presence of free arguments in functional substitutions, which make functional instantiation not trivial [4].
We describe these issues in detail and show how we deal with them in Sectiondl Once the FTC-2 eval-
uation procedure is built, we can use it to prove the orthogonality relationships between trigonometric
functions. The sum rule for definite integrals of indexed sums is also formalized by applying the FTC-2
evaluation procedure along with the First Fundamental Theorem of Calculus (FTC-1) and the sum rule
for differentiation. The Fourier coefficient formulas for periodic functions are then verified using the
orthogonality relations and the sum rule for integration. Consequently, the uniqueness of Fourier sums is
a straightforward corollary of the Fourier coefficient formulas.

The other main contribution of our work is the formalization of the sum rule for definite integrals
of infinite series under two different conditions. This problem deals with the convergence notion of a
sequence of functions. We consider two types of convergence: pointwise convergence and uniform con-
vergence. Our formalization requires that a sequence of partial sums of real-valued continuous functions
converges uniformly to a continuous limit function on the interval of interest. We approach this require-
ment in two ways, corresponding to two different conditions. One way is to prove that if a sequence of
continuous functions converges pointwise on a closed and bounded interval, then it converges uniformly
on that interval, given that the sequence is monotonic and the limit function is continuous. This is known
as the Dini Uniform Convergence Theorem [15]]. Another way is to prove that if a sequence of continuous
functions is not required to be monotonic but converges uniformly to some limit function on the interval
of interest, then the limit function is also continuous on that interval. A key technique in our proofs for
both cases is to apply the overspill principle from non-standard analysis [9} [13]]. Thus, we also formalize
the overspill principle in ACL2(r) and apply this principle to prove Dini’s theorem and the continuity of
the limit function as mentioned.

(FTC-2) (FTC-1) [Overspill principle j

‘ Orthogonality ’ Sum rule for
relations integration
/ Sum rule for
CFourier coefficient formulas) integration of

infinite series

‘ Uniqueness of ’
Fourier sums

Figure 1. Overview of the formalization of the Fourier coefficient formulas and the sum rule for definite
integrals of infinite series.

Figure 1 gives an overview of the work presented in this paper. The remainder of the paper is
organized as follows. Section [2]reviews some basic notions of non-standard analysis in ACL2(r) that we

C. Chau, M. Kaufmann & W. Hunt 37

use later in the paper. Section [3|reviews two versions of the Fundamental Theorem of Calculus that we
extend to support our Fourier series formalization. Section 4] describes the FTC-2 evaluation procedure
as an extended framework for applying FTC-2 to functions with free arguments. The formalization of the
orthogonality relations for trigonometric functions and the sum rule for definite integrals of indexed sums
are described in Sections [5and [respectively. The formalization of the Fourier coefficient formulas and
the uniqueness of Fourier sums are described in Section [/} The preceding results apply to finite series,
but as we look ahead to dealing with infinite Fourier series, we take a step in Section |8} which presents
our formalization of the sum rule for definite integrals of infinite series. Finally, Section [9|concludes the
paper and points out some possible future work.

2 Basic Non-Standard Analysis Notions in ACL2(r)

Here we review basic notions of non-standard analysis in ACL2(r) that are used in the remainder of this
paper. All notions introduced here are considered non-classical, while functions whose definitions do
not depend on any of these notions are classical. Let x be a real number.

e A primitive notion is that x is standard, which intuitively means that x is a “traditional” real number.
In particular, x is standard if it can be defined. For example, 1, -2, 3.65, 7, ¢°, and /2 are standard.
A natural number is considered standard if it is finite, otherwise it is non-standard. We will refer
to the standard notion of natural numbers when stating the overspill principle in Section [§] We
feel free to relativize our quantifiers. For example, “V*'n...” means “for all standard n...”, and
“I™p ... means “there exists non-standard n...”.

e xis i-small (infinitesimal) iff |x| < r for all positive standard reals r.
e xis i-large iff |x| > r for all positive standard reals r.

e xis i-limited (finite) iff |x| < r for some positive standard real r.

e xisi-close (x)toareal yiff (x—y)is i-small.

e Suppose x is i-1limited. Then standard-part(x), or simply st(x), is the unique standard real
that is i-close to x.

3 Fundamental Theorem of Calculus

This section reviews two versions of the Fundamental Theorem of Calculus that we need to extend
to functions with free arguments, as part of our Fourier series formalization. The two versions are
sometimes called the First and Second Fundamental Theorem of Calculus.

First Fundamental Theorem of Calculus (FTC-1): Let f be a real-valued continuous function on
the interval [a,b]. We can then define a corresponding function g(x) as follows: g(x) = [f(¢)dz. Then
g'(x) = f(x) for all x € [a,b].

Second Fundamental Theorem of Calculus (FTC-2): If f is a real-valued continuous function on
[a,b] and g is an antiderivative of f on [a, D], i.e., g'(x) = f(x) for all x € [a,b], then

[o= g(6) (@)

In the next two sections, we extend FTC-2 to functions with free arguments and apply it to prove
the orthogonality relations of trigonometric functions, respectively. The extension of FTC-1 and its
application to the sum rule for definite integrals of indexed sums is described in Section [6]

38 Fourier Series Formalization in ACL2(r)

4 FTC-2 Evaluation Procedure

This section describes how we apply the FTC-2 theorem to evaluate definite integrals of real-valued
continuous functions f in terms of their antiderivatives g, even when f and g contain free arguments,
that is, arguments other than the variable with respect to which we perform integration or differentiation.
In particular, we extend the existing FTC-2 framework [3] to functions with free arguments, and call the
extended framework the FTC-2 evaluation procedure. This procedure consists of the following steps:

Prove that f returns real values on [a,b].

Prove that f is continuous on [a, b].

Specify a real-valued antiderivative g of f and prove that f is the derivative of g on [a,b]; i.e.,
prove that g returns real values and g'(x) = f(x) for all x € [a,D].

Formalize the integral of f on [a,b] as the Riemann integral.

e Evaluate the integral of f on [a,b] in terms of g by applying the FTC-2 theorem.

The first two steps are trivial in comparison to the last three. In the following subsections, we describe
the challenges manifest in the last three steps and how we tackle them.

4.1 Automatic Differentiator

In order to apply the FTC-2 evaluation procedure to evaluate the definite integral of a function f, we
need to specify and prove the correctness of a real-valued antiderivative g of f. The specifying task
can be done by appealing to a computer algebra system such as Mathematica [16]. Notably, we must
mechanically check in ACL2(r) that f is indeed the derivative of g. Fortunately, we don’t have to prove
this manually for every function. An automatic differentiator (AD) implemented by Reid and Gamboa
[6} [7] symbolically computes the derivative f of the input function g and automatically derives a proof
demonstrating the correctness of the differentiation, i.e., automatically proves the following formula:

8(x) —g()
flo)m =,
XYy
for all x and y in the domain of g such that x is standard, x = y, but x y. For example, the user can
employ the AD to prove that f(x) = ncos(nx) is the derivative of g(x) = sin(nx) with respect to x, by
calling the macro defderivative with the input function g as follows:

(defderivative sine-derivative
(acl2-sine (* n x)))

The following theorem is then introduced and proved automatically:

(defthm sine-derivative

(implies (and (acl2-numberp x)
(acl2-numberp (* n x))
(acl2-numberp y)
(acl2-numberp (* n y))
(standardp x)
(standardp n) (acl2-numberp n)
(i-close x y) (not (equal x y)))

C. Chau, M. Kaufmann & W. Hunt 39

(i-close (/ (- (acl2-sine (* n x))
(acl2-sine (* n y)))
(- xy))
(x (acl2-cosine (* n x))

(+ (xn 1) (xx0))))))

The AD requires using the symbol x as the name of the variable with respect to which the (partial)
derivative is computed. Notice that the hypotheses (acl2-numberp (* n x)) and (acl2-numberp
(* n y)) in the above theorem are redundant since they can be implied from the set of hypotheses
(acl2-numberp x), (acl2-numberp y) and (acl2-numberp n). In addition, the above theorem
states that the derivative of sin(nx) is cos(nx)(n* 1 +x%0), which indeed equals ncos(nx). This AD does
not perform such simplifications. Nevertheless, the user can easily prove the desired theorem from the
one generated by the macro defderivative.

4.2 Formalizing the Riemann Integral with Free Arguments

We formalize the definite integral of a function as the Riemann integral, following the same method as
implemented by Kaufmann [[11]. When functions contain free arguments, this formalization encounters
a problem with functional instantiations of non-classical theorems containing these functions. We will
describe the problem in detail and how we deal with it. Let’s consider the following definition of the
Riemann integral of a unary function, which uses an ACL2(r) utility, defun-std [4], for introducing
classical functions defined in terms of non-classical functions. Note that defun-std defines a function
which is only guaranteed to satisfy its definition on standard inputs.

(defun-std strict-int-f (a b)
(if (and (inside-interval-p a (f-domain))
(inside-interval-p b (f-domain))
(< a b))
(standard-part (riemann-f (make-small-partition a b)))

0))

The form above introduces the Riemann integral of a function f as a classical function, even though
it contains two non-classical functions, standard-part and make—small—partitionﬂ The proof
obligation here is to prove the integral returns standard values with standard inputs. More specifically,
we need to prove that the standard part of the Riemann sum of f, for any partition of [a,b] with standard
endpoints into infinitesimal-length subintervals, returns standard values. This is true only if that Riemann
sum is limited. In fact, for a generic real-valued continuous unary function rcfn, this limited property
was proven for a corresponding Riemann sum, as follows [[11]].

(defthm limited-riemann-rcfn-small-partition
(implies (and (standardp a)
(standardp b)
(inside-interval-p a (rcfn-domain))
(inside-interval-p b (rcfn-domain))
(< a b))
(i-limited (riemann-rcfn (make-small-partition a b)))))

'We use the non-classical function make-small-partition to partition a closed and bounded interval into subintervals
each of infinitesimal length.

40 Fourier Series Formalization in ACL2(r)

We are now interested in extending the above theorem for functions containing free arguments using
functional instantiation with pseudo-lambda expressions. Unfortunately, free arguments are not allowed
to occur in pseudo-lambda expressions in the functional substitution since the theorem we are trying to
instantiate is non-classical and the functions we are trying to instantiate are classical; the following exam-
ple shows why this requirement is necessary [4]. For an arbitrary classical function f(x), the following
is a theorem.

standardp(x) = standardp(f(x))

Substitution of A (x).(x+y) for f into the above formula yields the formula
standardp(x) = standardp(x+y)

which is not valid, since the free argument y can be non-standard.
Instead of using functional instantiation, we prove the limited property of Riemann sums (as dis-
cussed above) from scratch by applying the following theorem.

Theorem 1 (The boundedness of Riemann sums [[11]). Assume that there exist finite values m and M
such that

m< f(t) <M, forallt € [a,b].

Then the Riemann sum of f over |a,b] with any partition P = {xo,x1,...,x,} is bounded by

-

mb—a) <) f(t;)(xi—xi—1) <M(b—a)

1

where t; € [x;_1,xi], xo = a, and x, = b.

From Theorem (I} proving the Riemann sum of f over [a,b] is bounded reduces to proving f is
bounded on that interval. Given a specific real-valued continuous function f, it is usually straightfor-
ward to specify the bounds of f on a closed and bounded interval. The problem becomes more chal-
lenging when applying to generic real-valued continuous functions since it is impossible to find either
their minimum or maximum. However, the boundedness of these functions on a closed and bounded
interval still holds by the extreme value theorem. But again, this was just proven for unary functions
[5]. We also want to apply this property to functions with free arguments. Our solution at this point
is to re-prove the extreme value theorem and consequently the limited property of Riemann sums for
generic functions with free arguments. Since the number of free arguments is varied, it would be trou-
blesome to prove the same properties independently for each number of free arguments. Indeed, we
just need to add only one extra argument representing a list of the free arguments to the constrained
functions and re-prove the concerned non-classical theorems. The necessary hypotheses for the extra
argument can be added throughout the proof development. Note that non-classical theorems proven for
the new constrained functions with only one extra argument added can also be derived for functions
with an arbitrary number of free arguments, using functional and ordinary instantiation. (See lemmas
limited-riemann-f-small-partition-lemma and limited-riemann-f-small-partition be-
low for an example of how this works.) The question is how can we avoid the problem of the appearance
of free arguments in functional instantiations of non-classical theorems as described above? The trick is
to treat the extra argument in the constrained functions as a list of free arguments. Thus, no free argu-
ment appears in the functional instantiations. To illustrate the proposed technique, let us investigate the
constrained function rcfn-2 below. It contains one main argument x and one extra argument arg.

C. Chau, M. Kaufmann & W. Hunt 41

(encapsulate
((rcfn-2 (x arg) t)
(rcfn-2-domain () t))

;; Our witness real-valued continuous function is the
;; ldentity function of x. We ignore the extra argument arg.

(local (defun rcfn-2 (x arg) (declare (ignore arg)) (realfix x)))
(local (defun rcfn-2-domain () (interval nil nil)))

;3 Non-local theorems about rcfn-2 and rcfn-2-domain

We then prove the extreme value theorem for rcfn-2 and consequently the limited property of
the Riemann sum of rcfn-2, using the same proofs for the case of unary function rcfn existing in
the ACL2 community books [2], file books/nonstd/integrals/continuous-function.lisp. The
limited property of the Riemann sum of rcfn-2 is stated as follows:

(defthm limited-riemann-rcfn-2-small-partition
(implies (and (standardp arg)
(standardp a)
(standardp b)
(inside-interval-p a (rcfn-2-domain))
(inside-interval-p b (rcfn-2-domain))
(< a b))

(i-limited (riemann-rcfn-2 (make-small-partition a b) arg))))

As claimed, the above non-classical theorem can also be applied to functions with an arbitrary num-
ber of free arguments, using the trick we describe in the following example. In this example, the function
f(x,m,n) contains two free arguments m and n. Then, the parameter arg in the above theorem should be
considered as the list (1ist m n). Having said that, we first need to prove a lemma stating that every
element in a standard list is standard. This can be proven easily by using defthm-std [4].
(defthm-std standardp-nth-i-arg

(implies (and (standardp arg)
(standardp i))
(standardp (nth i arg)))
:rule-classes (:rewrite :type-prescription))

The functional instantiation with pseudo-lambda expressions can now be applied to prove the limited
property of the Riemann sum of f as follows.

(1) (defthm limited-riemann-f-small-partition-lemma
(implies (and (standardp arg)
(standardp a)
(standardp b)
(inside-interval-p a (f-domain))
(inside-interval-p b (f-domain))
(< a b))
(i-limited (riemann-f (make-small-partition a b)

42 Fourier Series Formalization in ACL2(r)

(nth 0 arg)
(nth 1 arg))))
:hints (("Goal"

:by (:functional-instance
limited-riemann-rcfn-2-small-partition
(rcfn-2 (lambda (x arg)

(f x (nth 0 arg) (nth 1 arg))))

(rcfn-2-domain f-domain)
(map-rcfn-2
(lambda (p arg)

(map-f p (nth 0 arg) (nth 1 arg))))
(riemann-rcfn-2
(lambda (p arg)

(riemann-f p (nth 0 arg) (nth 1 arg))))))))

Note that the functional instantiation in the above lemma does not contain any free arguments. How-
ever, this lemma constrains the two free arguments to be members of a list. In order to eliminate this
constraint, we need a lemma stating that a list of length two is standard if both of its elements are stan-
dard. Again, we can prove this using defthm-std.

(defthm-std standardp-list
(implies (and (standardp m)
(standardp n))
(standardp (list m n)))
:rule-classes (:rewrite :type-prescription))

We are finally able to prove the desired theorem as an instance of the lemma (1).

(defthm limited-riemann-f-small-partition
(implies (and (standardp m)
(standardp n)
(standardp a)
(standardp b)
(inside-interval-p a (f-domain))
(inside-interval-p b (f-domain))
(< a b))
(i-limited (riemann-f (make-small-partition a b) m n)))
:hints (("Goal"
:use (:instance limited-riemann-f-small-partition-lemma
(arg (list m n))))))

4.3 Applying FTC-2 to Functions with Free Arguments

The FTC-2 theorem was stated and proven in the ACL2 community books for generic unary functions
as follows [5]]:

(defthm ftc-2
(implies (and (inside-interval-p a (rcdfn-domain))
(inside-interval-p b (rcdfn-domain)))

C. Chau, M. Kaufmann & W. Hunt 43

(equal (int-rcdfn-prime a b)
(- (rcdfn b) (rcdfn a)))))

Again, we would like to apply this theorem for functions with free arguments via functional instanti-
ation. Since this theorem is classical, free arguments are allowed to occur in pseudo-lambda expressions
of a functional substitution as long as classicalness is preserved [4]. Through functional instantiation
with pseudo-lambda terms, we encounter several proof obligations that require free arguments to be
standard. Unfortunately, attempting to add this assumption to pseudo-lambda terms, e.g., (lambda (x)
(if (standardp n) (f x n) (£ x 0))), is not allowed in ACL2(r) since the terms become non-
classical by using the non-classical function standardp, violating the classicalness requirement. To
deal with this issue of functional instantiation, we propose a technique using an encapsulate event with
zero-arity classical functions (constants) representing free arguments. Since the zero-arity functions are
classical, they must return standard values. Using this technique, we can instantiate the FTC-2 theorem
to evaluate the definite integral of a function containing free arguments in terms of its antiderivative.
For example, suppose we want to apply the FTC-2 theorem to a real-valued continuous function f(x,n),
where n is a free argument of type integer. Also suppose that g is an antiderivative of f. Our proposed
technique consists of four steps as described below:

e Step 1: Define an encapsulate event that introduces zero-arity classical function(s) representing
free argument(s).

(encapsulate
() => %))
(local (defun n () 0))
(defthm integerp-n
(integerp (n))
:rule-classes :type-prescription))

e Step 2: Prove that the zero-arity classical function(s) return standard values using defthm-std.

(defthm-std standardp-n
(standardp (n))
:rule-classes (:rewrite :type-prescription))

e Step 3: Prove the main theorem, modified by replacing the free argument(s) with the corresponding
zero-arity function(s) introduced in step 1. Without free argument(s), the functional instantiation
can be applied straightforwardly.

(defthm f-ftc-2-lemma
(implies (and (inside-interval-p a (g-domain))
(inside-interval-p b (g-domain)))
(equal (int-f a b (n))
(- (g b (n))
(g a))))
hints (("Goal"
:by (:functional-instance
ftc-2
(rcdfn
(lambda (x) (g x (n))))
(rcdfn-prime
(lambda (x) (f x (m))))

44 Fourier Series Formalization in ACL2(r)

(rcdfn-domain g-domain)
;; Instantiate other constrained
;; functions similarly.
(int-rcdfn-prime
(lambda (a b) (int-f a b (n))))))))

e Step 4: Prove the main theorem by functionally instantiating the zero-arity function(s) in the
lemma introduced in step 3 with the corresponding free argument(s).

(defthm f-ftc-2
(implies (and (integerp n) ;; we assume the type of n is integer.
(inside-interval-p a (g-domain))
(inside-interval-p b (g-domain)))
(equal (int-f a b n)
(- (g bn)
(g a n))))
thints (("Goal"
:by (:functional-instance f-ftc-2-lemma
(n (lambda O
(if (integerp n) n 0)))))))

5 Orthogonality Relations of Trigonometric Functions

By applying the FTC-2 evaluation procedure, we can mechanically prove in ACL2(r) the orthogonality
relations of trigonometric functions, which are the essential properties in Fourier series analysis. The
orthogonality relations of trigonometric functions are a collection of definite integral formulas for sine
and cosine functions as described below:

L 0, if Vm=n=0
/ sin(m) sin(nx)dx { O [Tm#nVm=n 5.1)
L L L L ifm=n#0
0,ifm+#n
L T T)
/ cos(mzx) cos(nzx)dx =L ifm=n#0 (5.2)
—L
2L, ifm=n=0
/ * sin(m™x) cos(n Fx)dx = 0 (5.3)
L L L B '

where x,L € R; L # 0; and m,n € N. As mentioned, these integral formulas can be proven using the
FTC-2 evaluation procedure. Let’s consider the case m # n in formula (5.I); the other cases can be
proven similarly. When m # n, formula states that ffL f(x,m,n,L)dx = 0 where f(x,m,n,L) =
sin(m%x)sin(nfx). Using the automatic differentiator, we can easily prove that the function g defined
below is indeed an antiderivative of f when m # n:

ee,mn L) = 1 <sin ((m—n)7x) sin((ern)Zx))

2 (m—n)T (m+n)¥

C. Chau, M. Kaufmann & W. Hunt 45

Then, by the FTC-2 theorem,

/_LLf(x,m,n,L)dx =g(L,m,n,L) —g(—L,m,n,L)
- <sin((mn)7;) — sin((m+n)7;)> 1 <Sin((mn)ﬂ) sin((m+n)7t)>

2\ (m-m)f mtmf) 2\ m-mf (m+n)
1 1
:5(0—0)—5(0—0):0

6 Sum Rule for Definite Integrals of Indexed Sums

As part of the Fourier coefficient formalization, we need to formalize the sum rule for definite integrals
of indexed sums, which is stated as the following theorem:

Theorem 2 (Sum rule for definite integrals of indexed sums). Let { f,,} be a set of real-valued continuous
functions on [a,b], where n =0,1,2,....N. Then

/an dx—Z/fn

Note that f,(x) abbreviates f(x,n), which contains a free argument, n. Kaufmann [11] formalized
the FTC-1 theorem for generic unary functions as a non-classical theorem. We re-prove it for generic
functions with an extra argument added, following the method for extending the limited property of
Riemann sums as described in Section [4.2] Then, by applying the FTC-2 evaluation procedure along
with the extended version of FTC-1 and the sum rule for differentiation, the above theorem can be
proven as follows:

Proof. Forall x € [a,b] andn=0,1,...,N, let

X) = / ")t

By FTC-1, g, (x) = fu(x) for all x € [a,b],n=0,1,.. ,N
By the sum rule for differentiation, (¥ g,,(x))/ N &l (x) = YN fu(x) for all x € [a,b]. Then,
by FTC-2,

N
/an dx-Zgn Zogn(a)
" N a N b
= - ()dt — W (1)dt = n(x)dx
Y [noa- 3 [noa=y [)

7 Fourier Coefficient Formulas

From the orthogonality relations and the sum rule for integration, the Fourier coefficients of periodic
functions can be stated as follows:

46 Fourier Series Formalization in ACL2(r)

Theorem 3 (Fourier coefficient formulas). Consider the following Fourier sum f(x) for a periodic func-
tion with period 2L:

N
) =a+y. (ancos(nx) + busin(n 7 x)) (7.1)
Then | L
a=o7 [1, (12)
an = I/L f(x)cos(ngx)dx (7.3)
n L] L) '
b, = 1/L f(x) sin(nfx)dx (7.4)
n L) L : :

The proof of this theorem is straightforward from the orthogonality relations and the sum rule for
integration, after applying the definition of f in to the Fourier coefficient formulas (7.2), (7.3)), and
(7.4). Consequently, we can easily derive the following corollary. This is known as the uniqueness of
Fourier sums:

Corollary 1 (Uniqueness of Fourier sums). Let

N

f(x)=ao+ Z (an cos(n%x) + by sin(n%x))

n=1

and
N

glx)=Ao+) <An cos(n%x) +B, sin(n%x))

n=1
ap = Ag
Then f =g Sa,=A,, foraln=1,2,....N
b, =By, foralln=1,2,....N

Proof. (=) Follows immediately from the Fourier coefficient formulas:

1 L 1 L
a=5; /_Lf(x)x ¥ /_Lg<x>x 0,
L

1

a, = IIJ/LLf(x) cos(n%x)dx =7

/ g(x) cos(nzx)a’x = Ap,
L L

b —1/Lf()sin(T od —I/L () sin(n"x)dx = B
=1/, X npx)dx =+ _Lgx nx)dx = By.

(<) Obviously true by induction on 7. 0
8 Sum Rule for Definite Integrals of Infinite Series
Our formalization of the sum rule for integration in Section [6] only applies to finite sums. However,

Fourier series can be infinite. Thus, the sum rule for integration needs to be extended to infinite series;
we do so in this section.

C. Chau, M. Kaufmann & W. Hunt 47

Our basic result is the following sum rule for integrals of infinite series, formalized using non-
standard analysis. (We define uniform convergence below.)

Theorem 4. Suppose that { f,,(x)} is a sequence of real-valued continuous functions whose sequence of
partial sums converges uniformly to a continuous limit function on a given interval. Then

b Hy H b
/ st (Z fn(x)> dx = st (Z / fn(x)dx> (8.1)
a n=0 n=0"4

for all infinitely large natural numbers Hy and H,.

Remark. The conclusion above is equivalent to the following formula using the epsilon-delta defi-

nition of limit [[14]:
/a Mlg(z‘fn)dx— lim (O/ Jalx) (8.2)

We turn now to two variants of this theorem that relax its requirements. We start by recalling well-
known formulations of convergence in non-standard analysis.

e Pointwise convergence: Suppose {f,} is a sequence of functions defined on an interval /. The
sequence {f,} converges pointwise to the limit function f on the interval I if f(x) ~ f(x) for all
standard x € I and for all infinitely large natural numbers H.

e Uniform convergence: Suppose {f,} is a sequence of functions defined on an interval I. The
sequence { f,} converges uniformly to the limit function f on the interval [if f(x) ~ f(x) for all
x € I (both standard and non-standard) and for all infinitely large natural numbers H.

Clearly, uniform convergence is stronger than pointwise convergence. A sequence that converges
uniformly to a limit function also converges pointwise to that function, but the reverse is not guaranteed.
We meet the hypothesis of Theorem] — uniform convergence to a continuous limit function — in two
ways corresponding to two different conditions, as follows. Note: Only the second condition is relevant
to Fourier series, but the first also leads to an interesting result.

e Condition 1: A monotone sequence of partial sums of real-valued continuous functions converges
pointwise to a continuous limit function on the closed and bounded interval of interest.

e Condition 2: A sequence of partial sums of real-valued continuous functions converges uniformly
to a limit function on the interval of interest.

The following theorem [15] shows that Condition 1 implies the hypothesis of Theorem {]

Theorem 5 (Dini Uniform Convergence Theorem). A monotone sequence of continuous functions { f, }
that converges pointwise to a continuous function f on a closed and bounded interval [a,b] is uniformly
convergent.

Our proof of Dini’s theorem relies on the overspill principle from non-standard analysis [9, [13]].
Thus, we now discuss our formalization of this principle in ACL2(r) [3]].
Overspill principle (weak version): Let P(n,x) be a classical predicate. Then

Vx. ((v'n e N.P(n,x)) = 3"k € N.P(k,x)) . (8.3)

In words, if a classical predicate P holds for all standard natural numbers 7, P must be hold for some non-
standard natural number k. By applying this principle, we can even come up with a stronger statement
as follows:

48 Fourier Series Formalization in ACL2(r)

Overspill principle (strong version): Let P(n,x) be a classical predicate. Then
vx. ((V'n € N.P(n,x)) = 3™k € NVm € N.(m < k = P(m,x))) . (8.4)

In words, if a classical predicate P holds for all standard natural numbers #, there must exist some non-
standard natural number k such that P holds for all natural numbers less than or equal to k. (8.4)) can be
derived from (8.3) through a classical predicate P*(n,x) defined in terms of P(n,x) as follows:

(defun P* (n x)
(if (zp n)
(P 0 x)
(and (P n x)
(Px (1- n) x))))

The proof of (8.4) now proceeds as follows.

1. Fix x and assume (V"'n € N.P(n,x)).

2. Then, we can show that (V*'m € N.P*(m,x)).

3. Applying to P*: 3™k € N.P*(k,x).

4. From the definition of P*: 3™k € N.Vm € N. (m < k = P(m,x)).

We formalize for a generic classical predicate P(n,x) in ACL2(r) and provide the overspill
utility, which automates the application of (8.4). In particular, the user needs only to define a classical
predicate P; and then call the overspill macro with the input P; so that will be applied to P
automatically via a functional instantiation. We can thus apply the overspill principle (8.4) to prove
Dini’s theorem as shown below.

Proof of Theorem 5| Without loss of generality, assume {f,} is monotonically increasing. We want to
prove f(x) ~ fy(x) for all x € [a,b] and for all infinitely large H € N.

Fact: If x € [a,b] then st(x) € [a,b] (note that this is only true on closed and bounded intervals).

(A) Since st(x) is standard and x ~ st(x), f(x) ~ f(st(x)) by the continuity of f.

(B) Since st(x) is standard, f(st(x)) ~ fy(st(x)) by the pointwise convergence of { f,}.

We will make the following two claims.

Claim 1. For some non-standard k € N, we have: for all H <k, fy(st(x)) ~ fu(x).

Claim 2. Suppose k € N such that fi(x) = f(x). Then for all H > k, f(x) ~ fu(x).

For the moment, assume both claims. Choosing k according to Claim 1, then by the transitivity of
i-close and Steps (A) and (B) above, we have f(x) ~ fy(x) for all infinitely large H < k. Applying
Claim 2 to that same k takes care of H > k, so we are done once we prove the claims.

To prove Claim 1, we must find a non-standard & such that fy (st(x)) ~ fy(x) for all H < k. We first
observe that by the continuity of {f,}, we have f,(st(x)) =~ f,(x),Vx € [a,b] and V*'n € N. We apply
the overspill principle — which requires a classical predicate — to the following classical predicate
P(n,xp,x).

P10, = o) — (o) <
If xo,x € [a,b], xo is standard, and xo = x, then P(n,xo,x) holds for all standard n € N since f,(xo) —
fn(x) = 0 by the continuity of {f,}. Hence, by the overspill principle , there exists a non-standard
k € N s.t. P(m,xg,x) holds for all m € N and m < k. Now suppose that H is infinitely large but H < k.

Then f(x0) ~ fu(x) since

C. Chau, M. Kaufmann & W. Hunt 49

0 < |fu(x0) = fu()| < 7~ =~

Let’s pick xg to be st(x); then fy(st(x)) ~ fy(x), concluding the proof of Claim 1.

To prove Claim 2, by hypothesis pick k € N such that fi(x) ~ f(x), and assume H > k. Then fi(x) <
fu(x) < f(x) by the increasing monotonicity of {f,}. Hence, 0 < |f(x) — fu(x)| < |f(x) — fi(x)| = 0.
Thus, f(x) ~ fu(x), which concludes the proof of Claim 2 and also the proof of Theorem O

Dini’s theorem shows that pointwise convergence of a sequence of continuous functions on a closed
and bounded interval also implies its uniform convergence if the sequence is monotonic and the limit
function is continuous. Unfortunately, it is not applicable to Fourier series since Fourier series are not
required to be monotonic. As a result, Fourier series cannot meet the requirement for our proof of (4)
from Condition 1. In fact, Fourier series can satisfy Condition 2 under suitable criteria [10]. Then, from
Condition 2, we need to prove that the limit function is continuous in order to meet the requirement for
our proof of (). This can be proven by applying the overspill principle.

Theorem 6. Suppose that a sequence of continuous functions { f,} converges uniformly to a limit func-
tion f on an interval I. Then f is also continuous on I.

Proof. The goal is to prove f(xo) ~ f(x) for all xo,x € I such that xp is standard and xo ~ x. By the
uniform convergence of {f,}, we have f(xo) ~ fu(xo) and f(x) ~ fu(x) for all infinitely large H € N.
If we can show that fp(xo) ~ fm(x), then we obtain our goal by the transitivity of ~. By applying
the overspill principle in the same way as in our proof of Theorem [5| we claim that there must exist a
non-standard k € N s.t. fy(x0) ~ fu(x) if H < k. When H > k, we know that fx(xo) ~ fi(xo) (since
they are both i-close to f(xo) by the uniform convergence of {f,}) and similarly fy(x) ~ fi(x). Thus,
S (x0) = fi(xo) = fi(x) = fu(x) and we are done. O

From Condition 2 and Theorem |6 in order to apply the sum rule for integration () to infinite Fourier
series, we need to prove that the Fourier series converge uniformly to limit functions. As mentioned
above, this is provable under suitable criteria [10].

9 Conclusions

We described in this paper our extension of the framework for formally evaluating definite integrals of
real-valued continuous functions containing free arguments, using FTC-2. Along with this extension, we
also presented our technique for handling the occurrence of free arguments in pseudo-lambda expressions
of functional instantiations. Using the extended framework, we showed how to prove the orthogonality
relations of trigonometric functions as well as the sum rule for definite integrals of indexed sums. These
properties were then applied to prove the Fourier coefficient formulas and consequently used to derive
the uniqueness of Fourier sums as a corollary.

We also presented our formalization of the sum rule for definite integrals of infinite series under
two different conditions. Along with this task, we formalized the overspill principle and provided the
overspill utility that automates the application of the overspill principle, thus strengthening the rea-
soning capability of non-standard analysis in ACL2(r). Our proofs of Dini’s theorem and the continuity
of the limit function as described in Section [§]illustrate this capability.

Some possible areas of future work are worth mentioning. First, the automatic differentiator needs
to be extended to support partial differentiation. The current AD has limited support for automating

50 Fourier Series Formalization in ACL2(r)

partial differentiation. Although we extended the AD to support partial derivative registrations of binary
functions, this extension is still very limited for automatic differentiation. In particular, our extension
imposes a constraint on the free argument of binary functions that either its symbolic name must be arg0
or it has to be a constant. As a result, the AD cannot be applied to expressions containing several binary
functions with different free arguments. Our current solution in this case is to break those expressions
into smaller expressions such that the AD can be applied directly to these smaller expressions, and
then manually combine them to get the final result for the original expressions. Future work might
make the partial differentiation process more automatic. Another possibility for future work is to prove
convergence of the Fourier series for a periodic function, under sufficient conditions.

In summary, we have developed and extended frameworks for mechanized continuous mathematics,
which we applied to obtain results about Fourier series and an elegant proof of Dini’s theorem. We
are confident that our frameworks can be applied to future work on Fourier series and, more generally,
continuous mathematics, to be carried out in ACL2(r).

Acknowledgements

‘We thank Ruben Gamboa for useful discussions. We also thank the reviewers for useful comments. This
material is based upon work supported by DARPA under Contract No. N66001-10-2-4087.

References

[1] ACL2: ACL2 Documentation on Lemma-Instance. See URL http://www.cs.utexas.edu/users/
moore/acl2/current/manual/index.html?topic=ACL2 LEMMA-INSTANCE.

[2] ACL2 Community Books: Available at https://github.com/acl2/acl2.

[3] Overspill Principle Formalization Source Code: Available at https://raw.githubusercontent.com/
acl2/acl2/master/books/nonstd/nsa/overspill.lisp.

[4] R. Gamboa & J. Cowles (2007): Theory Extension in ACL2(r). Journal of Automated Reasoning 38(4), pp.
273-301, doii10.1007/s10817-006-9043-0.

[5] J. Cowles & R. Gamboa (2014): Equivalence of the Traditional and Non-Standard Definitions of Concepts
from Real Analysis. In: Proc of the Twelfth International Workshop on the ACL2 Theorem Prover and its
Applications (ACL2-2014), pp. 89-100, doi:10.4204/EPTCS.152.8.

[6] P. Reid & R. Gamboa (2011): Automatic Differentiation in ACL2. In: Proc of the Second International
Conference on Interactive Theorem Proving (ITP-2011), pp. 312-324, doi:10.1007/978-3-642-22863-6_23|

[7] P. Reid & R. Gamboa (2011): Implementing an Automatic Differentiator in ACL2. 1In: Proc of the
Tenth International Workshop on the ACL2 Theorem Prover and its Applications (ACL2-2011), pp. 61-69,
doi:10.4204/EPTCS.70.5.

[8] R. Gamboa (1999): Mechanically Verifying Real-Valued Algorithms in ACL2. Ph.D. thesis, The University
of Texas at Austin.

[9] R. Goldblatt (1998): Lectures on the Hyperreals: An Introduction to Nonstandard Analysis. Springer.
[10] D. Jackson (1934): The Convergence of Fourier Series. The American Mathematical Monthly 41(2), pp.
67-84, doi:10.2307/2300327.

[11] M. Kaufmann (2000): Modular Proof: The Fundamental Theorem of Calculus. In M. Kaufmann, P. Manolios
& J S. Moore, editors: Computer-Aided Reasoning: ACL2 Case Studies, chapter 6, 4, Springer US, pp. 75—
91, doi:10.1007/978-1-4757-3188-0_6.

[12] R. Gamboa & M. Kaufmann (2001): Non-Standard Analysis in ACL2. Journal of Automated Reasoning
27(4), pp- 323-351, doi;10.1023/A:1011908113514.

http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____LEMMA-INSTANCE
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____LEMMA-INSTANCE
https://github.com/acl2/acl2
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill.lisp
https://raw.githubusercontent.com/acl2/acl2/master/books/nonstd/nsa/overspill.lisp
http://dx.doi.org/10.1007/s10817-006-9043-0
http://dx.doi.org/10.4204/EPTCS.152.8
http://dx.doi.org/10.1007/978-3-642-22863-6_23
http://dx.doi.org/10.4204/EPTCS.70.5
http://dx.doi.org/10.2307/2300327
http://dx.doi.org/10.1007/978-1-4757-3188-0_6
http://dx.doi.org/10.1023/A:1011908113514

C. Chau, M. Kaufmann & W. Hunt 51

[13] H.J. Keisler (1976): Foundations of Infinitesimal Calculus. Prindle Weber & Schmidt.
[14] H.J. Keisler (1985): Elementary Calculus: An Infinitesimal Approach. Prindle Weber & Schmidt.

[15] W. A. J. Luxemburg (1971): Arzela’s Dominated Convergence Theorem for the Riemann Integral. The
American Mathematical Monthly 78(9), pp. 970-979, doi:10.2307/2317801.

[16] Inc. Wolfram Research (2015): Mathematica. Available at http://www.wolfram.com/mathematica/.

http://dx.doi.org/10.2307/2317801
http://www.wolfram.com/mathematica/

	1 Introduction
	2 Basic Non-Standard Analysis Notions in ACL2(r)
	3 Fundamental Theorem of Calculus
	4 FTC-2 Evaluation Procedure
	4.1 Automatic Differentiator
	4.2 Formalizing the Riemann Integral with Free Arguments
	4.3 Applying FTC-2 to Functions with Free Arguments

	5 Orthogonality Relations of Trigonometric Functions
	6 Sum Rule for Definite Integrals of Indexed Sums
	7 Fourier Coefficient Formulas
	8 Sum Rule for Definite Integrals of Infinite Series
	9 Conclusions

