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Abstract 

Equations of motion in ( )YX ,  frame moving with the waves are considered for 

steady, incompressible flow. The boundary conditions at the bottom 0=Y  and 

at the free surface ( )XY η=  are used for solving shallow water wave problems. 
The remaining boundary conditions are also taken from Navier-Stokes equation 
of motion. Using these boundary conditions, three nonlinear ordinary 
differential equations are formulated, which can be solved by using series 
expansion method. We consider that all variations in X is relatively slow and 

can be expressed in terms of dimensionless variable ,h
Xα  where α  is a small 

quantity and h is the trough depth of fluid. Then approaching on series 
expansion method, two types of nonlinear ordinary differential equations are 
formulated. Using Jacobi elliptic function, first and second order cnoidal wave 
solutions have been derived. Then mean value of Jacobi elliptic function and the 
solitary wave limit of cnoidal wave solutions are also formulated. 
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1. Introduction 

The general case of water wave motion is the disturbance that 
propagates in varying directions over water of possible non-uniform 
density, which flows on a shear current. A convenient set of 
approximations is assumed that the bed is impermeable and flat, the 
propagation of disturbances is collinear and they are of infinite length 
transverse to the direction of propagation such that the flow is two 
dimensional, homogeneous, and incompressible. Under these 
approximations, it is possible to obtain analytical solutions which 
correspond to a single periodic wave train, which propagates steadily 
without change of form. This is the steady wave problem from which 
convenient model is obtained. 

Throughout coastal and ocean engineering, the convenient model of a 
steadily progressing wave train is used to derive fluid velocities and 
surface elevations caused by waves. The steady wave problems be solved 
in terms of three physical length scales only: water depth (h), wave 
length ( ),λ  and wave height (H). The main theories and methods for the 

steady wave problem which have been used are: Stokes theory, an 
explicit theory based on an assumption that the waves are not very steep 
and which is best suited in deeper water; cnoidal theory, an explicit 
theory for waves in shallow water; and Fourier approximation methods 
which are capable of high accuracy but which solve the problem 
numerically and require computationally expensive matrix techniques. A 
review and comparison of the methods is given in Sobey et al. [1] and 
Fenton [3]. For relatively simple solution methods that are explicit in 
nature, Stokes and cnoidal theories play an important role in this field. 

Fenton [2] presented a fifth order cnoidal theory where boundary 
condition comes from Bernoulli’s equation, which was both apparently 
complicated, requiring the presentation of many coefficients as 
unattractive floating point numbers, and also gave poor results for fluid 
velocities under high waves. In a later work, Fenton [3], however, the 
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author showed that instead of fluid velocities being expressed as 
expansions in wave height, if the original spirit of cnoidal theory were 
retained and they be written as series in shallowness, then the results 
are considerably more accurate. 

Cnoidal theory obtained its name in 1895 when Korteweg and de 
Vries [4] obtained their eponymous equation for the propagation of waves 
over a flat bed. They obtained periodic solutions which they termed 
“cnoidal”, because the surface elevation is proportional to the square of 
the Jacobian elliptic function ( ).mcn θ  The cnoidal solution shows the 

familiar long flat troughs and narrow crests of real wave in shallow 
water. A second order cnoidal theory was presented in a formal manner 
by Laitone [5, 6], who provided a number of results, re-casting the series 
in terms of the wave height/depth. The next approximation was obtained 
by Chappelear [7], as one of a remarkable sequence of papers on 
nonlinear waves. He obtained the third order solution and expressed the 
results as series in a parameter directly proportional to shallowness: 

( ) .lengthdepth/wave 2  

Tsuchiya and Yasuda [8] obtained a third order solution with the 
introduction of another definition of wave celerity based on assumptions 
concerning the Bernoulli constant. Nishimura et al. [9] devised 
procedures for generating higher order theories for both Stokes and 
cnoidal theories, making extensive use of recurrence relations. The 
authors concentrated on questions of the convergence of the series. They 
computed a 24th order solution; however, few detailed formulae for 
application were given. Nishimura et al. [9] continued the work of 
Nishimura et al. [10] and presented a unified view of Stokes and cnoidal 
theories. Karabut [13] solved an ordinary quadratic nonlinear differential 
difference equation of the first order containing an unknown function 
under certain conditions. Halasz [14] discussed on higher order 
corrections for shallow water solitary waves. Hongquie et al. [15] studied 
the cnoidal wave solutions of the Boussinesq systems in two different 
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techniques by using the Jacobi elliptic function series. Carter et al. [16] 
discussed the kinematics and stability of solitary and cnoidal wave 
solutions of the Serre equations, which are a pair of strongly nonlinear, 
weakly, dispersive, Boussinesq type partial differential equations. They 
also described the model of the surface elevation and the depth averaged 
horizontal velocity of an inviscid, irrotational, incompressible shallow 
water. In this study, shallow water wave problems have been solved by 
using boundary conditions at the bottom 0=Y  and at the free surface 

( ).XY η=  Also, the boundary conditions are taken from Navier-Stokes 

equation of motion, which generates cnoidal wave solutions. 

2. Cnoidal Wave Theory 

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic 
wave solution of the Korteweg and de Vries equation. These solutions are 
in terms of the Jacobi elliptic function ( ).mcn θ  They are used to describe 

surface gravity waves of fairly long wavelength, as compared to the water 
depth. The cnoidal wave solutions were derived by Korteweg and de 
Vries, [4] in which they also propose their dispersive long wave equation, 
known as the Korteweg-de Vries equation. 

Consider the wave as shown in Figure 1, with a stationary frame of 
reference ( ) xyx ,,  in the direction of propagation of the waves and y 

vertically upwards with the origin on the flat bed. The waves travel in 
the x direction at speed c relative to this frame. Consider also a frame of 
reference ( )YX ,  moving with velocity c in positive X direction, such that 

,ctXx +=  where t is time and .Yy =  The fluid velocity in the ( )yx,  

frame is ( )ν,u  and that in the ( )YX ,  frame is ( )., VU  The velocities are 

related by cUu +=  and .V=ν  

In the ( )YX ,  frame, all fluid motion is steady and consists of a flow 

in the negative X direction, roughly of the magnitude of the wave speed, 
underneath the stationary wave profile. The mean horizontal fluid 
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velocity in this frame, for a constant value of Y over one wavelength λ  is 

denoted by .U−  It is negative because the apparent flow is in the – X 
direction. For the convenience of our calculation, the velocities in this 
frame are used to obtain the solutions. 

 

Figure 1. Wave train, showing important dimensions and coordinates. 

3. Equations of Motion in a Frame Moving with the Wave 

Consider the equation of motion in ( )YX ,  frame moving with the 

wave for steady, incompressible flow. There exists a stream function 
( )YX ,ψ  such that the velocity components ( )VU ,  are given by 

., XVYU
∂
ψ∂−=

∂
ψ∂=  (1) 

For irrotational flow, ψ  satisfies Laplace equation  

.02

2

2

2
=

∂

ψ∂+
∂

ψ∂

YX
 (2) 



SHAHANA PARVIN et al. 68

The boundary conditions at the bottom 0=Y  is a stream line on which 
( )YX ,ψ  is constant and at the free surface ( )XY η=  is also a stream 

line. 

( ) 00, =ψ∴ X  (taking zero constant) and ( )( ) ,, Q−=ηψ XX   (3) 

where Q  is the volume flux underneath the wave train per unit span. 

The negative sign is for the flow which is in the negative X-direction, 
such that the wave will also propagate in the positive X-direction. 

The remaining boundary condition from Navier-Stokes equation for 
steady incompressible flow 

( ) ,1. 2ννν ∇+∇
ρ

−=∇ pg   (4) 

where ν  is fluid velocity, ( )gg ,0=  is acceleration of gravity, ρ  is 

density, p is pressure, and   is viscosity of the fluid. 

For two components, Equation (4) can be rewritten as 

,2

2

2

2










∂

∂+
∂

∂=
∂
∂+

∂
∂

Y
U

X
U

Y
UVX

UU   on free surface ( ),XY η= pressure ,0=p  

(5) 

and 

.2

2

2

2










∂

∂+
∂

∂+=
∂
∂+

∂
∂

Y
V

X
VgY

VVX
VU   (6) 

Using Taylor expansion for ψ  about the bed of the following form: 

( ) ( ) ( ),!5!3sin, 5

55

3

33
Xf

dX
dY

dX
dY

dX
dYXfdX

dYYX








+−+−=




−=ψ …  

(7) 
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as in Fenton [2], where dX
df  is the horizontal velocity on the bed. Using 

infinite Taylor series, the differential operator 






dX
dYsin  can be written 

.!5!3sin 5

55

3

33









−+−=




 …

dX
dY

dX
dY

dX
dYdX

dY  (8) 

Now, the velocity components anywhere in the fluid are 

( ),cos XfdX
dYYU ′





−=

∂
ψ∂=  

( ).sin XfdX
dYXV ′





=

∂
ψ∂−=  

The field Equation (2) is satisfied identically by the stream function, 
which is expressed in Equation (7). From Equations (5) and (6), we get 

( ) ( )




 ′′











 ′





 XfdX

dYXfdX
dY coscos  

( ) ( ) ,0sinsin =




 ′′











 ′





+ XfdX

dYXfdX
dY   (9) 

and 

( ) ( )




 ′′











 ′





− XfdX

dYXfdX
dY sincos  

( ) ( ) .cossin gXfdX
dYXfdX

dY =




 ′′











 ′





+   (10) 

At the free surface ( ),XY η=  Equations (3), (9), and (10) become 

( ) ,sin Q=




 η XfdX

d  (11) 

( ) ( )




 ′′











 ′





 XfdX

dYXfdX
dY coscos  

( ) ( ) ,0sinsin =




 ′′











 ′





+ XfdX

dYXfdX
dY   (12) 
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and 

( ) ( )




 ′′











 ′





− XfdX

dYXfdX
dY sincos  

( ) ( ) .cossin gXfdX
dYXfdX

dY =




 ′′











 ′





+   (13) 

Differentiating Equation (11), we get 

( ) ( ).cossin XfdX
d

dX
dXfdX

d ′




 ηη−=′





 η  (14) 

Substituting this value in Equations (12) and (13), we have 

( ) ( )




 ′′





 η





 ′





 η XfdX

dXfdX
d coscos  

( ) ( ) ,0sincos =




 ′′





 η





 ′





 ηη− XfdX

dXfdX
d

dX
d   (15) 

and 

( ) ( )




 ′′





 η





 ′





 η XfdX

dXfdX
d sincos  

( ) ( ) .coscos gXfdX
dXfdX

d
dX
d −=





 ′′





 η





 ′





 ηη+   (16) 

Equations (11), (15), and (16) are three nonlinear ordinary differential 
equations in the unknowns ( ) ( ),, XfX ′η  and ( ).Xf ′′  These ordinary 

differential equations can be solved by using power series method. 

4. Power Series Solution 

Assuming constant depth ( ) hX =η  and ( ) ,UXf =′  the derived 

equations can be solved by using series expansion method about the state 
of a uniform critical flow. Let the scaled horizontal variable be 

,, hh
X

∗η=ηα=θ  and .Q∗= ff  
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Equations (11), (15), and (16) can be rewritten in terms of these 
dimensionless quantities as 

( ) ,11as01sin1 ≈=−θ






θ
αη

α ∗∗ hfd
d  (17) 

( ) ( )




 θ′′







θ
αη





 θ′







θ
αη ∗∗∗∗ fd

dfd
d coscos  

( ) ( ) ,0sincos =




 θ′′







θ
αη





 θ′







θ
αη

θ
η

α− ∗∗∗∗
∗ fd

dfd
d

d
d   (18) 

and 

( ) ( )




 θ′′







θ
αη





 θ′







θ
αη

θ
η

∗∗∗∗
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dfd
d

d
d coscos  

( ) ( ) ,sincos1
∗∗∗∗∗ −=





 θ′′







θ
αη





 θ′







θ
αη

α
+ gfd

dfd
d  

.and11as 22 ∗=≈
α

ggh
Q

  (19) 

Equations (17), (18), and (21) suggest that 2α  is taken as the expansion 
parameter, we write the series expansions 

( ),1 2

1
θα+=η ∑

=
∗ j

j
N

j
Y  (20) 

( ),1 2

1
θα+=′ ∑

=
∗ j

j
N

j
Ff  (21) 

,1 2

1
j

j
N

j
gg α+= ∑

=
∗  (22) 

where N is the order of solution required. 
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5. First Order Cnoidal Wave Solution 

Using the above series expansion taking ( ),6αo  Equations (17), (18), 

and (19) can be written as, respectively, 

( ) 




 ′′−++α++α 12112

4
11

2
6
1 FFYFYFY  

 ,0120
1

2
1

6
1

1112321123
6 =





 +′′−′′−+++α+ νiFFYFFFYFYY (23) 







 ′+

′′′
−′α+′α 11

1
2

4
1

2
2 FFFFF  

;0

2
1

2
1
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1

2
1

1111

211121121136 =
















′′′−′′′−

′+′′′−′++′′′−′′′−′
α+

FYFF

FFFFFFFFFYF ν

 (24) 

and 






 ′′+−′′+′′+′′α+′′α 11111211

4
1

2
6
1 FFFFYFFYF iν  

















′′−′′+′′+−′′++−

−′′+′′+′′+′′+′′′−′′+′′
α+

2
1111121121111

212213111112216

2
1

6
1

120
1

2
1

6
1

2
1

FFFYFFFFFFFFY

FFYFYFYFFYFYFYF

iii

i

ννν

ν

 

( ).1 3
6

2
4

1
2 ggg α+α+α+−=  (25) 

Equating the coefficients of 2α  and 4α  from Equations (23), (24), and 
(25), we have 

,

.0

,0

,0

11

1

11













=+′′

=′

=+

gF

F

YF

 (26) 
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.

.06
1

,02

,06
1

211111112

1
211

11122














=+−′′+′′+′′+′′

=
′′′

−′+′

=′′−++

gFFFFYFYF

FFFF

FFYYF

iν

 (27) 

Using Equation (26), Equation (27) can be written as 

( )

( )

( )

.

c.06
1

b,02

a,06
1

21
2

12

1
211

1
2

122














=+−′−′′

=
′′′

−′+′

=′′−−+

gFFF

FFFF

FFYF

iν

 (28) 

Differentiating (28a), we have 

.06
12 11122 =′′′−′−′+′ FFFYF  (29) 

Again, differentiating the above equation 

.06
122 1

2
11122 =−′−′′−′′+′′ νiFFFFYF  (30) 

Applying Equations (28b)-(29), we get 

.03
13 1211 =′′′−′−′ FYFF  

Again, differentiating the above equation 

.03
133 12

2
111 =−′′−′+′′∴ νiFYFFF  (31) 

Again, (28c)-(30), we get 

06
1226

1
1

2
1112221

2
12 =+′+′′+′′−′′−+−′−′′ νν ii FFFFYFgFFF  

.02 2
2

1112 =−′−′′−′′⇒ gFFFY  (32) 

Adding (31) and (32), we obtain 
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.023
1

211
2

11 =++′− gFgFF iν  (33) 

This is a nonlinear ordinary differential equation of fourth order. 
According to Abramowitz and Stegun [11], the solution for 1F  in terms of 

( ),2 mcn θ  the Jacobian elliptic function can be obtained as 

( ),2
11 mcnAF θ=  (34) 

where 1A  is independent of θ  and m is the parameter of elliptic function. 

According to Abramowitz and Stegun [11], we get 

( ) ( ),1 22 mcnmsn θ−=θ   (35) 

and 

( ) ( ),1 22 mmcnmmdn θ+−=θ   (36) 

( )( ) ( ) ( ) ( ),2 1
2

11 mdnmsnmcnAmcnAd
dF θθθ−=θ
θ

=′  

( ) ( ) ( ) ( ){ }[ ],214 42222
1

2
1 mmcnmcnmmcnmmcnAF θ−θ−θ+−θ=′  

(37) 

( ) ( ) ( ) ( )[ ],64822 42
11 mmcnmcnmmAF θ−θ−+−=′′∴  (38) 

( ) ( ) ( ){ }



θ+θ−−=′′′∴ mmcnmcnmAF 3

11 24482  

( ) ( ) ( )( ){ } ,21 2
1

422




θ−θ+θ−−× mmcnmmcnmcnm   (39) 

and 

( ) ( ) ( )[ mcnmmmmAF i θ+−++−−= 222
11 171722318ν  

( ) ( ) ( )].153015 624 mcnmmcnmm θ+θ−+   (40) 
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Substituting these values in Equation (33), we get 

( ) ( ) ( )[ mcnmmmmA θ+−++−− 222
1 171722313

8  

 ( ) ( ) ( )]mcnmmcnmm θ+θ−+ 624 153015  

( ) ( ) ( ) ( ) ( )[ ]mmcnmcnmmcnmmcnmcnA θ−θ−θ+θ−θ− 644222
1 28  

( ) .02
2

11 =+θ+ gmcnAg  

Collecting coefficients of like powers of ( ),2 mcn θ  we have 

( ) ( ) ( ).1213
40and,13

16,5 2
2

11 mmmgmmgmA −−−=+−−=−=  

Hence, the first order cnoidal solution from Equations (20), (21), and (22) 
becomes 

( ),51 22 mcnm θα+=η∗  (41) 

( ),51 22 mcnmf θα−=′∗  (42) 

and 

( ).15.15
161 22 +−α−=∗ mmg  (43) 

Here, the above series have been in terms of 2α  where neglected terms 

are at least of the order of .4α  It is simpler to express the series in terms 

of ,δ  where 

,5 2α=δ   (44) 

as suggested by the results of Equations (41), (42), and (43). The function 
( )mcn θ  has a real period of ( ),4 mK  where K is complete elliptic 

integral of first kind. According to Abramowitz and Stegun [11], it is 
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easily shown that ( )mcn θ2  has a period of ( ),2 mK  i.e., ( )mKx =α  and 

as the wave has a wavelength ,2, hx λ=λ  therefore, the elementary 

geometric relation holds ( ).2 mKh =λα  

Using the boundary condition at the wave crest ( ) ,10 h
H+=η∗  then 

Equation (41) can be written as 

( ) 222 510511 α+=α+=+ mcnmh
H  

.5
1 2

1






=α⇒ h

H
m  (45) 

Therefore, Equation (41) becomes 

( ).1 2 mcnh
H θ





+=η∗  (46) 

6. Second Order Cnoidal Wave Solution 

From Equations (23), (24), and (25), equating the like powers of ,6α  
we have 

.

.02
1

6
1

120
1

2
1

6
1

2
1

,02
1

2
1

24
1

2
1

,0120
1

2
1

6
1

3
2

11111211

21111212213111111221

111121112112113

1112321123

















=+′′−′′+′′+−

′′++−−′′+′′+′′+′′+′′′−′′+′′

=′′′−′′′−′+′′′−′++′′′−′′′−′

=+′′−′′−+++

gFFFYFFFF

FFFFYFFYFYFYFFYFYFYF

FYFFFFFFFFFFFYF

FFYFFFYFYY

i

iii

i

ν

ννν

ν

ν

 

Using Equation (26), we get 
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( )

( )

( )

.

c.02
1

120
1

3
1

6
1

2
1

b,02
1

2
1

24
1

2
1

a,0120
1

2
1

6
1

3
2

11
2

112

1112123
2

11111221

11211121123

1112321123

















′=+′′−′′−′′+

++−′′+′′+′+′′′′+′′−′′

′=′′′+′+′′′+′++′′′−′

′=+′′+′′−+−+

gFFFFF

FFFFFYFFFFFFFYF

FFFFFFFFFFF

FFFFFFFFYY

iii

i

ννν

ν

ν

 

(47) 

Now, differentiating Equation ( ),a47 ′  we get 

.0120
1

2
1

2
1

6
1

1111123212112123 =+′′′+′′′+′′′−′+′−′−′+′+′ νFFFFFFFFFFFFYFYY  

(48) 

Again, differentiating Equation (48), we get 

11232121211212123 6
122 FFFFFFFFFFFYFYFYY i ′′′′+−′′+′′−′′−′′−′′+′′+′′+′′ ν  

.0120
1

2
1

2
1

111
2

1 =++′′+ ii FFFF νν  (49) 

Subtracting Equation (48) from Equation ( ),b47 ′  we get 

.030
1

3
122 12212112123 =−′′′+′−′−′+′+′ νFFFFFFFYFYY  (50) 

Again, differentiating (50), we get 

.030
1

3
12422 122121211212123 =−+′′−′′−′′−′′+′′+′′+′′ ii FFFFFFFFFYFYFYY νν  

(51) 

Subtracting Equation (51) from Equation (49), we get 

.024
1

2
1

2
1

2
12 1211

2
1112121213 =+−+′′+′′′′+′′+′′+′′+′′ iii FFFFFFFFFFFFFF ννν  

(52) 

Finally, subtracting Equation (52) from Equation ( ),c47 ′  we get 
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111
2

112
2

11112121212 2
133

1 FFFFFYFFFFYFFFFFF i ′′′′−′′−′′+′−′′′′+′′+′′−′′−ν  

.030
1

6
1

3111
2

1 =+−−′′− gFFFF ii νν  (53) 

Substituting the values of 2Y  and 2Y ′  from Equation (28a) and using 

Equation (26) in Equation (53), we have 

,030
1

6
1

6
5

3
1

3111
2

121212 =+−−′′−′′−′′− gFFFFFFFFF iii ννν  (54) 

which is a nonlinear ordinary differential equation. According to Fenton 
[2], we also assume that 

( ) ( ),4
3

2
212 mcnamcnaaF θ+θ+=  (55) 

where ,, 21 aa  and 3a  are independent of θ  and m. 

Differentiating Equation (55) four times and using Equations (35) 
and (36), we have 

( ) ( ){ } ( ) ( );42 3
322 mdnmsnmcnamcnaF θθθ−θ−=′∴  

( ) ( ) ( ){ } ( ) ( ( )mamcnmamamaF 211621411212 3
2

2322 −−+θ−−−+−=′′  

) ( ) ( );206 6
3

4
2 mmcnamcnma θ−θ−  (56) 

( ) ( ){ } ( ) ( ){

} ( ) ( ) 













θ+θ+

−+θ−−−−
=′′′

mmcnamcnma

mamcnmama
F

5
3

3
2

323
2

1206

211642141122
 

( ) ( );mdnmsn θθ  

( ) ( )2
2

2
32 23182124 mmammaF i +−−+−=ν  

( ) ( ){ } ( )mcnmmamma θ+−++−−+ 22
2

2
3 171728231240  

( ) ( ){ } ( )mcnmmamma θ−++−+ 4
2

2
3 211205353832  

( ){ } ( ) ( ).840120211040 82
3

62
23 mcnmamcnmamma θ+θ+−+ (57) 
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Differentiating Equation (40), we have 

( ) ( ) ( ) ( )[ mcnmmmcnmmAF θ−−θ+−−=∴ 32
11 301541717228ν  

( )] ( ) ( ).90 52 mdnmsnmcnm θθθ−  

Again, differentiating above equation and using Equations (35) and (36), 
we have 

mF i 401 −=ν  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
.

63021840378378634

6293331817341922

836242

23232















θ−θ−−θ+−−

θ−+−−−+−

mcnmmcnmmmcnmmm

mcnmmmmmm  

(58) 

Also squaring Equation (38), we have 

22
1 100mF =′′  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

.
92112

211112132421

8264

2222















θ+θ−+θ×

+−+θ+−−+−

mcnmmcnmmmcn

mmmcnmmmm
  (59) 

Substituting these values in Equation (54), we get 

( ) ( ) ( ) ( )
( ) 
















+−+−+

+−−−++−−+−

3
32

22
1

2
2

2
3

17341923
8

213
2502252313

8218

gmmmm

mmmmmammamma
 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) 






















−+−−

+−++−+−+

−+−++−++−−

+

32

2222
2

12
2

2
2

3

62933313
32

2313
1001323

1000225

485110171723
823180

mmmm

mmmmmmmma

mmammammamma

 

( )mcn θ2  
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( ) ( ) { ( ) ( )}

( ) ( ) ( )
( ) ( ) 






















+−−+−−

+−−−+−+−

−−−+






 −++−

+

2222

22
32

2
1

232
2

3

378378633
16171723

100

211113
50022548530

21411252140535383
32

mmmmmm

mmmmmammama

mamammmamma

 

( )mcn θ4  

( ) ( ){ }

( ) ( ) ( ) ( )















−−−−−−−+

−+−−+−
+

mmmmmmmma

mamamammamma

21112021500211000485

3062116540213
1040

333
3

2
223

2
23  

( )mcn θ6  

( ) ( ).84050075030100280 84442
3

2
3

2
3 mcnmmmmamama θ−−−−−+  

Now equating the coefficients of like power of ( )mcn θ2  from the above 

equation, we obtain the values of ,, 21 aa  and ,3a  i.e., 

( ),559275592710192675
1 2

1 mma +−=  (60) 

( ),2145
1838

2 mma −




=  (61) 

and 

.15
209 2

3 ma =  (62) 

Substituting the values ,, 21 aa  and 3a  in Equation (55), we get 

( ) ( ) ( )mcnmmmmF θ−++−= 22
2 2145

1838559275592710192675
1  

( ).15
209 42 mcnm θ+  (63) 

Therefore, Equation (28a) becomes 
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( ) ( )mcnmmmmY θ−−−+−= 22
2 2145

1688
675

54802
675

54802
675

10192  

( ).15
241 42 mcnm θ+  (64) 

Hence, the second order cnoidal solutions are obtained from Equations 
(20), (21), and (22), respectively, 

( )mcnmYY θα+=α+α+=η∗
22

2
4

1
2 511  

( ) ( )

( )
,

15
241

2145
1688

675
54802

675
54802

675
10192

42

22
4

















θ+

θ−−−+−
α+

mcnm

mcnmmmm
  

(65) 

( )mcnmFFf θα−=α+α+=′∗
22

2
4

1
2 511  

( ) ( ) ( )

( )
,

15
209

2145
1838559275592710192675

1

42

22
4

















θ+

θ−++−
α+

mcnm

mcnmmmm
 

(66) 

and 

2
4

1
21 ggg α+α+=∗  

 ( ) ( ) ( ).1213
40115

801 422 mmmmm −−α−+−α−=   (67) 

Again, using boundary condition ( ) ,10 h
H+=η∗  then Equation (65) can 

be written as 

( )






 +−−−+−α+α+=+ 2242

15
2412145

1688
675

54802
675

54802
675

10192511 mmmmmmh
H  

,675
6683

675
29482

675
10192

25
115

1 2
2

2











 −−+=α⇒ mmh

H
mh

H
m  
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,5
12 





=α h

H
m∵  

and neglecting higher order of .






h
H  

.
33750

6683294821019215
1

2

22
1
















 −−+




=α∴

m
mm

h
H

h
H

m  (68) 

Substituting this value in Equation (65) and neglecting higher order of 

,






h
H  we have 

( )mcnh
H θ





+=η⇒ ∗ 21  

( )

( )

.

15
241

675
43957

675
54802

675
10192

675
54802

675
54802

675
10192

25
1

42

22

2

2

2























θ+

θ






 −+−−






 −+−






+

mcnm

mcnmm

mm

h
H

m
(69) 

7. Mean Value of Jacobi Elliptic Function 

If jI  is the mean value of ( ),2 mcn j θ  then 

( ) ( )[ ] .1 2

0

2 θθ=θ= ∫ dmcnKmcnI
j

K
j

j  (70) 

Putting ,,2,1,0 …=j  respectively, we have 

( )[ ] ,11 02

0
0 =θθ= ∫ dmcnKI

K

 

and 

( )[ ] .1 2

0
1 θθ= ∫ dmcnKI

K

 (71) 
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Now, elliptic integral of the first kind is 

( ) .
sin1 2

0

2

θ−

θ= ∫
π

m
dmK  

Putting ,sin x=θ  then 

( )
22

1

0 11 xmx
dxmK

−−
= ∫  

( ) ( ) .11 2
1

2
1

22
1

0

dxmxx
−−

−−= ∫  

Again, putting ,2 tx =  we have 

( ) ( ) ( ) ( ) .112
1

2
1

2
1

2
1

1

0

dttmttmK −−− −−= ∫  (72) 

Also, using hypergeometric function, we have 

( ) ( ) ( ) ( ) dttmttmF α−−β−γ−β −−
β−γβ

γ
=γβα ∫ 11

1

0
12 11;,,  

 
( ) ( )
( )

( ) ( )
( ) ,!21

111!
2

0
…+

+γγ
+ββ+αα+

γ
αβ+=

γ
βα

= ∑
∞

=

mmmn
n

n
nn

n
 

( ) ( ) ( ) 






−

=−−∴ −−−−∫ mFdttmtt ;1,2
1,2

1
1

2
112

1

11 12
111

1

0

2
1

2
1

2
1

 

( ) .!2111

12
1

2
112

1
2
1

1
2
1.2

1
1 2 …+

+






 +





 +

++= mm  
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.6.4.2
5.3.1

4.2
3.1

2
11;1,2

1,2
1 3

2
2

22
12 








+





+





+





+π=





∴ …mmmmF  (73) 

Using Equation (50), Equation (72) becomes for 1<<m  

( ) .6.4.2
5.3.1

4.2
3.1

2
112

3
2

2
22









+





+





+





+π= …mmmmK  

Similarly, elliptic integral of second kind is 

( ) ( ) ( ) ( ) dttmttdmmE 2
1

2
1

2
1

2

112
1sin1

1

0

2

0

−− −−=θθ−= ∫∫
π

 






−

−

= mF ;1,2
1,2

1
1

2
112

1

12  

.56.4.2
5.3.1

34.2
3.1

12
112

32222








−





−





−





−π= …mmm  

Therefore, 

( ) ( )
( ) 








−





−





−





−== ...56.4.2

5.3.1
34.2

3.1
12

11
32222 mmm

mK
mEme  

....6.4.2
5.3.1

4.2
3.1

2
11

1
3

2
2

22 −









+





+





+





+× mmm  (74) 

Now, 

( )

1
3

2
2

22
...6.4.2

5.3.1
4.2
3.1

2
1121

−









+





+





+





+

π
= mmmmK  

.256
11

64
5

4
112 32





 −−−−

π
= …mmm  

Hence Equation (74) becomes 
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( ) ( )
( ) 








−





−





−





−== ...56.4.2

5.3.1
34.2

3.1
12

11
32222 mmm

mK
mEme  





 −−−−× …32

256
11

64
5

4
11 mmm  

 .32
1

16
1

2
11 32 …−−−−= mmm  

Using the Fourier series expansion, the Jacobi elliptic function can be 
written as in the following form: 

( )
( )

( ) ( )
( ) ( ) ( ) ,212cos212sec

0






 π+






 ′π+π=θ ∑

∞

=
mK
znmK

mKnh
mKm

mcn
n

 (75) 

where ( ) ( )mKmK −=′ 1  is the imaginary quarter period. 

Now 

( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )
!4
212

5!2
212

1212sec

42






 ′π+

+






 ′π+

−=





 ′π+ mK

mKnmK
mKn

mK
mKnh  

( ) ( )
( ) .!6

212
61

6

…+






 ′π

+
−

mK
mKn

 (76) 

Also, the nome q is given by 

( )
( ) ,exp 






 ′

π−= mK
mKq  

( ) ( )
( ) 




 ′

+π−=∴





 +

mK
mKnq

n

122exp2
12

 

 ( ) ( )
( )

( ) ( )
( )

!2

1221221

2






 ′

+π

+
′

+π−= mK
mKn

mK
mKn  

 
( ) ( )

( ) ( ) ( )
( ) ,!4

122
!3

122
43

…−






 ′

+π

+






 ′

+π

− mK
mKnmK

mKn
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and 

( ) ( ) ( )
( ) 




 ′

+π−=+
mK
mKnq n 12exp12  

( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )
!3

12

!2

12
121

32






 ′

+π
−







 ′

+π
+

′
+π−= mK

mKnmK
mKn

mK
mKn  

( ) ( )
( ) ,!4

12
4

…−






 ′

+π
+ mK

mKn
 

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )
!3

12

!2

12
1221

32

12






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Hence, from Equations (76) and (77), we get 
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The nome q has the following form for small m according to Abramowitz 
and Stegun [11]: 
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Putting 0=n  
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and for ,2=n  
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Therefore, for ,1<<m  the Jacobi elliptic function of Equation (75) can be 
written as 
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Substituting this value in Equation (71), we have 
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The other values may be computed in the same way. 

8. Solitary Wave Limit 

For every long nonlinear waves with the parameter m close to one, 
i.e., ,1→m  the Jacobi elliptic function ( )mcn θ  can be written as [11] 
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For solitary wave limit ( ),1→m  Equations (41), (42), and (43), i.e., first 
order cnoidal wave solutions can be written as 
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Again, for solitary wave limit ( ),1→m  Equations (65), (66), and (67), 
i.e., second order cnoidal wave solutions can be written as 
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9. Conclusion 

Cnoidal wave is a non linear and exact periodic wave solution of the 
Korteweg and de Vries (KdV) equation. These solutions are in terms of 
the Jacobi elliptic function ( ).mcn θ  Here, first and second order cnoidal 

wave solutions have been developed by using boundary conditions at the 
bottom 0=Y  and at the free surface ( ).XY η=  Also, the boundary 

conditions are taken from Navier-Stokes equation of motion. To get 
accurate results, mean value of Jacobi elliptic functions are also 
derivedin terms of elliptic parameter. Using hypergeometric function and 
nome, elliptic integral of first and second kinds are converted to elliptic 
parameter. In solitary wave limit, i.e., elliptic parameter approaches to 
one, first and second order cnoidal wave solutions have also been 
generalized. 
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