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Abstract

Equations of motion in (X, Y) frame moving with the waves are considered for
steady, incompressible flow. The boundary conditions at the bottom Y = 0 and
at the free surface Y = n(X) are used for solving shallow water wave problems.
The remaining boundary conditions are also taken from Navier-Stokes equation
of motion. Using these boundary conditions, three nonlinear ordinary
differential equations are formulated, which can be solved by using series
expansion method. We consider that all variations in X is relatively slow and

. . . . aX .
can be expressed in terms of dimensionless variable —, where o is a small

h
quantity and A is the trough depth of fluid. Then approaching on series
expansion method, two types of nonlinear ordinary differential equations are
formulated. Using Jacobi elliptic function, first and second order cnoidal wave
solutions have been derived. Then mean value of Jacobi elliptic function and the

solitary wave limit of cnoidal wave solutions are also formulated.
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1. Introduction

The general case of water wave motion is the disturbance that
propagates in varying directions over water of possible non-uniform
density, which flows on a shear current. A convenient set of
approximations is assumed that the bed is impermeable and flat, the
propagation of disturbances is collinear and they are of infinite length
transverse to the direction of propagation such that the flow is two
dimensional, homogeneous, and incompressible. Under these
approximations, it is possible to obtain analytical solutions which
correspond to a single periodic wave train, which propagates steadily
without change of form. This is the steady wave problem from which

convenient model is obtained.

Throughout coastal and ocean engineering, the convenient model of a
steadily progressing wave train is used to derive fluid velocities and
surface elevations caused by waves. The steady wave problems be solved
in terms of three physical length scales only: water depth (h), wave

length (1), and wave height (H). The main theories and methods for the

steady wave problem which have been used are: Stokes theory, an
explicit theory based on an assumption that the waves are not very steep
and which is best suited in deeper water; cnoidal theory, an explicit
theory for waves in shallow water; and Fourier approximation methods
which are capable of high accuracy but which solve the problem
numerically and require computationally expensive matrix techniques. A
review and comparison of the methods is given in Sobey et al. [1] and
Fenton [3]. For relatively simple solution methods that are explicit in

nature, Stokes and cnoidal theories play an important role in this field.

Fenton [2] presented a fifth order cnoidal theory where boundary
condition comes from Bernoulli’s equation, which was both apparently
complicated, requiring the presentation of many coefficients as
unattractive floating point numbers, and also gave poor results for fluid

velocities under high waves. In a later work, Fenton [3], however, the
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author showed that instead of fluid velocities being expressed as
expansions in wave height, if the original spirit of cnoidal theory were
retained and they be written as series in shallowness, then the results

are considerably more accurate.

Cnoidal theory obtained its name in 1895 when Korteweg and de
Vries [4] obtained their eponymous equation for the propagation of waves
over a flat bed. They obtained periodic solutions which they termed
“cnoidal”, because the surface elevation is proportional to the square of

the Jacobian elliptic function cn(6/m). The cnoidal solution shows the

familiar long flat troughs and narrow crests of real wave in shallow
water. A second order cnoidal theory was presented in a formal manner
by Laitone [5, 6], who provided a number of results, re-casting the series
in terms of the wave height/depth. The next approximation was obtained
by Chappelear [7], as one of a remarkable sequence of papers on
nonlinear waves. He obtained the third order solution and expressed the

results as series in a parameter directly proportional to shallowness:

(depth/wavelength)?

Tsuchiya and Yasuda [8] obtained a third order solution with the
introduction of another definition of wave celerity based on assumptions
concerning the Bernoulli constant. Nishimura et al. [9] devised
procedures for generating higher order theories for both Stokes and
cnoidal theories, making extensive use of recurrence relations. The
authors concentrated on questions of the convergence of the series. They
computed a 24th order solution; however, few detailed formulae for
application were given. Nishimura et al. [9] continued the work of
Nishimura et al. [10] and presented a unified view of Stokes and cnoidal
theories. Karabut [13] solved an ordinary quadratic nonlinear differential
difference equation of the first order containing an unknown function
under certain conditions. Halasz [14] discussed on higher order
corrections for shallow water solitary waves. Hongquie et al. [15] studied

the cnoidal wave solutions of the Boussinesq systems in two different
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techniques by using the Jacobi elliptic function series. Carter et al. [16]
discussed the kinematics and stability of solitary and cnoidal wave
solutions of the Serre equations, which are a pair of strongly nonlinear,
weakly, dispersive, Boussinesq type partial differential equations. They
also described the model of the surface elevation and the depth averaged
horizontal velocity of an inviscid, irrotational, incompressible shallow
water. In this study, shallow water wave problems have been solved by
using boundary conditions at the bottom Y = 0 and at the free surface

Y = n(X). Also, the boundary conditions are taken from Navier-Stokes

equation of motion, which generates cnoidal wave solutions.
2. Cnoidal Wave Theory

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic
wave solution of the Korteweg and de Vries equation. These solutions are
in terms of the Jacobi elliptic function cn(6/m). They are used to describe
surface gravity waves of fairly long wavelength, as compared to the water
depth. The cnoidal wave solutions were derived by Korteweg and de
Vries, [4] in which they also propose their dispersive long wave equation,

known as the Korteweg-de Vries equation.
Consider the wave as shown in Figure 1, with a stationary frame of
reference (x, y), x in the direction of propagation of the waves and y

vertically upwards with the origin on the flat bed. The waves travel in
the x direction at speed c relative to this frame. Consider also a frame of

reference (X, Y) moving with velocity ¢ in positive X direction, such that
x = X +ct, where t is time and y = Y. The fluid velocity in the (x, y)
frame is (v, v) and that in the (X, Y) frame is (U, V). The velocities are

relatedby u =U +c and v = V.

In the (X, Y) frame, all fluid motion is steady and consists of a flow

in the negative X direction, roughly of the magnitude of the wave speed,

underneath the stationary wave profile. The mean horizontal fluid
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velocity in this frame, for a constant value of Y over one wavelength A is

denoted by — U. It is negative because the apparent flow is in the — X
direction. For the convenience of our calculation, the velocities in this

frame are used to obtain the solutions.
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Figure 1. Wave train, showing important dimensions and coordinates.

3. Equations of Motion in a Frame Moving with the Wave

Consider the equation of motion in (X, Y) frame moving with the

wave for steady, incompressible flow. There exists a stream function

v(X, Y) such that the velocity components (U, V) are given by

oy oy
. = ——-X 1
u oYy’ v oX @
For irrotational flow, y satisfies Laplace equation
2 2
0%y N oy

VL eV . @)
ax?2  oY?
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The boundary conditions at the bottom Y = 0 is a stream line on which

y(X,Y) is constant and at the free surfaceY = n(X) is also a stream

line.
- y(X, 0) = 0 (taking zero constant) and y(X, n(X)) = -0, 3)

where Q is the volume flux underneath the wave train per unit span.

The negative sign is for the flow which is in the negative X-direction,

such that the wave will also propagate in the positive X-direction.

The remaining boundary condition from Navier-Stokes equation for

steady incompressible flow
1 2
(vVy=g- S VPV, )

where v is fluid velocity, g = (0, g) is acceleration of gravity, p is

density, p is pressure, and v is viscosity of the fluid.

For two components, Equation (4) can be rewritten as

oU _, oU o’U  2%U
Ua_X+V6_Y = U[GX_2+F} on free surface Y = n(X), pressure p = 0,
(%)
and
oV Ly Vg[8V, 8V ®)
ox oy ox2  ov?)

Using Taylor expansion for y about the bed of the following form:

v(X,Y) = —(sinY%)f(X) _ {- O ..}f(X),
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as in Fenton [2], where g—;( is the horizontal velocity on the bed. Using

infinite Taylor series, the differential operator (sm Y diX) can be written

(sm Y

3 3 5 5
d) {Yd Y3 & Y® d _} ®

dx 3 ax3 - 5! dx?®
Now, the velocity components anywhere in the fluid are

U= (cosY )f (X),

The field Equation (2) is satisfied identically by the stream function,
which is expressed in Equation (7). From Equations (5) and (6), we get

(e dec)(oer o)
(o oo enr oo

~([cos ¥ 2 )0 (sin ¥ £ )rcx)]
((siny 2 )0 (cos v L)) =& ao

At the free surface Y = n(X), Equations (3), (9), and (10) become

and

(smnde f(X) = (11)

(e doelorgo)

+ ((sm Y d%(j '(X)) ((sm Y %} "(X)j =0, (12)
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and

~([cor ¥ L)1) (sin ¥ L))
+([siny L)) ((cosy Z)re0) =& a3

Differentiating Equation (11), we get

[sinn 5 0 = =G (cosn 7 Jrc0) (14)

Substituting this value in Equations (12) and (13), we have

([eosn g Jr00))([osm g )

3X ((cos n def (X)) ((sm n dX)f"(X)) 0, (15)

and

([eoxn g ) (simn g o)

j;} ((cos n dX)f (X)j ((cos n dX)f"(X)) -g. (16)

Equations (11), (15), and (16) are three nonlinear ordinary differential
equations in the unknowns n(X), f'(X), and f"(X). These ordinary

differential equations can be solved by using power series method.
4. Power Series Solution

Assuming constant depth n(X)=h and f/(X)=U, the derived

equations can be solved by using series expansion method about the state
of a uniform critical flow. Let the scaled horizontal variable be

92%,n=1’]*h, and f = f,0.
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Equations (11), (15), and (16) can be rewritten in terms of these

dimensionless quantities as

~ 1, 17

>

1(. d
< (sm Nx0L %)f*(e) -1=0as

([cos 035 £20) [ cos e 5 @)

-0 G ([cosno 2510 ) (sinna 55 @) = 0. as

and

5 forne o ()

# 2 [cosno |72 sim e 55 )220 ) = - .

asL2 ~1 and g—}; = g.. 19)
o Q

Equations (17), (18), and (21) suggest that o? is taken as the expansion

parameter, we write the series expansions

N
M =1+ Zazfyj(e), (20)
fEsi
N .
fl=1+ Zaszj(e), (21)
i
N .
Zs =1+Za21gj, (22)
i

where N is the order of solution required.
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5. First Order Cnoidal Wave Solution

Using the above series expansion taking O((XG), Equations (17), (18),

and (19) can be written as, respectively,

a2(Y, + F )+ oc4(Y2 L RY, + Fy —% 1")

+O(6(Y3+Y2F1 +Y1F2 +F3 —le"—%YlFl".FL w

o?F] + oc4(F2’ - % + FlFl'j

! " 1 " 1 4 1 " !
o B -VF =5 Ff + 5o F + FiF} — 5 R+ F{F

+ o

1 = 0; (24)
-5 FF - Y{Ff

and

o2 Fy + oc4(Y1'F1' + Fy + Y, Fy - % FV + FlFl"j

[ FYs + By - % FIY{ + FFY' + FY + Y,F} + Y, F} - X
+ o

5
1 Flll

]. 3 n 1 ] " n 1 ”2
- EY]_F]_HJ + m 1t F1F2 - g F]_F]_lv + F2F1 + Y]_F]_F]_ - E F]_

= - (1 + oc2g1 + a4g2 + oc6g3). (25)

Equating the coefficients of a? and a* from Equations (23), (24), and
(25), we have

Fl +Y1 =

|
=

; (26)

=
+
o
|
(e}
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Fy + Y, + Y,F, —%F": 0,

F\F| + F} —71=o,

FY + Y{F + Y,F} + F,F - % Fi" + gy = 0.

Using Equation (26), Equation (27) can be written as

By+Yy-FP -2 F =0, (a)
Fr

RF +Fy -1 =0, (b)}.

2

n ’ 1 A
F. —Flz—g 17" +82=0. (c)

Differentiating (28a), we have
’ ! ! 1 "
F2+Y2—2F1F1—EF = 0.

Again, differentiating the above equation

Fy + Yy - 2F F - 2F}% - % FY =0,

Applying Equations (28b)-(29), we get
! ! 1 L
3F1F1 - Y2 —gF]_ = O
Again, differentiating the above equation
”n /2 " 1 i]}
3F1F1 + 3F1 — X9 — gFl = 0.

Again, (28¢)-(30), we get

Fy - R - % FiV 4 gy — F§ — YJ + 2F,F) + 2F}2 + % F =0

= Yy - 2R F/ - F%> - g4 = 0.

Adding (31) and (32), we obtain

73

@7

(28)

(29)

(30)

(31

(32)
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%Ff“ _2F2 4 gF, + g4 = 0. (33)

This is a nonlinear ordinary differential equation of fourth order.

According to Abramowitz and Stegun [11], the solution for Fj in terms of

cn? (8/m), the Jacobian elliptic function can be obtained as
F = A;en®(0/ m), (34)

where A; is independent of 6 and m is the parameter of elliptic function.

According to Abramowitz and Stegun [11], we get

sn2(0/m) =1-cn?(0/m), (35)
and
dn?(0/m)=1-m+ men(0/m), (36)
F - % (41en2(0 / m)) = - 241en(0 / m)sn(6 / m) dn(0 | m),

B2 = 442]en2(0 / m){1 - m + 2men®(0 ) m) — en?(0 / m) — men*(0 / m),
(37)

FY = A2 - 2m) + (8m - 4)en2(8 / m) - 6men® (0 / m)), (38)

L H' = A {{— 2(8m — 4)en(0 / m) + 24men®(0 / m)}

x {(1 —m —cn?(0/m)+2men® 0/ m)— men*(0 / m))}%}, (39)
and
Fv = 84, [~ (1-3m+2m2)+ (2 - 17m + 17m2)en?(0 / m)

+ m(15 - 30m)en*(0 / m) + 15m%en®(0 / m)]. (40)
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Substituting these values in Equation (33), we get
Say[-0-3m+ 2m?)+ 2 -17m + 17m%)en?(0 / m)
+ m(15 - 30m)en* (0 / m) + 15m%en®(0/ m)]
- 8A12[cn2(9 /m)—men?(0 ) m)+ 2men* (0 / m) - en*(0 / m) — men®(6 / m)]
+ g1 A;en®(0/ m) + go = 0.

Collecting coefficients of like powers of cn? (6 /m), we have

Ay =-5m, g = —%(m2 —m+1), and g9 = —4—30m(1—2m)(1—m).

Hence, the first order cnoidal solution from Equations (20), (21), and (22)

becomes
ne =1+ 5maZen?(0/ m), (41)
fi =1-5maZen®(0/ m), (42)
and
16 . 2 2
g*zl—ﬁﬁa (m —m+1). (43)

Here, the above series have been in terms of a? where neglected terms

are at least of the order of a. It is simpler to express the series in terms
of 8, where
_ 2
d = ba”, (44)

as suggested by the results of Equations (41), (42), and (43). The function
cn(0/m) has a real period of 4K(m), where K is complete elliptic

integral of first kind. According to Abramowitz and Stegun [11], it is
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easily shown that ¢n?(0/m) has a period of 2K(m), i.e., ax = K(m) and

therefore, the elementary

as the wave has a wavelength A, x = %,

geometric relation holds a r 2K(m).

h

Using the boundary condition at the wave crest n,(0) =1 + %, then

Equation (41) can be written as

1+ % =1+ 5maZen?(0) = 1+ 5mo®
1 H)z
== (% 7) . (45)
Therefore, Equation (41) becomes
Me =1+ (%)cnz(e / m). (46)

6. Second Order Cnoidal Wave Solution

From Equations (23), (24), and (25), equating the like powers of OLG,

we have

Yy + YoF, + Y, Fy + Fy —%Fz” —%YJ{@%F{" -0,

F - Y, Fy— % R+ i FY + FF} - % FFy'+ FJF, - % F{F —Y{F{ = 0,

FYs + F3Y{ -5 FY{ + FyFY] + B+ 0F5 + Yoy - ¢ B — 2B + - B + R Fy

- %FlFli" + FyF} + Y,F,F} - %FI"Z +gs=0.

Using Equation (26), we get
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- A lpp, L pv_ /
Y3+Y2F1 F1F2+F3 6F2+2F1F1+120F1 —O, (a)

' 1 m 1 ’ 1 " ’ 1 g !
F3—§F2 +ﬂF1U+F1F2 +§F1F1 +F1F2 +§F1F1 :O, (b)
FY3 - F3F) + = F{F{ + By F> + F§ + Y, Ff — = Fy + L R + "

2 6 3 120

+ FyF) - FfF”—%Fl"z +g5=0. ()

47)
Now, differentiating Equation (47a’), we get
! ’ r ’ ’ ’ 1 " 1 r " 1 " 1 v
Y3 +Y2Fl +Y2F1 - F1F2 —Fle + F3 ——F2 +—F1F1 +—F1F1 +—F1 =0.
6 2 2 120

(48)

Again, differentiating Equation (48), we get
Y3 + YoF, + 2YoF] + Yo F) - 2F|Fy — F{'Fy — F1Fy + F3§ — % in” + FF"

1 .2 1 w 1 vi
+ 2F1 + 2F1F1 * 190 " =0. (49)

Subtracting Equation (48) from Equation (47b’), we get
Y) + Y3F, + Yo — 2F[F, — 2F, F} + % Fy- 31—0 F =o. (50)

Again, differentiating (50), we get

YJ + YSF, + 2YSF] + Yo Fy — 2F{Fy — AF{F} — 2F,Fy + % W 31—0F1W' 0.
(51)
Subtracting Equation (51) from Equation (49), we get
14 " " & nli rgm 1 n2 ]- v ]- w 1 Vi
F3 +F1F2 +F1F2 +2F1F2 +F1F1 +§F1 +§F1F1 —E +ﬂF1 =0.
(562)

Finally, subtracting Equation (52) from Equation (47c’), we get
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S By - RFy - 3F(F; + FY; + L R - RE® + Y,F - FF - FFY

- R - G RFY - Bt gy =0, (53)

Substituting the values of Yy and Yy from Equation (28a) and using
Equation (26) in Equation (53), we have

1 .1/ 14 14 5 14 1 .1/ 1 L
g zl —F]_F _F].FQ_EFlz_gFlFll —%F]_UL-I-g?):O, (54)

which i1s a nonlinear ordinary differential equation. According to Fenton

[2], we also assume that
Fy = aj + agen?(0/ m) + azen* (0 / m), (55)
where a;, a9, and ag are independent of 6 and m.

Differentiating Equation (55) four times and using Equations (35)
and (36), we have

o Fy = {- 2a5en(0 / m) - 4a5cn®(0 / m)}sn(0 / m)dn(® / m);

F} = 2a9(1 - m) + {12a5(1 — m) — 4ay(1 — 2m)}en?(0 / m) + (- 16a5(1 — 2m)
— 6agm)ent (0 / m) — 20agmen® (0 / m); (56)
201245 (1 - m) - 4ay(1 — 2m)len(0 / m) + 4{16a5(1 — 2m)

e + 6agmlen®(0 / m) + 120agmen®(0 / m)

sn(0 / m)dn(8 / m);

Fi’ = 24a3(1 - 2m + m?) - 8ay (1 - 3m + 2m?)

+{- 240051 - 3m + 2m?)+ 8ay(2 —17m + 17m2 (0 / m)

+ {32(13(8 - 53m + 53m2)+ 120asm(1 - 2m)}cn4(9 / m)

+ {1040a3m(1 - 2m) + 120a2m2}cn6(9 / m) + 840asm?cn®(0 / m). (57)
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Differentiating Equation (40), we have
LR o= 8A1[— 2(2 -17m + 17m2)cn(9 / m) - 4m(15 — 30m)cn®(0 / m)
- 90m20n5(9/m)]sn(9 / m)dn(6/m).

Again, differentiating above equation and using Equations (35) and (36),

we have
R = —40m

2(2-19m + 34m2 —17m?)- 81 - 33m + 93m2 — 62m3 )en2(0/ m)

- 4m(63 —378m + 378m2)cn4(e /m)—840m?(1 —2m)cn®(0/ m)-630m3cn®(0/m)

(58)
Also squaring Equation (38), we have
F/'? =100m?
(1 -2m + mg)— 4(2m2 -3m + l)cnz(G/m) + 2(11m2 -11m + 2) 59)
x cn*(0 / m)+12m(1 — 2m)en8(0 / m) + 9m2cn8(0 / m)
Substituting these values in Equation (54), we get
8a3(1 -2m + mZ)— %ag(l -3m + 2m2)+ 5aym(2 — 2m) — % m2(1 -2m + m2)

+ % ml2 —19m + 34m2 ~17m?)+ g,

- 80a3(1 —3m+ 2m2)+ g a2(2 -17Tm + 17m2)+ 10masg(1 — m) + ba;m(8m — 4)

+| + bagm(2 —2m)+$m2(2m2 -3m +1)+%m2(1—3m+2m2)
- %m(1—33m+93m2 ~ 62m®)

en®(0/ m)
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{% as (8 - 53m + 53m2)+ 40asm(l - 2m)} +5m{12a3(1 - m) - 4a9(1 - 2m)}

+| - 80a;m? + bagm(8m — 4) + basm(2 — 2m) — % m2(1 1m? —11m + 2)

3 %mZ(Z 1Tm + 17m2)— §m2(63 —-378m + 378m2)

ent (6 ) m)

1040 asm(l — 2m) + 40asm? — 5m{16a5(1 — 2m) + 6agm} — 30agm?

+Bagm(8m — 4) —1000m3(1 - 2m) - 500m>(1 - 2m) - 1120m>(1 - 2m)
en®(0/m)
+ (280a3m? ~100agm? — 30a3m? - 750m* — 500m* — 840m* )en®(0 / m).

Now equating the coefficients of like power of cn? (6/m) from the above

equation, we obtain the values of a7, a9, and as, i.e.,

_ 1 _ 2
a = 675 (10192 55927m + 55927m ), (60)
1838
= | == 1-2 1
and
209 o
ag = J-m”. (62)

Substituting the values a;, a9, and ag in Equation (55), we get

1838
45

L

(10192 - 55027m + 55927m? ) +

F, m(1 - 2m)en®(0 / m)

+ % mZen* (0 / m). (63)

Therefore, Equation (28a) becomes
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10192 54802 54802 5 1688 2
Y, = - - - 1-2 0
2 675 e " e " a5 MU-2men’(®0/m)

24 4

Hence, the second order cnoidal solutions are obtained from Equations
(20), (21), and (22), respectively,

ne =1+ a2y +atYy =1+ 5maen?(0/m)

A6 TTes 65 "t T 4

10192 54802 54802 o 1688 (1—2m)cn2(6/m)

T e :
2.4
+ gy moen 0/ m)
(65)
fi =1+ 0?F +a*Fy =1-5maZen?(6/m)
L (10192 - 55927m + 55927m?) + 1838 2(0/m)
o4 /6T ,
+ iﬁmzcn‘l(e/m)
(66)
and
g =1+0%g +a’g,
80 of o 40 4
—1—ﬁoc( —m+1) 5 m(l - 2m ) (1 - m). (67)

Again, using boundary condition n,(0) =1 + %, then Equation (65) can
be written as

1+%:1+5ma2+a4{7

10192 54802 54802 2 1688 o o . @ 2
675 = 675 675 45

2 1 H 1 H (10192 29482 6683 o
= o = 5—7 1+ —_ m

o5m? h 675 675 ' 675
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a2_L(£)
T 5m\h)

and neglecting higher order of (%)

(63)

1
( 1 H]E{ H [10192 ~ 29482m — 6683m? H
a=|z= |1+ .

5m h 33750m?

Substituting this value in Equation (65) and neglecting higher order of

(%) , we have

=n" =1+ (%)erﬂ(e/m)

RNIGEE "5 " 615
1 (H 10192 54802 43957 o) o
i - 0 (69
25m2(h) { 675 ' 675 ' 675 m}c”(/m) (69)
241

2.4
_+ 5 moen (0/m)

_(_ 10192 = 54802 54802 2) i

+

7. Mean Value of Jacobi Elliptic Function

If I; is the mean value of en?/ (0 / m), then
- K .
I; = en(0/m) = %j[cn%ﬁ/m)yde. (70)
0
Putting j = 0, 1, 2, ..., respectively, we have

K
Iy = %J.[crﬂ(e/m)]ode =1,
0

and

K
== ! [en2(0 / m)]de. (71)



CNOIDAL WAVE SOLUTIONS 83

Now, elliptic integral of the first kind is
3
K(m) = j ___ 4
pVl—-m sin” 0

Putting sin 6 = x, then

1
dx
K(m) ) ‘([\/1 ~ mx? x/l ~x?

1 1 1
= I(l - x2) 2(1 - mxz) 2 dx.
0
Again, putting x2 = ¢, we have
1
1 _1 101
K(m) = 3 j (1—¢)2(1 - mt) 2 (t) 2dt. (72)
0

Also, using hypergeometric function, we have

. W i p-1 —B-1/,—a
Bl B3 m) = o [0 0P =m0
0

By -

@By n ;o a(a+DBB+D) o
_nz:; Wt T T G
1 =
1 1 1
J)' =37 (1 — m) 5 ) St = TQF{%, % 1 m)
11 1L )L
_1+§§m+2(2+1j2(2”) :

1 11+1)2
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. 11 . ). 1) 1.3\ 5 (1.35)\% 3
..2F1(§,§,1, m)—r{1+(§j m+(ﬂ) m +(m) m- + ... (73)

Using Equation (50), Equation (72) becomes for m << 1

tm) = 5|1 (3 (32wt (322 |

Similarly, elliptic integral of second kind is

3 1
E(m) = j V1= msin? 0d0 = % j (1=t 2(1 - me) 2 ()2 dt
0 0

1
—h=-=
2 2

Therefore,
E(m) (1)2 m (1.3)2 m2 (1 35)2 m® ]
e(m) = ——= 5] 7T o4 o |logal =~
K(m) 2) 1 2.4 3 2.4.6 5
12 (13 5 (135Y 5 |
Now,

Hence Equation (74) becomes
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o= = 1= () () - (33) % -

_q_ L, 1,2 1 3_
=1 2m 16 32m

Using the Fourier series expansion, the Jacobi elliptic function can be
written as in the following form:

o0

cn(0/m) = m nZsec h((2n +1) 2K(( ))) cos((on +1) 2K( )j (75)

where K'(m) = K(1 — m) is the imaginary quarter period.

Now

((2 n+1) nK' (m)) g ((2 1) nK' (m)j

sec h((Zn +1) ZII{{'((Z;))j = Z?K( ) 4?K( )
nK'(m))®
61 ((Zn + 1)6?K(m)j 6
Also, the nome ¢ is given by
o= [ o 020
(Zn;l) = ex (— ud (2n +1) K’(m)j
1 P73 K(m)
K'(m)Y?
(2n +1)
:1—%(2n+1)§(( )) ( 2!K( )j

(e (e

3! 4! o
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and

q@n+l) — exp( n(2n +1) K(( )))

(n(2n+1) II{{((”‘))) ( (@2n +1) K(( )))3

=1-n(2n+1) (m)

K(m) © 5] 3
) (n(Zn + 1; K(( ))j4 )

2 14+q@) <2 - n(2n +1) [I{{é;@)) (n@n . 12)’K((n”1‘))) _ (n(2n ’ 1;%:;)))3
) (n(zn + 1;?}77"3)4 )

P Caihies (7 o +( won 4 )]

1
= 21 -5 n(2n +1) Km) o =

) (n(2n+1) K(( )))4

4!
- , n(2n +1)
g = G- nen 1) II{{((Z)) ( 2!K( )j

(2 + ) K(( )))3 ( (2n +1) K(( ))T )

* 3l 4




N
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3
{1+—n(2n+1)K(()) 54 ((2n+1)K(( ))j L }’

1+ % n(2n +1) II{{ ((::)) _ (n(2n i 12)! K(( )) )2 ( (@2n + 1; K(( )))3
) (Tc(2n + 1)%)4 +
1l

+ o nlon +1) II{{ ((z)) (n@n i lz)yK((Z:)) ) ) (75(271 + 1;?{ ((n”;))T
. ( (2n +1;K(( ))j4 )

+ 5 (2 +1) II{{((,’:)) . (n(zn " 12)! K(( )) )2 ( (2n + 1;! K((m)))?’
) (Tc(2n +1j! (( )))4 +

s in@n 4 1) II{{((::)) ( (2“1;1;((”1))) ( (2n+1;K(( )))3

) (n(Zn +1) K(( )))4 +

1l

87
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AP

1—£(2n+1)

K(m>+(

2n +1)——

K'(m)
K(m)
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) (g

K'(m)
K(m)

i)

K(m)
K'(m)

(5en D

+

J

2

4!

1

2{1+— n(2n +1)

2q(2n+1)A[1 N q(2n+1)]—1

K'(m

K(m)

) _ 51 ((2n+1

)

K'(m)\? T K'(m))’
m (2n +1) =(2n+1)
gmrgg 2B B
T K'(m)
(—(2n+1) j ,
2 K(m) K'(m) _ (m)
e . 5 e+ il ) ((2n+1)K( ))
| iy (32 0] K'(m)
+E(n(2n+1) K(m)j - - (n(2n+1) e )j
T (9 K'(m))*
. B V)
3
| K(m)Y* = K'(m)*
(2n +1) 5= (2n +1)
_ 1_( - K(m )) (2 N K(m)) _ (77)
Hence, from Equations (76) and (77), we get
(ns1) /
nK'(m)) _ 2
sec h((2n +1) 2K(m)) = 1q+ q(2”+1) . (78)
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The nome g has the following form for small m according to Abramowitz
and Stegun [11]:

2 3 4
m m m m

Hence, Equation (78) can be written as

m m 2 m 3 m 4 (Znﬂ)é
nK’(m)j . {E + 8(%) + 84(Ej + 992(%) + }

2K(m) m 2 m\3 . (@n+1)
1{E+8(Ej csa( ) gl ) }

sec h((Zn +1)

(79)

Putting n = 0

DO [

) h(’;flf{((n”z))) B {% + 8(%)2 +284(%)3 +3992(%)4 +4..}
1+ {% + 8(%) + 84(%) + 992(%) + }
- 2(%)%{1 + 3(%) + 23(%)2 + 129(%)3 + }

"'m;(m)s“"@g((nnf)))‘ ; 2[1‘1’” T ams - }

T Umnl a" 6™ T2 "
x 2(ﬂj% 1+ 3(ﬂj + 23(3)2 + 129[ﬂ)3 R T
16 16 16 16) | 16" 256

Similarly, for n =1,

311K’(m)) 1 1

T
sech( =—m+-=—m" +...,
VmK(m) 2K(m) 16 32
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and for n = 2,
b 57‘5K'(m)j 1 )
sech = me + ...
vmK(m) ( 2K (m) 256

Therefore, for m << 1, the Jacobi elliptic function of Equation (75) can be
written as

(1oL, 9 2 LIS T
cn(e/m)—(l 6™ s5g ™ +...)cosa6+(16m+32m +...jcos3oc6

. T
with o —T(’n).

Hence, its square term becomes

9 1 1 1 9 1 3 o )
=|l=—-—=—m-— - - 200
cn“(0/ m) (2 gmggm )+(2 s1g M+ |cos 20

1 1 9 3 2
+(16m+ 39 ™ +...)cos4a9+(512m +...jc056a9+....(80)

Substituting this value in Equation (71), we have

1K
IIIE
0

(1 1 1 o 1 3 2
. —m-—= -2 2
(2 16 m 39 m- + ]+ (2 519 m* + )cos a0

1 1 3 9 o
JE— —_— 2 [
_+ (16m+32m +...)cos4a9+(256m +...]0056a9+...
K
1 1 1 o 1(1 3 2 .
:L (2 16m 32m +...)6+2(2 —512m +...js1n20c9
K +i(%m+%m2+...)sin4a6+%(%m2+...)sin6(x6+... .

I = ={-1+m+e(m)}.

3|~

(81)
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The other values may be computed in the same way.

8. Solitary Wave Limit

For every long nonlinear waves with the parameter m close to one
i.e., m — 1, the Jacobi elliptic function cn(0 / m) can be written as [11]

cn(0/ m) = sec h(0) — % (1 — m)[sinh(0) cosh(0) — 8] tanh(0) sec h(0), (82)

with sec h(0) = os;h(e)’ where sinh, cosh, tanh, and sech are hyperbolic

functions. In the limit m — 1, cn(0 / m) — sec h(0).

In the limit m — 1, from Equations (63) and (64), the values of
F5 and Yy become

10192 1838

B B oy 209 4

T ch (e)+—sech 9), (83)
_ 10192 1688 > s

AT ch (9)+—sech (0). (84)

For solitary wave limit (m — 1), Equations (41), (42), and (43), i.e., first
order cnoidal wave solutions can be written as

n* =1+ 5a? sec h%(0),

f* =1-502 sec h2(6), and }.

_80 2
15

(85)

*

g =1

Again, for solitary wave limit (m — 1), Equations (65), (66), and (67),
1.e., second order cnoidal wave solutions can be written as
n* =1+502sech?(0)+ oc4{ 12%22 + 1?128 ch?(0)+ Esec h4(9)},

f* =1-502 sec h%(0) + a4{1gég2 1i§8 ch?(0)+ &sec h4(9)}, and ;.

—1—E(X

(86)
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9. Conclusion

Cnoidal wave is a non linear and exact periodic wave solution of the
Korteweg and de Vries (KdV) equation. These solutions are in terms of

the Jacobi elliptic function cn(0 / m). Here, first and second order cnoidal

wave solutions have been developed by using boundary conditions at the
bottom Y =0 and at the free surface Y = n(X). Also, the boundary

conditions are taken from Navier-Stokes equation of motion. To get
accurate results, mean value of Jacobi elliptic functions are also
derivedin terms of elliptic parameter. Using hypergeometric function and
nome, elliptic integral of first and second kinds are converted to elliptic
parameter. In solitary wave limit, 1.e., elliptic parameter approaches to
one, first and second order cnoidal wave solutions have also been

generalized.
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