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vestigated theoretically. An analysis is carried out based on the approximate
equations previously derived. Two typical viscoelastic models are considered, which
possess, respectively, the discrete and continuous relaxation spectrum. One is the

usual Maxwell-Voigt model and the other is a new model whose relaxation function
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1 Introduction

A dynamic test of a viscoelastic solid at high strain rates
often utilizes the wave propagation techniques consisting of
the introduction of torsional or longitudinal waves in a cir-
cular rod. The torsional waves are of primary importance in
evaluating a shear response. In such viscoelastic materials as
polymers, the effect of finite torsion, namely, nonlinearity,
plays an essential role so that the linear theory is of no use.
Nevertheless, the nonlinear dynamic theory for torsional
waves has been poorly cultivated so far, even for an elastic
rod. Usually the effect of nonlinearity manifests itself in
formation of shock waves.? In particular, the propagation of
steady shock waves is possible as a result of balance between
both the effects of nonlinearity and viscoelasticity. One of the
purposes of this paper is to clarify whether the steady tor-
sional shock waves can propagate in a circular rod and, if
possible, to obtain explicit shock profiles. Our starting point
is set on the approximate equations already derived in [1] for a
thin, ‘‘nearly elastic’’ rod. The other purpose is to introduce a
new type of viscoelastic character and to compare its shock
profiles with the well-known model. Since the shock profiles
reflect a dynamic behavior of materials, they can provide
useful information in evaluating the relevant constitutive
equations at a finite strain and high strain rate.

The viscoelastic behavior is often modeled by combinations
of several springs and dashpots, which are usually known as
Voigt model, Maxwell-Voigt model (the standard solid), etc.
Such models have succeeded in explaining intuitively the inner

Ta part of this paper was presented at the IUTAM symposium on
““‘Nonlinear Deformation Waves’’ held at Tallinn, Estonia U.S.S.R. in 1982,

2The shock waves in the present context are meant not only by the first-order
discontinuity of displacement but also by the smooth transition layer caused
intrinsically by the nonlinearity.
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is given by a power law with weak singularity. The structures of steady shock
prafiles are presented and compared for both types. Finally a brief discussion is
included on the simplified evolution equations for a far field transient behavior.

relaxation mechanisms involved. But they are too simple to
describe the actual viscoelastic behavior of materials like
polymers., For a spring-dashpot model, the constitutive
equations are given in the differential form. In this case, the
relaxation functions are represented by a sum of several
exponential functions including the delta or step function as a
limiting case. Each exponential function introduces a
characteristic relaxation time associated with each element
involved. In this sense, the spring-dashpot model has usually
several discrete relaxation times. It is known, however, that
the actual viscoelastic materials have infinitely and con-
tinuously many relaxation times resulting from the inner
molecular relaxation mechanisms and consequently they
exhibit a slow relaxation over a long time range [2]. To
describe them properly, the idea of the relaxation spectrum is
introduced, so that the constitutive equations are essentially
expressed in the integral (functional) form. In this paper, we
consider, as a simple but promising model of relaxation
function, the power function with weak singularity. This
model is proposed by assuming that the continuous relaxation
spectrum is approximated by an inverse power law with

-respect to the relaxation time.

In what follows, the approximate equations are first
presented. For the relaxation function involved there, various
viscoelastic models, especially of the power function type, are
discussed. The conditions for existence of steady shock waves
are derived, which pose restrictions on the elastic response of
materials and the relaxation character. In obtaining the shock
profiles, we treat two types of relaxation functions that typify
the discrete and continuous relaxation spectrum, respectively.
One is the usual Maxwell-Voigt model in which the relaxation
function is given by the single exponential function (Type I
called hereafter). The other is the power function type
proposed here (Type II). Particularly for Type II, the
nonlinear integral equation with the weak singular kernel is
reduced to obtain the shock profiles. The numerical method
solving it is demonstrated. The explicit structures of shock
profiles are compared for both types. Finally a brief
discussion is included on the simplified evolution equations
describing a far field behavior. '
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2 Approximate Equations

The following analysis begins with the approximate
equations previously derived in [1]. A finite torsional
deformation couples with a longitudinal one through the
normal stress effect. If the angle of torsion of a cross section
and the longitudinal deformation are denoted by ¢ and w,
respectively, the approximate equations in dimensionless
form are given in terms of the axial coordinate z and the time ¢
as
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where the length and time scales are already normalized,
respectively, by a characteristic wavelength L (which is
assumed to be sufficiently long compared with the radius of
rod R) and time T (=L/(S/py)"/?), S being a characteristic
stress, and p, the density in the reference state; G and E, both
normalized by S, denote, respectively, the modulus of rigidity
and Young’s modulus in the equilibrium state, while the
constants a, b;, ¢;, and d; (i = 1, 2) are determined by G, E,
and the higher order equilibrium elastic moduli (see Appendix
2 in [1]). Here the two small parameters yand ¢ (0 < v, ¢ <<
1, and ¢ < g << 1) imply, respectively, the order of
weakness of viscoelasticity and that of thin rod (¢ = R/L), the
latter also representing the order of torsional shear strain, i.e.,
nonlinearity [1]. The viscoelastic behavior is characterized by
the relaxation function K(¢). Strictly speaking, however, we
note that G + vy K(f) represents the shear stress relaxation
function in linear viscoelasticity and hence yK(¢) is a deviation
from the equilibrium state G. Accordingly K(¢) is assumed to
vanish as ¢ increases.

For the well-known spring-dashpot models, K() is
represented by a sum of several exponential functions as

92 9% ! d
0 | K-t 1,
i :

with

K@) = EKuexp<— -T’—) for £=0, @

o

where T, (>0) is called a characteristic relaxation time, while
K, is a modulus contribution. In this sense, it is said that (4)
has several relaxation times. Since K(f) vanishes as ¢ increases,
the special case with T, = oo is excluded here. But the other
special case with T, say 7|, ~ 0 with KT, held constant is
included to represent the delta function. For actual
viscoelastic materials, however, there are continuously and
infinitely many relaxation times. In this case, equation (4) is
extended as

K@= S:H(T)exp(— —tT—) d—;, fort =0, 5)

where after the convention, H(T) is called the relaxation

spectrum [2, 3]. In view of this, the spring-dashpot model is .

said to have the discrete relaxation spectrum. In identifying
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the viscoelastic behavior, on the other hand, there is another
approach in terms of a creep function J(f) or a retardation
spectrum L(7) [2]. Experimentally this approach is preferable
to that by a relaxation function or spectrum employed in the
present theoretical treatment. But since there are in-
terrelations among them [2-4], a transformation from one to
the-other is a matter of integration.

Among the models having a continuous relaxation spec-
trum, there are known the power function models. Caputo
and Mainardi [S, 6] investigated various linear models by
generalizing the Maxwell-Voigt model. Among them, we
propose here, as a simple but promising model for the
viscoelastic ‘‘solids,”” H(T) approximated by the inverse
power law of T

HN)=T"/T(»), (0<r<l), {6)
where T'(») is the gamma function. The resulting relaxation
function from (5) with (6) is also given in the form of the
inverse power function of time:

K@®=t"", fort=0,0<vr<l). @

Here we note that K(¢) exhibits an infinite stiffness at ¢ = 0
just as the delta function in the Voigt model. But the
relaxation does not cease so quickly as the delta function but
rather it relaxes more slowly than the exponential function in
the Maxwell-Voigt model. In the creep formulation, the creep
function J(¢) corresponding to (7) is given by

K0=—{1 -B,[ - _9

G 'l —»)

where E,[ . . . ] denotes the Mittag-Leffler function of order

v[7]. From (8), it is found that J(¢) increases from zero and
approaches the equilibrium value G~! as time elapses.

As another simple and plausible model, it is known that the

creep function may be given by a power function of time

[4-61:

JO=Jy+yt*", fort=0,(0<» <1), )

where J, is a positive constant and v is also a small positive
constant for a measure of weakness of viscoelasticity. Owing
to the relations between the creep function J(f) and the

t”B , fort=0. (€3]

relaxation function K'(f) (=G+yK(f)) [4-6], the
corresponding K’ (f) is given by
1 Ta+v') .
K'()=—E, [— wa+ey, ] for ¢=0. (10)
JO JO

Since we are concerned with the case v << 1, equation (10) is
expanded as

K'()=G -G +0(y?), fort=0, (11)

where G = J;! and 7Gzt"' < <@G. The first term G implies
the constant elastic response and the second term gives K(¢) in
our formulation, namely, K(f) = — G?¢* . This model is also
very simple. But is should be noted that as time elapses, (9)
increases without limit and no equilibrium state can be ex-
pected. Such a model provides a good agreement with the
experiments at a relatively slow strain rate and over a long
time range [4]. It is not suitable, however, for a case with a
high strain rate such as the propagation of shock waves.
Indeed, as will be shown later, there exist no steady shock
waves for this model. Therefore we are concerned here with
the power function model given by (7). To compare with the
usual spring-dashpot model, we first consider the exponential
function type (Type I) corresponding to the well-known
Maxwell-Voigt model and later the power function type (Type
II):

Type I: K(?) = exp(— «t), (12)
Type H: K@y=1t"7,0<wv<1), (13)
where k! is the characteristic relaxation time. But we note
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again that there exists no such time in Type II because of the
continuous relaxation spectrum.

Before proceeding to the shock wave problem, we consider
the linear dispersion ralation of (1). On neglecting the
nonlinear terms, it can easily be obtained by setting ¢ o« exp
[itkz—wt)], k and w (>0) being a wave number and a
frequency, respectively. For Type I, the phase velocity
c(=w/k) is given by ¢ = [G+v/(1 +ix/w)}'/2. In this case,
there exist two characteristic sound speeds, the instantaneous
sound speed ¢; = (G+7v)'/? as w — oo, and the equilibrium
sound speed ¢, = G2 as w—0. For Type II, on the other
hand, since the relaxation function exhibits an infinite stiff-
ness at ¢ = 0, the instantaneous sound speed becomes infinite.
This can be seen from the dispersion relation ¢ = [G +
Y1 — ¥)(—iw)*]*/? that ¢; — o as w — oo, although ¢, =
G\,

3 Structure of Steady Shock Waves

Based on (1)-(3), let us investigate the steady shock waves
propagating into the unstrained state far ahead (z— o) with
an equilibrium state far behind (z— — ). Assuming ¢ and w
depend on n = t — z/A only, A being a positive constant
representing a shock velocity, equations (1)-(3) are written as

7 do’
N -0 -1|" Km-m %

dny
a dw
:___22 Z—Gq)/ 2[____
e (N VPp’ + ¢ N dn
b+ 22 )2 14
+ 1+7 ¢’ |¢’ +const., (14)
dw C1>\2+C2 2
——— 2 52y t., 15
dn N —E) © cons (15)
with
E-2G dw d,
<I>=-————————+(d+———) 2 16
26N dn IV AS (16
where ¢’ = dyo/dn and const. denotes an integration con-

stant. For the boundary condition at both infinite ends of the
rod, we require that ¢’ and dw/dny — 0 as 5 — — oo, while as
n — + oo, ¢ — ol (= constant), where note that dw/dy as
n — + oois then determined by (15) as — {{¢; N +¢,)/[MNN? —
E)}el? + const. Hence the integration constants must be
chosen to be zero. We eliminate dw/dn in (14) by (15). In (14),
all quantities except €2 and v are assumed to be of order of
unity. To have a significant ¢’, (A> — G) should be of order of
€? or v, so that N? is nearly equal to G: \> = G + O(é2, 7).
Using this result, it follows upon retaining the lowest order of
e? and v that

n d(p
N -G)o =] K= S am,
- T

= T [a(c‘)‘ ) +b1)\2+b2]<p 3
2
=& (C1G+C2) ]
= G[ G_E +b,G+b,
=e2Co’3, a7

where C is defined by [a(c, G+ ¢,)/(G—E)+ b, G+ b,]/G. We
introduce the parameter U = (A>-G)/y and set ¢ =
[€21C1/4]2¢’. Then (17) and the boundary condition are
rewritten in a compact form as

Journal of Applied Mechanics

K d
Us-sgnCe= " Kg—n) o2 an, a8)
1

with ¢ — Oasy — — oo, and ¢ — ¢, = constant as n — +
o, where the sgn C takes the value 1 for C > 0 and —1 for C
< 0, and ¢, = [e* ICI/9]Y? p.,. Here the case with C = 01is
excluded since no steady shock waves exist in such a *‘linear”’
case. By the cubic nonlinearity in ¢, the solutions of (18)
always have two branches = ¢ which represent the right and
left twisted wave. In what follows, we are only concerned with
a case ¢, > 0. The longitudinal deformation induced, w, is
obtained by integrating (15) if ¢ i.e., ¢’ is solved. Finally we
keep it in mind that ¢ represents physically the variation of
the torsional shear strain or the angular velocity of a cross
section, if a proper numerical factor is introduced.

3.1 Conditions for Existence of Steady Shock Waves.
Before solving (18), we check the necessary conditions for the
steady shock wave solutions to exist. On assuming the
existence of ¢., we multiply (18) by d¢/dn and integrate it
over the whole range of ». Then it follows that

U, /2 —sgnCe?, /4= (21r)‘/25 f Rp) 19’ () 2dy=A, (19)

where ¢’ (¥) and K() are, respectively, Fourier transform of
d¢/dn and K(n) defined by, for example,

. 1 S“ d¢ .

') = —— — dn, 20
¢ =72} . dn exp(iyn)dn 20
where K(n) vanishes for 3 < 0 and therefore it is extended as
K(1q D)A(n), h(n) being the unit step function. Here each ex-
plicit expression of A for Type I and Type II is given,
respectively, by

oo K .
A= S_m T l¢’(») 12dy>0, for Typel, @1
and
) w2 * A
A=T(-v)sin (7) S B Iy P-11é¢’'(y) 12dy >0,
for Type 11, (22)

Next, on differentiating (18) with respect to » and multiplying
it by ¢, it also follows after integration that 3

- UL /2—3sgn Col, /4 = — A. (23)
Thus from (19) and (23), we should have
¢r=UsgnC, and A = U?sgnC/4. (24)

Hence for ¢, to exist, A must be finiAte. To examine it, we
must know the asymptotic behavior of ¢’ (y)asy — 0 and Iy |
— oo, For the former limit, it is easily seen from the definition
(20) that ¢’ () — 2m)~ ‘/2<¢>oo as y ~ 0, provided ¢, be finite.
For the latter limit, on the other hand, ¢’ dies away at least as
rapidly as |y -2, if ¢ and d¢/dy are continuous [8] (see next
subsection) and hence A4 is found to exist. Therefore if we are
looking for the continuous solutions with d¢/dy inclusive, we
conclude from (24) that C and U must be positive. Since C is
the material constant, its positiveness poses a restriction on
possible types of elastic response. From U > 0, the
equilibrium value ¢, is given by =U'2, Conversely if a
strength of shock wave ¢, is given, then the velocity of shock
wave \is determined by

3 Note that the Fourier transform of ¢ is given by i¢’/y + const. (), ()
being the delta function [9].
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N=G+yU=G+y¢2=G+e ICleLr>G=c2. (25)

It is thus found that A is always greater than the equilibrium
sound speed ¢, and it becomes faster as ¢, increases.

Finally we observe that there exist no steady solutions for
the relaxation function (11). In this case, 4 is given by

A=GZI‘(1+V')sin(—7r2L’)ST lyi=" =11 () 12dy. (26)

It is readily seen from this that A diverges near y = 0. Hence
we ascertain no existence of steady solutions.

3.2 Discontinuous Solutions. In the preceding subsection,
it was assumed that ¢ and d¢/dy are continuous. In addition
to such smooth solutions, we check whether or not a
discontinuous solution is possible. Let a discontinuity be
located at n = 0 and let the unstrained state prevail in n < 0.
Near g 0, the discontinuous solution is assumed to be
expressed as ¢ = ¢oh(n), ¢, being a constant jump and h(n)

the unit step function. Evaluation of (18) at 3y = Ay > 0
(An—0) justs behind the discontinuity leads to

Ay
Usy—sen Cob= | K(dn—n)obn)en

= ¢oK(An) — o K(0), @7

as Anq tends to zero, where 6(n,) denotes the delta function. If
K(0) remains finite (which is the case with Type I), there exists
a discontinuous solution with a jump given by

¢3 = [U—K(0))/sgn C=[(\} - G)/v— K(0))/sgn C.  (28)

This gives the relation between the strength of discontinuity
and its velocity*. On the other hand, if K(0) is infinite (which
is the case with Type II), there exists no discontinuous
solution. Further, the higher order discontinuity in de¢/dy
may similarly be examined. Here we only note the results that
for 1K(0)l<oo, the discontinuity occurs when U = K(0),
whereas for 1K(0) | — o, no discontinuity oceurs.

Finally we return to the conditions for existence of steady
shock solutions when such a discontinuous solution is in-
cluded. This is, of course, the case with Type 1. If a discon-
tinuity in ¢ is concerned, the asymptotic behavior of ¢’ as
Iy |— oo does not decay so quickly as ly|-2 but it remains
finite there. Even so, A4 is guaranteed finite and the existence
of a discontinuous solution is possible.

41t should be remarked that near the discontinuity, the assumption of thin
rod becomes invalid and a new formulation is required. Therefore the
discontinuous solution should be regarded as a formal one.
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Shock profiles for Type | with various values ot U

3.3 Steady Shock Profiles.

3.3.1. Type I. Exponential Function Type. As is
suggested from the Section 3.1., it is assumed in the following
analysis that C and U are positive in (18). For Type I,
equation (18) can be reduced, by differentiating with respect
to 7, to the first order differential equation:

do (U-¢»)o
— =k 2
dy ~“1-U+3¢ )
The equilibrium points of (29) are given by ¢* = ¢% = U > 0
and ¢ = 0. But since d¢/dn becomes infinite at ¢} = (U—
1)/3, we must pay attention to the location of ¢p. The
solution to (29) can easily be obtained as

1- 142
0D iog 192 |_"2“_U"’log U—¢2 1=k(n—no), (30)

where 7, is an arbitrary integration constant. In Fig. 1, the
explicit form of (30) is shown for the typcial values of U with
¢ >0 where 7, is chosen so that ¢ takes ¢,,/2aty = 0. If0
< U < 1, (30) exhibits a smooth and monotonic transition
from¢ = 0atn = — o to ¢ = ¢, at n = o, The velocity of
this shock wave is determined by the strength of shock wave
¢ as N2 = G + y9L . Since 0 < U < 1, Nis greater than the
equilibrium sound speed, but less than the instantaneous one,
i.e,, ¢, < N < ¢;. If 1 < U, on the other hand, ¢ is always
located between ¢ = 0 and ¢ = ¢, and both asymptotic
branches of (30) as ¢ — 0 and ¢ — ¢, approach n — oo, Thus
(30) does not satisfy the boundary condition at n = — oo, For
Type 1, however, we already know that there may appear a
discontinuity in the solution. Hence to fit (30) with the
boundary condition, the discontinuity ¢, = (U — 1)1/2 given
by (28) with C > 0 is placed at a point n = 5, where ¢, equals
¢ by (30). In Fig. 1, the vertical line connected with the
solution for U = 2 at ¢ = 1 represents this discontinuity. For
n < 14, the solution takes the value of zero, while for n > 7,4,
the solution takes the upper branch of (30) and the branch
below U = 1 loses its meaning. Thus we have the discon-
tinuous shock profile followed by the monotonic relaxation
region. The velocity is then given by A2 = G + v ¢4 > G + v
¢? and is faster than the instantaneous sound speed. As a
special case, if U = 1, (30) degenerates to

¢? =1—exp[ - 2x(n — 10)/3]. €2))

This solution ceases to be valid for n < 7, and the boundary
condition at n = — oo cannot be satisfied. In this case as well,
for 7 S 7, the solution takes the value of zero, and for 7 >
79, it takes (31). Consequently dé/dn becomes discontinuous
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at n = 7. This is known as the so-called acceleration wave,
which propagates with the velocity A = ¢;.

3.3.2 Type II: Power Function Type. For this type,
equation (18) remains essentially the nonlinear integral
equation:

7 1 d
—¢dnl, O<wv<l).

P EE— 32
—= (p—m)” dn ©2)

Up- 4=
Since an analytical solution of this equation is unknown at
present, it is solved numerically by the method of quadrature.
To apply this method, it is advantageous to invert (32) to
remove the derivative in the integrand. Equation (32) is Abel’s
type of integral equation, which can be rewritten as

Ug(ni) — ¢*(m)

dy;.
(=)' !

sy 1 K
o= (I - ) S_m @3

Here we remark on two analytical results which assist the
numerical computation. First, the solution is independent of
the choice of the origin of coordinate axis, as this property
comes from the general characteristics of the hereditary in-
tegral in (18). Secondly, though the full explicit solution of
(33) is difficult to obtain analytically, the asymptotic solution
asn — — oo can be easily sought as

¢~ dDexp(om) + o exp(3am) +

3
(1-3)U (1=3")(1-5)"2

X oW expSom) + . . ., (34)

where ¢! is a constant and o = [U/T(1 — #)}/*. We use these
results to demonstrate the numerical method of treating (33).

Since the lower bound of the integration extends to infinity
and moreover the integrand diverges at the upper bound
(though the integral itself exists), special care should be taken.
For the treatment of the infinite lower bound, we first divide
the region into two regions (— o0, M] and [M, 5], where M is
taken arbitrarily but fixed, say M = 0. Then (33) can be split
into

rora-no=({", +{)) XL,

where Flé(n)] = F(¢,) = U ¢ (3,) — ¢°(n)). In the first
region (— o0, M), we assume that the asymptotic solution (34)
is valid by using the freedom of the choice of the origin of
coordinate axis, i.e.,

¢~ ¢Vexplaln— M)+ O("?),

(3%

(36)
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where ¢ is taken small (0 < ¢ << 1). On substituting this
into the first integral, I, of (35), we obtain

_ [ Ugtemlet M)
-~ (=)'

I'(1 = »)¢Vexploa(n — M)IT[v,aln ~ M)] + O(¢"2), (37)

where T [», a(n— M)] denotes the incomplete gamma func-
tion. From the asymptotic behavior of T’ [», a(n—M)] ~
[a(n—M))"~! exp [—a(n—M)] as a(yp—M) — o, the con-
tribution of I; to the total integral (35) becomes small and
negligible as a(ny — M) — oo.

In the second region [M, 7], on the other hand, we take the
equidistant points separated by 2 (>0),i.e.,n = 9¥ = M +
h(i—1), (i = 1) and evaluate the second integral in (35) by
Simpson’s rule. But since the integrand diverges at the upper
bound, we further divide the region into two parts, [M,
7%~ Pland [yY~?, 4?]. In the former region, the integrand
remains finite and the usual Simpson’s rule can be applied.
For the integral in [3Y~?, 4?1, however, a “‘modified Simp-
son’s rule” is devised to take account of the singularity.
Instead of approximating the whole integrand by the
quadratic function, we approximate the numerator F by the
quadratic function and calculate the integral analytically.
After the strightforward calculation, we have the ap-
proximation formula,

Sv(“ F(éy)

2 =)

1, dny + O(6"?)

diny =p| VD +4FE1)

9

14
where p = 2h)*/[(1 + ¥+ »)] and F¥~¥ (k=0, 1, 2) denotes
the values of F at V=%, Thus the scheme to calculate the
unknown ¢@ at = ¥ from the known ¢® (k=1, 2,

+ "ﬂﬂ] L0 "), (38)

3,...,i—1)is to solve the following cubic equation for ¢©
successively:
50 + [w_")ﬂ _ U] o0 - 2 [,,F(i-z)

2-vp 2—vp

+4FG-D 4 % i, +12)] =0, 39
where 7, denotes the integral in [M, 7¢~?]. Here we remark
that this scheme is applied to the odd i (=3) only after giving
the starting data ¢ and ¢®. For the even i (= 2), the starting
point i = 1 is shifted to/ = 0 with ¢© = ¢® exp(— k) and
the same scheme is applied.
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Here we estimate the approximation error involved. In I,
the smaller is made the error, the smaller ¢ is taken.
Simpson’s rule involves the error of O(A®) in the 24 interval,
while the ‘‘modified Simpson’s rule’” involves that of
O(h**7).% Therefore as v approaches zero, the accuracy of the
“‘modified Simpson’s rule’’ deteriorates to that for the
trapezoidal rule. To recover it, we may take the region
[7Y~P "] and approximate F by the quartic function. By this
“‘modified Bodes’s rule,” the error is improved to give the
order of A>**, Choosing A = 0.02 and ¢ = 0.001 in the
present analysis, the results of two modified rules are com-
pared, but no substantial differences are recognized.

In Fig. 2, the numerical solutions are displayed for ¢, =
UY? = 1 and v = 0.2, 0.3, 0.4, and 0.5 in which the coor-
dinate is readjusted so that ¢ may ¢,,/2 at n =0. It is seen that
the shock profiles are smooth and monotonic. As suggested
by the asymptotic solution (34), the step-up behavior is ex-
ponentially steep. But the very slow relaxation region appears
in the trail. Therefore it takes a long time to attain the
equilibrium value. This tendency becomes prominent as »
decreases. The asymmetric character of shock profiles with
respect to 7 = 0 is remarkable, which should be compared
with the results of Type 1. For other positive values of U, the
exponential step-up becomes steep as U increases and the
qualitative behavior is similar.

4 Results

We summarize the results of the steady shock wave
propagation. For any materials, the steady shock waves exist
only if their elastic response satisfies C > 0. As for their
viscoelastic character, the Fourier transform of the relaxation
function must satisfy the criteria shown in section 3.1. Such
requirements provide useful informations in evaluating the
nonlinear viscoelastic behavior. The shock waves result from
a balance between the nonlinearity and the viscoelasticity
represented by the two parameters e and v, respectively. This
is reflected in the transformation of variable ¢ =
[ IC1/4]'2¢’. The competition between them determines
the magnitude of shock waves. The velocity of shock wave Ais
given by the strength of shock wave ¢, [=(e? |C1/y)? 0]
applied at the infinity z = — co. The velocity is always greater
than the equilibrium sound speed c,, and it becomes faster as
¢ increases, i.e., N = G + yp3, = G + 1ClpL2> G =
cl.

Next we consider the specific shock profiles of ¢ for Types I
and II. We again note that ¢ represents the torsional shear
strain if an appropriate scale factor is introduced. As is un-
derstood from the linear dispersion relations, the viscoelastic
effect brings about not only the dissipation but also the
dispersion. In spite of the dispersion, however, the shock
profiles are always monotonic but not oscillatory. For Type I,
there is the critical speed ¢; [=(G+v)!*] beyond which
the shock profiles change remarkably. For ¢, < A < ¢;, the
shock profiles are smooth and monotonic. But for ¢; = A,
they contain the discontinuity followed by the monotonic
relaxation region. In Fig. 1, we can define a sharp shock layer
over which ¢ changes appreciably. The thickness of this layer,
which is estimated by the characteristic relaxation time «~!, is
seen to be of order of SN/« to 10N/« for the moderate values
of U. For the strong shock wave U> > 1, the discontinuity
(U-1)"? and the equilibrium value U"Y? are nearly equal.
Therefore the thickness is so thin that it is almost represented
by the discontinuity. For the weak shock wave U< < 1, on
the other hand, the thickness becomes wide and is given from
(30) by the order of A/ (Uk).

5 When » approaches unity, the order of error should agree with that of
Simpson’s rule. Although it might appear that the order approaches h4, the
coefficient of &7 then vanishes and the order becomes A° . Also for the modified
Bode’s rule’’ described below, the same situation occurs and the order of error
approaches 4’ asy —'1.

h3+u
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For Type 11, it is important that the relaxation function K(7)
exhibits the singularity at + = 0. So the instantaneous sound
speed is infinitely large and also no discontinuity is allowed in
the solution. From (34), there always exists for U > 0 the
asymptotic branch emanating from n = ~ oo. Consequently
there is no critical speed corresponding to ¢; in the case of

Type 1. Thus the shock profiles are always smooth, which

should be compared with the results of Type I. Another
important characteristic of Type Il is the slow relaxation. The
shock profile has a steep front but a slow relaxation region
behind. Therefore the thickness of shock layer is very wide
compared with Type 1. This is the essential difference from
Type I even if it would be extended to include many (but
finite) numbers of the exponential functions.

In this paper, we have sought the explicit shock profiles by
assuming relevant forms of the relaxation functions. This
provides useful information as a guideline. In reality,
however, the wave profiles are known and the relaxation
function is required. In such a case, the inverse problem of
(18) must be solved to determine K(¢) by using the known ¢.

5 Simplified Evolution Equations

In concluding this paper, we briefly discuss the simplified
evolution equations for a far field transient behavior.
Equations (1)-(3) can describe the bidirectional wave
propagation, namely, propagation along both directions of
right and left. But if only a far field behavior is concerned
along either one of the directions, the unidirectional wave
propagation is sufficient. In this case, equations (1)-(3) are
simplified considerably. Following the idea of the reductive
perturbation method [10], we introduce the new variable £ = ¢
— z/G'? moving with the equilibrium sound speed and the
stretched space variable 7 = ¢* z/G'/2. Rewriting (1)-(3) in
terms of £ and 7, and retaining the lowest order terms in v and

€2, we have the simple evolution equation for f = —~G~1/2
e/ dE:
¥ C P v 8 Ss of
&= H hd KE—e)L
ar 2 ag 2626 E w (E El)aSIdsl,

with
_G_l/zﬂzw(_aﬁ)z, (40)
¢  GG-EB) \ 9¢
where the unstrained state is assumed ahead of wave
propagation. For Type I, (40) is further reduced to the dif-
ferential equation:

o _cp
ar 28_5
LAY CHP oy i
'a—g(ﬁ Ta_g_zeTGa_g)' (1)

In particular, if the rapid relaxation is assumed, i.e., k! ~

€2/y << 1, (41) is further simplified to give ‘‘cubic Burgers
equation’’:

o _Cco_ v 97

ar 2 8t 228Gk o
On the other hand, if the slow relaxation is assumed, i.c.,
k! >> 1, (41)is reduced to
af Cc af vy af YK
— e o e T = +02. 43
3r 2 9t 288G a3t 232G’ 1O @)
After some thought, it is found that (43) describes the far field
behavior moving with the instantaneous sound speed.
For Type 11, equation (40) cannot be further reduced. It is
called ‘“generalized Burgers’ equation’’ on introduction of the
derivative of real order:

+O0(k?). 42)
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AR S T L 44
ar 2 o3t 222G QM “4)
with the definition _given by [11],
£ 1 af arf )
——— —d, =Tl ~v)—7 (45)
S—m (- 0k o
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