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To meet the high performance demands of embedded multimedia applications, embedded systems are integrating multiple
processing units. However, they are mostly based on custom-logic designmethodology. Designing parallel multicore systems using
available standards intellectual properties yetmaintaining high performance is also a challenging issue. Softcore processors and field
programmable gate arrays (FPGAs) are a cheap and fast option to develop and test such systems.This paper describes a FPGA-based
design methodology to implement a rapid prototype of parametric multicore systems. A study of the viability of making the SoC
using the NIOS II soft-processor core fromAltera is also presented.TheNIOS II features a general-purpose RISC CPU architecture
designed to address a wide range of applications. The performance of the implemented architecture is discussed, and also some
parallel applications are used for testing speedup and efficiency of the system. Experimental results demonstrate the performance
of the proposed multicore system, which achieves better speedup than the GPU (29.5% faster for the FIR filter and 23.6% faster for
the matrix-matrix multiplication).

1. Introduction

The requirements for higher computational capacity and
lower cost of future high-end real-time data-intensive appli-
cations like multimedia and image processing (filtering, edge
detection, correlation, etc.) are rapidly growing. As a promis-
ing solution, parallel programming and parallel systems-on-
a-chip (SoC) such as clusters, multiprocessor systems, and
grid systems are proposed. Such sophisticated embedded sys-
tems are required to satisfy high demands regarding energy,
power, area, and cost efficiency. Moreover, many embedded
systems are required to be flexible enough to be reused for
different software versions. Multicore systems working in
SIMD/SPMD (Single Instruction Multiple Data/Single Pro-
gramMultiple Data) fashion have been shown to be powerful
executers for data-intensive computations [1, 2] and prove
very fruitful in pixel processing domain [3, 4]. Their parallel
architecture strongly reduces the amount of memory access
and the clock speed, thereby enabling higher performance [5,
6]. Suchmulticore systems aremade up of an array of process-
ing elements (PEs) that synchronously execute the same pro-
gram on different local data and can communicate through
an interconnection network. These parallel architectures are

characterized by their regular design, which enables design-
cost effective scaling of the platform for different performance
applications by simply increasing or reducing the number of
processors. Although these architectures have accomplished
a great deal of success in solving data-intensive computations,
their high price and the long design cycle have resulted in a
very low acceptance rate [7]. Designing specific solutions is a
costly and risky investment due to time-to-market constraints
and high design and fabrication costs. Embedded hardware
architectures have to be flexible to a great extent to satisfy the
various parameters of multimedia applications. To overcome
these problems, embedded system designers are increasingly
relying on field programmable gate arrays (FPGAs) as target
design platforms. Recent FPGAs provide a high level of logic
element density [8]. They are replacing ASICs (Application
Specific Integrated Circuits) in many products due to their
increased capacity, smaller nonrecurring engineering costs,
and programmability [9, 10]. It is easy to put many cores
and memories on an FPGA device, which today has over
100 million transistors available. Such platforms allow cre-
ating increasingly complex multiprocessor system-on-a-chip
(MPSoC) architectures. FPGAs also support the reuse of
standard or custom IP (intellectual property) blocks, which
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Figure 1: Multicore architecture.

further decreases system development time and costs. A
good example is the use of softcores, such as the NIOS II
[11] and the MicroBlaze [12] for Altera and Xilinx FPGAs,
respectively, to implement FPGA-based embedded systems.
Thus, the importance of multicore FPGAs platforms steadily
grows since they facilitate designing parallel systems. Based
on configurable logic (softcores), such systems provide a good
basis for parallel, scalable, and adaptive systems [13].

In a context of high performance, low technology cost,
and application code reusability objectives, we target FPGA
devices and softcore processors to implement and to test
the proposed multicore system. The focus of this work is to
study the viability of softcore replication designmethodology
to implement a multicore SPMD architecture dedicated to
compute data-intensive signal processing applications. Three
benchmarks that represent different application domain were
tested: FIR filter, spatial Laplacian filter, and matrix-matrix
multiplication, characteristic for 1D digital signal processing,
2D image filtering, and linear algebra computations, respec-
tively. All tested applications involve the computation of a
large number of repetitive operations.

The remainder of this paper is organized as follows. The
next section briefly introduces the multicore system with
focus on the proposed FPGA-based design methodology. In
Section 3, the main characteristics of the NIOS II softcore
processor are presented. The methodology followed to adapt
the NIOS II IP to the parallel SoC requirements is also
described. Section 4 discusses some experimental results
showing the performance of the softcore-based parallel sys-
tem. Section 5 gives an overview of related work. A perfor-
mance analysis and comparison of the implemented system

with other architectures and a discussion on the architectural
aspects are also provided. Finally, Section 6 presents the
concluding remarks and further work.

2. Softcore-Based Replication
Design Methodology

In this section, we first give an overview over our multicore
architecture including the different used components. Then,
we describe the replication design methodology based on the
use of the NIOS II softcore as a case study.

2.1.Multicore SoCOverview. Theproposed parallelmulticore
system works in SPMD fashion.

As presented in Figure 1, it consists of a controller that
accesses its sequential data memory (DATAM). It syn-
chronously controls the whole system composed of a 2D grid
of processing elements (PEs) interconnected via two types
of interconnection networks thanks to network interfaces
(NI). Indices 𝑗 and 𝑘 present the number of columns and
the total number of PEs (𝑛𝑢𝑚𝑏𝑒𝑟 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑟𝑜𝑤𝑠),
respectively. Index 𝑖 is calculated by

𝑖 = ((𝑛𝑢𝑚𝑏𝑒𝑟 𝑟𝑜𝑤𝑠 − 1) ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑐𝑜𝑙𝑢𝑚𝑛𝑠) + 1. (1)

All processors execute the same instructions coming from
a parallel instruction memory (InstM). The controller serves
as a master and can only execute sequential programwhereas
each PE executes the same parallel program while operating
on its local data.The execution of a given instruction depends
on the activity of each PE, identified by a unique number



International Journal of Reconfigurable Computing 3

Table 1: Configurable parameters.

Parameters Time Values Default value
Number of PEs Design 2𝑁,𝑁 > 0 24

Size of PE local memory Design Limited by the FPGA surface 5 KB
Neighborhood network’s topology Design and runtime Mesh, Torus, and Xnet Torus

Global router communication mode Runtime
PE-PE,

PE-Controller,
PE-I/O Peripheral, and

Controller-I/O Peripheral

PE-Controller

Table 2: Area occupancy of the network interfaces.

Neighbourhood network Global router
NI Area occupancy NI Area occupancy

ALUTs 36 0.0077% (36/469 440) 2 0.0004% (2/469 440)
Registers 118 0.0125% (118/938 880) 75 0.0079% (75/938 880)

in the array. In fact, each processor in the multicore system is
characterized by its identity to specify its own job.Themulti-
ple processors can communicate via two types of networks:
a neighbourhood network and a crossbar network (global
router) that assures point-to-point communications between
processors and also performs parallel I/O data transfer. The
neighbourhood network interconnects the PEs in a NEWS
fashion so that every PE can communicate with its nearest
neighbour in a defined direction (north, south, east, or west).
It mainly consists of a number (equal to the number of PEs)
of routing elements (RE) which are arranged in a grid fashion
and are responsible of routing the data between PEs. The
routers may be customized at compile time to implement
three different topologies (Mesh, Torus, and Xnet). It is
also possible to change dynamically from one topology
to another according to the application needs. The global
router assures the irregular communications between the
different components and can be configured in four possible
bidirectional communication modes: PE-PE, PE-Controller,
PE-I/O Peripheral, and Controller-I/O Peripheral. These
different described communication patterns are handled by
the communication instructions (presented in Section 3.2) as
defined by the designer. To achieve the required architecture
performance and configurability, a fully parameterizable and
structural description of the networks of the proposed archi-
tecture was done at the RTL (Register Transfer Level) using
the VHDL (Very High Speed Integrated Circuits Hardware
Description Language).

The proposed multicore SoC is a parameterizable archi-
tecture template and thus offers a high degree of flexibility.
Some of its parameters can be reconfigured at synthesis time
(such as the number of PEs as well as the memory size),
whereas other parameters can be reconfigured at runtime like
the neighbourhood network topology. Table 1 details these
different parameters.

This multicore prototype serves as a base to test different
configurations with different processors. The designer just
needs to use a given processor IP and adapt the network
interface to that processor. Such characteristics make the

system scalable and flexible enough to satisfy a wide range
of data-parallel applications needs.

The following subsection highlights the FPGA-based
replication design methodology followed to build the mul-
ticore system. A case study is then highlighted based on the
NIOS II softcore.

2.2. Design Approach. To design a parallel multicore SoC,
we propose in this paper a replication design methodology,
which consists in using a softcore to implement the different
processors in the multiprocessor array. Following this man-
ner, the design process is easier and faster than traditional
design methods. As a consequence, it offers a large gain
in the development time. The additional advantage of this
methodology is the facility of programming since we use the
same instruction set for all processors. The aim is to propose
a flexible, programmable, and customizable architecture to
accelerate parallel applications.

Figure 1 illustrates themulticore architecture based on the
replication designmethodology.The designer has to carefully
respect the system requirements in order to integrate a
given processor IP. In the proposed system, the controller
is in charge of controlling the global router functioning and
transferring or reading data to or from PEs respectively. The
PE executes parallel instructions and communicates with
neighbouring PEs through the neighbourhood network or
with the controller and peripherals through the global router.
To accomplish these different functionalities, the controller
has to be interfaced with the global router whereas the PE
has to be interfaced with the neighbouring network as well
as the global router (as shown in Figure 1). In both cases, the
networks only need data and address signals issued from the
different processors. Table 3 details the global router network
interface with the processors. It is scalable so that it is adapted
to a parametric number of PEs.This is performed bymapping
each PE data and request to input ports configured as a vector
of length equal to the number of PEs. The neighbourhood
network interface only contains data and addresses coming or
going to PEs. It consists of a number of routers (equal to the
number of PEs), each one connected to one PE. Connections
between the routers allow transferring data through several
paths across the architecture. Both implemented on-chip
networks are reliable, in the sense that data sent from one
core is guaranteed to be delivered to its destination core. The
results obtained for the network interface hardware cost, on
the Stratix V FPGA [14], are summarized in Table 2.
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Table 3: Global router interface.

In
pe d in [k] [32 b] PE data (32-bit data vector (length = number of PEs))
pe a in [k] [32 b] PE address (32-bit address vector (length = number of PEs))
pe wr [k] [1 b] PE read/write (1-bit R/W vector (length = number of PEs))
Ctrl d in [32 b] Controller data (32 bits)
Ctrl a in [32 b] Controller address (32 bits)
Ctrl wr [1 b] Controller read/write signal

Out
pe d out [k] [32 b] PE data out
pe a out [k] [32 b] PE address
Ctrl d out [32 b] Controller data out
Ctrl a out [32 b] Controller address out

I/O Peripherals
SRAM d out [32 b] SRAM data out
SRAM a out [32 b] SRAM address out
SDRAM d in [32 b] SDRAM data in
SDRAM a in [32 b] SDRAM address
Acc d in [32 b] HW accelerator data in
Acc a in [32 b] HW accelerator address in

It is remarkable from the synthesis results given in Table 2
that the implemented network adapters present a cheap
solution requiring a significant small logic area on the FPGA.
This demonstrates the simplicity of the interface and confirms
that changing the processor IP is an easy task. Thus, small
design time is required to reconfigure the architecture.

The next section discusses more precisely the use of the
NIOS II IP to implement a multicore configuration following
the replication methodology.

3. NIOS II-Based Multicore
Architecture Overview

3.1. Architecture Description. TheNIOS II embedded softcore
is a reduced instruction set computer, optimized for Altera
FPGA implementations. A block diagram of the NIOS II core
is depicted in Figure 2 [11].

It can be configured at design time (data width, amount of
memory, included peripherals, etc.) in order to be optimized
for a given application. The most relevant configurations
are the clock frequency, the debug level, the performance
level, and the user-defined instructions. The performance
level configuration enables the user to choose one of the
three provided processors: the NIOS II/fast, which results in
a larger processor that uses more logic elements but is faster
and has more features; the NIOS II/standard, which creates
a processor with balanced relationship between speed and
area and some special features; the NIOS II/economic, which
generates a very economic processor in terms of area, but very
simple in terms of data processing capability.

In this work, we use the NIOS II economic version in
order to put a large number of processors in one FPGA
device since we target a multicore SoC. NIOS II processors

use Avalon bus for connecting memories and peripherals.
So, the implemented network interface is based on Avalon
interface. The Avalon interface is basically an interface that
creates a common interface from different interfaces of
all memory and peripheral components of the system. In
this work, we use the Avalon-Memory Mapped interface
(Avalon-MM) [15]. It is an address-based read/write interface
synchronous to the system clock. A wrapper, considered as
the network interface, has been implemented in order to
be able to integrate the NIOS with other components of
the architecture, mainly the neighbourhood network and the
global router.This wrapper is a custom component which has
two interfaces: one Avalon slave interface to be connected to
the NIOS and one conduit interface (for exporting signals to
the top level) to be connected to the networks. To assure com-
munication, we only need addresses and data coming from
processors as well as the read/write enable signal to indicate
if it is a read or write operation. The NIOS-based wrapper is
responsible of transferring data and addresses of the attached
processor to the appropriate network (dependently on the
address coding). Moreover, it communicates the data and
addresses received fromnetworks to the processor depending
on its identity number.

To design systems which integrate a NIOS II processor,
Quartus II has as complement a SW called Qsys [16]. Qsys
is used to specify the NIOS II processor cores, memory, and
other components the system requires. Qsys automatically
generates the interconnect logic to integrate the components
in the hardware system. The NIOS II-based SoC synthesis
flow is summarized in Figure 3.

In the implemented architecture, each processor is con-
nected to a timer which provides a periodic system clock tick,
a system ID peripheral which allows uniquely identifying the
PE, and to a local data memory. In addition, the controller is
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Figure 2: NIOS II processor core block diagram.

connected to a JTAGUARTwhich allows communicating PC
with the NIOS core through the USB-Blaster download cable
and providing debug information. Each processor is also con-
nected to a custom peripheral which integrated the network
interface, allowing transferring the processor requests to the
other components in the multicore architecture.

An example of 4-core architecture is shown schematically
in Figure 4. In the architecture, different subsystems are con-
nected by network interfaces (NI) to networks (neighbour-
hood network and global router). A network interface is used
to send and receive data transmitted over the network. Each
subsystem contains the processor and some peripherals or
accelerators.The total number of PEs, defined by the number
of rows and columns, can be specified before synthesis.

The design steps followed to implement the multicore
architecture show the simplicity of the replication method-
ology to be applied on any softcore processor and the
configurability of the proposed SoC prototype. To build a
multicore system, two steps have to be performed: to adapt
the network interface to be connected to the chosen processor
and to define the corresponding communication instructions
based on the processor instructions since the HW networks
are managed by the SW program. The latter step is more
detailed in the next paragraph.

3.2. SW Programming. Themain important instructions that
depend on the used softcore are communication instructions.
Such instructions are defined to assure communicating data

through both networks. In this work, they are based on
standard C and specific NIOS instructions. Accessing and
communicating with NIOS II peripherals can be accom-
plished using theHWabstraction layer (HAL) interface of the
NIOS II processor. In fact, the HAL provides the C macros
IORD (IO Read) and IOWR (IO Write) that expand to the
appropriate assembly instructions [17]. These instructions
allow accessing and communicating with different peripher-
als connected to the NIOS II processor. Each communication
instruction consists in writing or reading data from the
defined address. In our case, the data has a 32-bit length
and the address has a 12-bit length. The address field is
different depending on the communication network. In the
case of the global router the most significant bit (the bit
at the 12th position) is set to “1,” whereas in the case of
the neighbourhood network it is set to “0.” To assure global
router communications, we distinguish different instructions
as illustrated below.

(i) MODE instruction allows setting the needed com-
munication mode and is executed by the controller:
IOWR (NI BASE, 0x800, data), where data is the
value that corresponds to the global router communi-
cation mode (PE-PE, PE-Controller, PE-I/O Periph-
eral, or Controller-I/O Peripheral) as defined in the
multicore architecture configuration file.

(ii) SEND instruction allows sending data through the
global router: IOWR (NI BASE, address, data), where
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Table 4: NIOS II/e-based multicore SoC implementation results on FPGA.

Number Logic utilization Memory use Max. frequency
PEs ALUTs Registers % Progr. mem. size/core Data mem. size/core Total bits MHz
2 3 905 2 086 <1 8 KB 3KB 268 544 (<1%) 420
4 6 650 3 353 1 8 KB 3KB 444 544 (<1%) 412
8 10 180 4 931 2 8KB 3KB 796 544 (1%) 382
16 18 978 9 069 4 12KB 2KB 1 884 544 (3%) 337
32 35 700 17 009 8 12 KB 1KB 3 420 544 (6%) 328

NI BASE is the address of the controller network
interface based custom component when the instruc-
tion is executed by the controller or the PE network
interface based custom component when it is exe-
cuted by the PE. The address field (11 bits) contains
the following:

(1) the identity of the PE receiver (mode PE-PE,
mode Controller-PE, and mode I/O Peripheral-
PE);

(2) “00000000000” (mode PE-Controller and
mode I/O Peripheral-Controller);

(3) the peripheral address (mode PE-I/OPeripheral
and mode Controller-I/O Peripheral).

(iii) RECEIVE instruction allows receiving data through
the global router: data = IORD (NI BASE, address). It
analogously takes the same address field as the SEND
instruction.

In the case of the neighbouring communication, SEND
and RECEIVE instructions are also encoded from IORD
and IOWR NIOS macros. Compared to the global router
instructions, they only differ in the address field, which
contains the direction to which the data will be transferred
(0: north, 1: east, 2: west, 3: south, 4: northeast, 5: northwest,
6: southeast, and 7: southwest).

Altera provides the NIOS Integrated Development Envi-
ronment tool to implement and compile the parallel SW
program.The following section presents the implementation
and experimental results of the proposed multicore design.

4. Experimental Results

4.1. Synthesis Results. The used development board is the
Stratix V GX FPGA that provides a hardware platform for
developing and prototyping high-performance application
designs [14].

It is equipped with a Stratix V (5SGXEA7K2F45C2)
FPGA, which has 622000 logic elements (LEs) and 50-Mbit
embedded memory. It presents many peripherals, such as
memories, expansion pins, and communication ports. The
used SW tools are the Quartus II 11.1, the Qsys, and the NIOS
II IDE that allow designers to synthesize, program, and debug
their designs and build embedded systems on Altera FPGAs.

Table 4 shows synthesis results for different multicore
configurations varying the number of cores as well as the
memory size. These systems contain both neighbouring and

global router networks. The maximum frequency resulted
from each SoC design is also measured.

It is clearly obvious that the consumed FPGA area
increases as the number of processors increases. As illustrated
in Table 4, the parallel architectures occupy proportional
areas while increasing their size. A 32-core configuration just
consumes 8% of the available logic elements as well as 6% of
memory blocks.This shows the efficiency of the implemented
architecture. It is so possible to implement up to 300 cores in
the Stratix V 5SGXEA7K2F45C2 FPGA. Table 4 also presents
the clock frequency resulting values which slightly drop due
to the used networks.

4.2. Tested Benchmarks. This section gives better insight
into the use and performance of the parametric multicore
systemby executing different benchmarks. As benchmark, we
considered three algorithms to represent different application
domain. They are FIR filter, spatial Laplacian filter, and
matrix-matrixmultiplication, characteristic for 1D digital sig-
nal processing, 2D image filtering, and linear algebra compu-
tations, respectively. The applications are implemented in C
language, using the NIOS II IDE. The results for execution
time and speed are measured for different multicore con-
figurations. Based on the results obtained and the system
requirement, suitable architecture can be chosen for the
targeted application. In fact, the nature of the application
determines the scaling that needs to be applied to the SoC
in order to meet the performance.

(1) FIR Filter. Finite Impulse Response (FIR) filtering is one
of the most popular DSP algorithms. Such computations
require increased number of multiplications and additions as
well as multiple memory read operations. A FIR filter is
implemented with the following equation:

𝑌 (𝑛) =
𝑀−1

∑
𝑘=0

(𝑏
𝑘
𝑋 (𝑛 − 𝑘)) , (2)

where 𝑋 is the input signal and 𝑏
𝑘
are the filter coefficients.

𝑀 is the filter order or number of taps. An𝑀-order FIR filter
requires𝑀multiplications and𝑀 additions for every output
signal sample and 2𝑀 memory read operations (for input
signal and filter coefficients). We implement the FIR filter
on different multicore configurations to study the scalability
of the system and the influence of the type of the intercon-
nection network.The results, shown in Figure 5, measure the
execution time of a 64-tap FIR and an impulse response with
a length of 128. They describe the performance and speedup
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of the implemented FIR filter on different multicore con-
figurations. Two communication mechanisms are tested in
this case study: the neighbouring communication and the
point-to-point communication, through the integration of
an Xnet network and a crossbar network, respectively. It is
clear from Figure 5 that the designed system is scalable and
efficient while integrating more cores on the chip. When the
number of cores increases, a larger part of the output signal
can be calculated at the same time. Then, communication
instructions will be decreased, which enhances the speedup
of the system. In fact, the 64-core configuration with an
Xnet network has a speedup 7 times higher than the 2-core
configuration. As expected, the multicore architecture with

a neighborhood interprocessor network is more efficient to
compute FIR filtering operations. Thus, based on flexible
communication network, the designer can choose the best
interconnect suited to their application and its require-
ments. Furthermore, efficient communication is critical to
achieve high performance since the interconnect scheme can
significantly affect the type of algorithms running on the
architecture.

(2) Spatial Laplacian Filter. We consider a 2D filter such as
Laplacian filter, which smooths a given image (of size 800 ×
480 pixels) by convolving it with a Laplacian kernel (3 × 3
kernel [9]). The parallel algorithm implemented in this work
has been proposed in [18]. Such application can be performed
in parallel, so that multiple pixels can be processed at a time.
Each core reads an amount of pixels (depending of the image
size) from an external SDRAM memory and stores them in
vectors. Then, it multiplies the vector elements by the filter
kernel coefficients. After that, all resultant elements are added
and divided for scaling. As a result, each core simultaneously
produces a convolution of 𝑛 pixels, where 𝑛 is the number
of cores integrated in the system. In this algorithm, we need
to integrate the global router to assure data transfers from
SDRAM to data memories of the processors. The controller
is so responsible of controlling and configuring the network.
The execution time results and speedup values are shown in
Figure 6 varying the number of cores. Figure 6 clearly shows
that the speedup exponentially increases while increasing the
number of cores. It shows a good scalability since doubling
the number of cores provides an average speedup of 1.6.
We deduce that the multicore system is efficient to compute
image processing applications. For example, we reach a
speedup 5 times over a sequential execution when integrating
8 PEs, which is quite appreciable. It is also noted that the
execution time slightly decreases between 16 and 32 cores due
to the time needed to accomplish communications.

(3) Matrix-Matrix Multiplication. One of the basic computa-
tional kernels inmany data parallel codes is themultiplication
of two matrices (𝐶 = 𝐴 × 𝐵). Matrix multiplication
is considered an important kernel in computational linear
algebra. It is a very compute-intensive task, but also rich
in computational parallelism, and hence well suited for
parallel computation [19]. In this work, the tested multicore
configuration integrates 64 PEs. We study the influence of
the interconnection network topology on the application
performance. The PEs are arranged in 8 × 8 grid. To perform
multiplication, all-to-all row and column broadcasts are per-
formed by the PEs.The following code for PE(𝑖, 𝑗) is executed
by all PEs simultaneously, in a 64-core configuration. In this
case, matrices 𝐴 and 𝐵, of size 128 × 128, are partitioned into
submatrices 𝐴(𝑖, 𝑗) and 𝐵(𝑖, 𝑗) of size 16 × 16.

/∗ East and West data transfer ∗/
For k = 1 to 7 do

Send A(i,j) to PE(i,(j+k) mod 8)

/∗ North and South data transfer ∗/
For k = 1 to 7 do
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Figure 7: Matrix-matrix multiplication results.

Send B(i,j) to PE((i+k) mod 8,j)

/∗ Local multiplication of submatrices ∗/
For k = 0 to 7 do

C(i,j) = C(i,j) + A(i,k) x B(k,j).

The obtained time results are depicted in Figure 7 with
differently sized matrices. Figure 7 demonstrates that the
used network influences the total execution time. In our
case, it was easy to test different topologies thanks to the
implemented mode instruction. From the SW level, the pro-
grammer can choose the interconnection network topology
they want to use. The results show that the Torus network is
themost appropriate neighbourhood network for thematrix-
matrix multiplication.

To further evaluate the performance of the implemented
multicore configurations, we measure the communication-
to-computation ratio (CCR) for the three tested benchmarks
based on a 32-core configuration. Table 5 depicts the obtained
results. It is clearly shown that themeasured communication-
to-computation ratio is small, which indicates that the num-
ber of processing cycles exceeds the number of communica-
tion cycles. This allows having a good speedup.

Table 6 shows the parallel efficiency for the tested bench-
marks depending on the number of PEs. The parallel effi-
ciency decreases as the number of cores increases. We notice
that the efficiency drops down to 12%, when executing the
FIR filter with 64 cores. In this case, the additional cores do
not deliver additional performance due to the needed extra
communications. Through these results, we can choose the
best number of cores to parallelize a given application.

5. Multicore Architectures
and Performance Analysis

5.1. Related Work. Several on-chip multicore platforms have
been proposed [20]. Different multiprocessor architectures

Table 5: Communication-to-computation ratio for a 32-core con-
figuration.

Benchmark CCR
FIR filter 0.51
M-Mmultiplication 0.47
Spatial Laplacian filter 0.32

Table 6: Parallel efficiency.

Number
of PEs

Efficiency (%)
FIR filter Laplacian

filter
M-Mmultiplication

(with Xnet) (matrices of size 128 ∗ 128)
2 84 95 97
4 74 81 88
8 59 62 81
16 36 37 75
32 24 22 66
64 18 — 59

with the NIOS II softcore were also presented in [21]. These
platforms are designed to raise the efficiency in terms of
GOPS per Watt. In this work, a particular attention is given
to architectures working in SIMD/SPMD fashion and proto-
typed on FPGA devices.

One of the famous high performance architectures is the
GPGPU. The Fermi processor is an example [22]. It is com-
posed of 512 cores. However, these architectures present some
limits in terms of the accessmemory bottleneck since all cores
share the same memory and the high power consumption
making them not suitable in the embedded system field.

In [23], the authors present a parameterizable coarse-
grained reconfigurable architecture. Different interconnect
topologies can be reconfigured, and static as well as dynamic
parameters are described. This work mainly concentrates on
providing a dynamic reconfigurable network by developing
a generic interconnect wrapper module. The PEs used in the
design have limited instructionmemory and can only execute
specific instructions needed in digital signal processing.

In [24], the authors present massively parallel progra-
mmable accelerators. The authors propose a resource-aware
parallel computing paradigm, called invasive computing,
where an application can dynamically use resources. They
show that the invasive computing allows reducing energy
consumption by dynamically powering off the idle regions at
a given time.

A many-core computing accelerator for embedded SoCs,
called Platform 2012, is presented in [25]. It is based onmulti-
ple processor clusters and works inMIMD fashion. One clus-
ter can hold a number of PEs (STxP70-V4 processor) varying
from 1 to 16. P2012 is a Globally Asynchronous Locally Syn-
chronous (GALS) fabric of clusters connected through an
asynchronous global NoC.

TheCell Broadband Engine Architecture (CBEA) [18] is a
multicore system, which integrates a PowerPC PE and 8 Syn-
ergistic PEs dedicated to compute intensive applications.
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Table 8: Performance results of Mali-T604GPU and 16-core archi-
tecture. Numbers in brackets denote the difference between GPU’s
and our architecture’s values.

Application GPU 16-core configuration
Exec.
time

% peak
perf. Exec. time % peak perf.

FIR filter
−32 taps, 131 072
samples

655 𝜇s 18.8% 461 𝜇s
(29% faster)

84.2%
(4.5x better)

Matrix-matrix
multiplication
−256 × 256 matrix
size

2 634 𝜇s 18.7% 2 011 𝜇s
(23% faster)

77.37%
(4x better)

It has been shown to be significantly faster than existingCPUs
for many applications.

Many modern commercial microprocessors also have
SIMD capability, which has become an integral part of the
Instruction Set Architecture (ISA). Design methods include
combining a SIMD functional unit with a processor or
exploiting the SIMD instructions extension [26] present in
softcores to run data-parallel applications. SIMD extensions
are used, for example, in ARMs Media Extensions [27] and
PowerPCs AltiVec [28]. The SIMD-style media ISA exten-
sions are presented in most high-performance general-
purpose processors (e.g., Intels SSE1/SSE2, Suns VIS, HPs
MAX, Compaqs MVI, and MIPs MDMX). Their drawback
is due to their data access overhead for instructions, which
becomes an obstacle to the performance enhancement.

In [29], the authors present heterogeneous multicore
architectures with CPU and SIMD 1-dimensional PE array
(SIMD-1D) and MIMD 2-dimensional PE array (MIMD-
2D) accelerators. A custom hardware address generation unit
(AGU) is used to generate preprogrammed addressing pat-
terns in smaller number of clock cycles compared to theALU-
based address generation.The SIMD-1D accelerator has 8 PEs
and a 16 bit× 256 16-bank sharedmemory connected through
a crossbar interconnection network. Through a matrix-
matrix multiplication benchmark, the authors demonstrate
that the proposed SIMD-1D architecture is 15 times power-
efficient than GPU for the fixed-point calculations.

Another FPGA-based massively parallel SIMD processor
is presented in [30]. The architecture integrates 95 simple
processors and memory on a single FPGA chip. The authors
show that their proposed architecture can be used to effi-
ciently implement an RC4 key search engine. An application-
specific multicore architecture designed to perform a simple
cipher algorithm is presented in [31].The architecture consists
of four main modules: the sequential processor that is
responsible for the interpretation and execution of a user-
defined program, the queuing module that is responsible for
scheduling tasks received from the sequential processor, four
parallel processors that are idle until they get tasks from the
queuingmodule, and the parallel memory that holds the data
and key for processing and allows for concurrent access from
all parallel processors. There is also a monitoring module
which interprets user-control signals and sends back their

results via a specified output. The architecture can integrate
more parallel cores; however this can be done manually and
so requires long design time.

These different platforms are summarized in Table 7.

5.2. Performance Analysis. The multicore architecture, dis-
cussed in this paper, is suitable for data-intensive computa-
tions. Comparing with embedded general-purpose graphics
processing units, such architectures have both huge number
of processing units; however, there exist also some differ-
ences. GPUs used in multiprocessor systems-on-a-chip have
direct access to the main memory, shared with the processor
cores. In GPUs, there is no neighbouring communication
between the cores. Thus, exchanging data is made via the
shared memory. In contrast, the PEs in the proposed multi-
core SoC can communicate with each other and also other
components via two networks. GPUs are mainly dedicated
to massively regular data-parallel algorithms. However, the
proposed multicore architecture can handle both regular and
irregular data parallel algorithms thanks to its communica-
tion features. To validate this reasoning, our multicore SoC
and a commercial embedded GPU are evaluated for selected
algorithms (FIR filter and matrix-matrix multiplication). A
Samsung Exynos 5420ArndaleOcta Board is used. It features
a dual-core ARM Cortex-A15 that runs at 1.7 GHz and an
ARMMali T-604 GPU operating at 533MHz [32]. The GPU
has a theoretic peak performance of 68.22 GOPS. For the
comparison, a 16-core configuration (the PEs are connected
via a Xnet network) was considered. The multicore architec-
ture operated at 337MHz. The considered architecture has
a peak performance of 10.78 GOPS. The performance com-
parison is illustrated in Table 8. Execution time measures
and the achieved fraction of the peak performance are
highlighted.

Table 8 shows that our proposed multicore system
achieves better speedup than the GPU (29% faster for the
FIR filter and 23% faster for the matrix-matrix multiplica-
tion). Our system is also more efficient since it achieves a
better fraction of the peak performance than the GPU. This
proves the well resource utilization in the multicore on-chip
implementation.The aforementioned results demonstrate the
performance of the proposed architecture. We think that our
system can be coupledwithGPU to form a high-performance
multiprocessor system.

Tanabe et al. [33] propose an FPGA-based SIMD proces-
sor. The proposed architecture is based on SuperH processor
that was modified to include more numbers of computation
units and then performs SIMDprocessing. A JPEG case study
was presented; however no idea about programming was
given.The achieved clock frequency of the SIMD processor is
too low (55MHz) while many softcores run faster these days.
Table 9 compares between our multi-softcore architecture
and the architecture described in [33] composed of one con-
trol unit and a number of computation units (CU) in terms
of power consumption and frequency. As illustrated, our
system achieves good results since it presents a higher fre-
quency and a lower power consumption compared to the
SIMD processor. The replication design methodology makes
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Table 9: Comparison between multi-softcore SoC and [33].

Proposed multi-softcore SoC 𝐹max Power (mW) [33] 𝐹max Power (mW)
4 PEs 412 756 4CUs 56 1 149
8 PEs 382 834 8CUs 55 1 233
16 PEs 337 1 151 16 CUs 52 1 385

the design of a multi-softcore architecture easier and can
integrate a parametric number of PEs compared to the
used dedicated implementation [33] that makes adding more
computational units to the architecture a heavy task.

Compared to the multicore architecture described in [31]
which is application specific, our proposed architecture is
parametric and scalable and can satisfy a wide range of data-
intensive processing applications. In addition, our system
integrates two types of flexible communication networks that
can efficiently handle communication schemes present in
many applications. In terms of performance, our multicore
architecture can reach a speedup of 1.9 with two cores and 3.2
with four cores. In comparison, the achieved results presented
in [31] show a speedup reaching 1.85 with two cores and 2.92
with four cores active.

The preceding performance comparison confirms the
promising advantages and performance of the proposed
FPGA-based multicore architecture. This paper proves that
an FPGA-based multicore design built with softcores is pow-
erful to compute data-intensive processing. The presented
architecture is easy to design, configurable, flexible, and
scalable. Thus, it can be tailored to different data-parallel
applications.

6. Conclusion

In this paper, we have presented a softcore-based multicore
implementation on FPGA device. The proposed architecture
is parametric and scalable, which can be tailored according
to application requirements such as performance and area
cost. Such a programmable architecture iswell suited for data-
intensive applications from the areas of signal, image, and
video processing applications. Through experimental results,
we have demonstrated better performance gains of our
system in comparison to state-of-the-art embedded archi-
tectures. The presented architecture provides a great deal of
performance as well as flexibility.

Future work will focus on studying the energy efficiency
of the presented system, as power consumption is considered
the hardest challenge for FPGAs [34]. We want to explore the
usage of custom accelerators in the proposed architecture.We
also envision studying a possible dynamic exploitation of the
available level of parallelism in themulticore system based on
the application requirements.
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