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ABSTRACT
This paper examines the interaction of nonuniform flows

with propeller blades in a submerged elastic duct. The acous-
tic radiation from the duct is calculated and correlated to the
flow nonuniformities and the propeller and duct characteristics.
The case of a stiffened duct with ribs is also considered and the
dispersion relation of the duct modes is compared with that of
a regular duct. The dispersion relation of the stiffened duct has
a periodic structure similar to that of connected oscillators with
large number of independent modes. Because of our interest in
the acoustic radiation of such a system, we focus our attention on
the flexure modes. The model is first tested with simple internal
forces such as monopoles and dipoles. The results for unstiff-
ened ducts show strong directivity as the dipole radial location
moves closer to the duct wall. For stiffened ducts, the magnitude
of the acoustic response as well as the directivity vary strongly
and show large peaks near the stiffened duct free modes. For a
propeller, an Euler code provides the pressure distribution along
the blades. This represents the dipole strength distribution. Its
radiated sound is calculated by summing up the contribution of
the distributed dipoles. In this process, compact source effects
are also taken into account.

NOMENCLATURE
a shell radius
E Young’s modulus
h shell thickness
m mode number
1
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p pressure
Pe f far field acoustic radiated pressure
[S] stiffness matrix of shell
[R] inverse matrix of [S]
U velocity vector
c1,c2 speed sound in interior and exterior fluid
J|m| Bessel function
H(1)
|m| Hankel function of the first kind

H(2)
|m| Hankel function of the second kind

rh hub radius
rt tip radius
α axial wavenumber
α∗ dimensionless axial wavenumber, α∗ = αa
ν Poisson’s ratio
ρ1,ρ2 interior and exterior densities
ρs shell material density
η damping factor
ζx, ζθ, ζr axial, circumferential and radial displacements
ω circular frequency
ω∗ dimensionless frequency, ω∗ = ωa/c2

INTRODUCTION
The interaction of fluid and flexible structure gives rise to

numerous physical problems and phenomena. The flexible struc-
ture is surrounded by the fluid, and fluid flow exerts pressure on
the solid structure causing it to deform. For nonuniform flow, the
structure vibrates in response to the unsteady fluid loading and
Copyright c© 2008 by ASME
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radiates sound in the surrounding fluid. In this paper, the cou-
pling between nonuniform flow and a propeller in an elastic duct
is modeled. The propeller is modeled as a rotor/stator stage. For
simplicity, the duct is modeled as an infinite thin cylindrical shell
with stiffened ribs for structural integrity.

The thin cylindrical shell has been studied by many re-
searchers [1, 2] because it is a good theoretical model to study
to give a better understanding of structural acoustics. A source
in the cylindrical shell will generate several types of waves that
propagate along the shell with associated disturbances in the
fluid [3]. The dispersion equation shows that there are three prop-
agating waves in the shell which correspond to flexure, compres-
sion and torsion waves. Analysis of the dispersion equation helps
explain the acoustic radiation from the shell.

For the shell with no ribs, the flexural modes have short
wavelength and do not radiate to the far field [4]. However, when
the shell is stiffened by ribs, the flexure modes begin to radiate to
the far field. When the shell is stiffened by periodically spaced
identical ribs, the ribs exert meridional moments on the shell [5].
Bernblit [6, 7] developed a formulation to calculate the radiated
sound from an infinite cylindrical shell, which is stiffened by pe-
riodic rings. Vasudevan [8] studied the sound radiation from a
ribbed infinite cylindrical shell. It was found that the disper-
sion curves depend on the properties of the shell/rib system and
the spacing between the ribs. Marcus et al. [9, 10] used finite-
element modeling to study the radiated sound from the cylindri-
cal shell with ribs. It was found that for higher circumferential
mode numbers (m > 10), two structural resonances dominate the
vibratory response of the shell. Rib thickness variations strongly
affect the first pass band, while rib spacing variations strongly
affect the second pass band.

Besides theoretical and numerical results, several experi-
ments have been carried out for the cylindrical shell with ribs.
Photiadis .el. [11] was among the first to experimentally study
wave-number space response of a near periodically ribbed shell.
The experimental results show a clear dispersion structure domi-
nated primarily by the Bloch wave-number of flexural wave k and
its replications by scattering from the periodic array, k + 2πn/s,
where n is an integer, and s is the rib spacing. Sizable frequency
gaps are typically a dominant feature of the results.

Structural acoustics focuses on assumed sources of noise,
such as, single force, monopole, dipoles. When sound radiation
from a propeller is investigated, the source of noise is obtained
from the propeller-duct system. The propeller, which works with
incoming nonuniform flow, is modeled as a rotor/stator stage.
Because of the rotor rotation, it is necessary to represent the prop-
agation of upstream disturbances in a swirling mean flow [12].
For a uniform flow, the pressure and vorticity are uncoupled. For
a swirling mean flow, Atassi et al. [12,13] developed a model for
the representation of upstream disturbances and their interaction
with a row of blades. The results showed that the swirling flow
may strongly affect the acoustic and vortical spectral composi-
2
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Figure 1. Geometry of cylindrical shell excited by point force.

tion of propagating modes in the duct.
In this paper, we examine the effects of an elastic duct on the

sound radiation from a propeller inside the duct. The coupling of
the duct motion to the propeller generated flow is implemented
using Euler’s equations and the shell equations which are cou-
pled by the boundary condition between the fluid and the shell.
To our best knowledge, this coupling is new.

This paper is organized as follows. First, the governing
equations of the shell and rib motions and linearized Euler equa-
tions of fluid motion are presented. Then, we examine the ef-
fects of the radial location and direction of a single dipole on
the sound pressure level radiated by the duct. These results are
correlated with the dispersion curves for both the duct and the
rib-stiffened duct. For a propeller, the unsteady pressure along
the blades is obtained from [12]. This unsteady pressure repre-
sents the strength of the dipole distribution and direction along
the blades. The radiated sound pressure due to the propeller is
then calculated for an aluminum duct. Finally, we summarize
our results in the conclusions.

MATHEMATICAL FORMULATIONS
In this paper, the thin cylindrical shell is surrounded by wa-

ter in a cylindrical coordinate system (x,θ,r). The geometry is
shown in figure 1 . The motion of thin cylindrical shell is de-
scribed by Goldenveizer & Novozhilov equations [5]. The shell
equations are a system of three linear equations, the first is of
order 2, the second is of order 3, and the third of order 4. We
consider a single harmonic excitation, e−iωt , of frequency ω, and
use Fourier transform,

F(r,θ,x) =
1

2π

m=+∞

∑
m=−∞

eimθ
Z +∞

−∞
f (r,m,α)eiαxdα, (1)

f (r,m,α) =
1

2π

Z 2π

0
e−imθ

Z +∞

−∞
F(r,θ,x)e−iαxdxdθ, (2)
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where m is the circumferential mode number and α is the ax-
ial wave number. F(r,θ,x) is the field quantity and f (r,m,α) is
the spectral field quantity. Thus, the spectral equations of shell
motions with interior and exterior fluid loading are given by,





S11 S12 S13
S21 S22 S23
S31 S32 S33 +Fl









ζx(m,α)
ζθ(m,α)
ζr(m,α)



 =





ex(m,α)
eθ(m,α)
er(m,α)



 , (3)

where, the amplitudes ζx(m,α), ζθ(m,α), ζr(m,α) are the spec-
tral displacements; the amplitudes ex(m,α), eθ(m,α), er(m,α)
are the spectral excitations.

The elements in the stiffness matrix [S] are given by,

S11 = E1

(

α2 +m2 1−ν
2a2

)

−ω2ρsh,

S12 = E1(1+ν)
mα
2a

,

S13 = −iE1ν
α
a

, S21 = S12,

S22 = E1

[

(1−ν)α2

2 +
m2

a2 +2α2β2(1−ν)+
β2m2

a2

]

−ω2ρsh,

S23 = −iE1

[

m
a2 +β2(2−ν)α2m+

β2m3

a2

]

,

S31 = −S13, S32 = −S23,

S33 = E1

[

1
a2 +

β2m4

a2 +α4β2a2 +2β2m2α2
]

−ω2ρsh.

In these equations, E1 = Eh
1−ν2 , where, E is Young’s Modulus, ν

is Poisson’s ratio, ρs is the shell’s density, h is the thickness of
the cylindrical shell, a is the shell’s mean radius, and β2 = h2

12a2 .
3
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Note that Si j do not contain the effect of fluid loading. This
term denoted Fl in Eq. (3) has the following expression for both
the inner and outer fluid loading,

Fl = −
ρ1ω2

γ1

H(1)
|m| (γ1a)H

′(2)
|m| (γ1rh)−H

′(1)
|m| (γ1rh)H

(2)
|m| (γ1a)

H
′(1)
|m| (γ1a)H

′(2)
|m| (γ1rh)−H

′(1)
|m| (γ1rh)H

′(2)
|m| (γ1a)

+
ρ2ω2H(1)

|m| (γ2a)

γ2H
′(1)
|m| (γ2a)

, (4)

where rh is hub radius, J|m| is Bessel function, H(1)
|m| and H(1)

|m| are
Hankel functions of the fist kind and the second kind, respec-
tively. γ1 =

√

k2
1 −α2, k1 = ω/c1, and c1 is the interior fluid

sound speed. γ2 =
√

k2
2 −α2, k2 = ω/c2, and c2 is the exterior

fluid sound speed. ρ1 and ρ2 are the interior and exterior fluid
densities, respectively.

When rh = 0, the fluid loading term becomes,

Fl = −ρ1ω2 J|m|(γ1a)

γ1J
′

|m|(γ1a)
+ρ2ω2

H(1)
|m| (γ2a)

γ2H
′(1)
|m| (γ2a)

. (5)

The spectral response of the elastic cylindrical shell without
ribs is given by Eq. (3). The solutions of the shell displacements
can be obtained by simple matrix inversion from Eq. (3),





ζx(m,α)
ζθ(m,α)
ζr(m,α)



 =





R11 R12 R13
R21 R22 R23
R31 R32 R33









ex(m,α)
eθ(m,α)
er(m,α)



 . (6)

A structural damping is introduced to avoid singular behav-
ior where Young’s Modulus E is replaced by Ec,

Ec = E(1− iη),

where η is the damping factor.
A rib is assumed to run circumferentially around the shell

and is schematically shown in Figure 2. The rib is assumed to
exert a meridional moment on the shell, so the shell equation
should be expanded to include moment excitation per unit area
Mθ(m,α) [5]. The expanded matrix relation for the shell with
ribs is given by,









ζx(m,α)
ζθ(m,α)
ζr(m,α)
ψθ(m,α)









=









R11 R12 R13 R14
R21 R22 R23 R24
R31 R32 R33 R34
R41 R42 R43 R44

















Fex

Feθ
Fer

Mθ









, (7)
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Figure 2. Schematic of a rib-stiffened cylindrical shell. M is the observer

point in the spherical coordinate system. R is the distance between the

source and observer, θ is the polar angle, and φ is the azimuthal angel.

where,

R14 = −iαR13, R24 = −iαR23, R34 = −iαR33,

R41 = iαR31, R42 = iαR32, R43 = iαR33,

R44 = α2R33.

The spectral displacement of shell with ribs is obtained as
[5],

{ζ(m,α)} = [R(m,α)]{Fe(m,α)}−
1
s
[R(m,α)][B(m)]×

[

[I]+
1
s

q=∞

∑
q=−∞

[R(m,α+2πq/s)][B(m)]

]−1

×
q=∞

∑
q=−∞

[R(m,α+2πq/s)]

{Fe(m,α+2πq/s)}, (8)

where s is the rib spacing, {Fe} is the excitation, and q is the
number of ribs. Matrix B is a 4× 4 dynamics stiffness matrix,
which connects the forces and displacements at cylinder attach-
ment points.

For a given source excitation, the spectral displacements
ζ(m,α) can be numerically solved by Eq. (8). Using the station-
ary phase method, we derive the following expression of the far
field acoustic radiated pressure in a spherical coordinate system
(R,φ,θ),

Pe f =
−iρω2eikR

πkRsinφ

m=+∞

∑
m=−∞

(−i)|m|ζr(m,α0)

H
′(1)
|m| (kasinφ)

eimθ, (9)

where α0 = k cosφ is the stationary phase wavenumber.
4
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The fluid motion is governed by the conservation laws of
mass, momentum, and energy, and we use the Euler equations as
the governing equations [14],

Dρ
Dt

+ρ∇ ·U = 0, (10)

ρ
DU
Dt

= −∇p, (11)

where ρ, U, and p are the density, velocity, and pressure of the
fluid, respectively, and D

Dt is the material derivative defined by,

D
Dt

≡
∂
∂t

+U ·∇. (12)

We can linearize the governing equations about the steady
mean flow quantities by writing,

U(x, t) = U0(x)+u(x, t), (13)

p(x, t) = p0(x)+ p′(x, t), (14)

ρ(x, t) = ρ0(x)+ρ′(x, t), (15)

where x stands for the position vector, t for time, and ρ0, U0,
and p0 are the steady density, velocity, and pressure of the fluid,
respectively, and ρ′, u, and p′ are the corresponding unsteady
perturbation quantities such that

|u(x, t)| � |U0(x)|, (16)

|p′(x, t)| � |p0(x)|, (17)

|ρ′(x, t)| � |ρ0(x)|. (18)

Thus, the first-order continuity, momentum and energy equations
resulting from the linearization are given,

D0ρ′

Dt
+(u ·∇)ρ0 +ρ0∇ ·u+ρ′∇ ·U0 = 0, (19)
Copyright c© 2008 by ASME
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ρ0

(

D0u
Dt

+(u ·∇)U0

)

+ρ′(U0 ·∇U0) = −∇p′. (20)

The boundary condition at the hub is given by,

(

∂ur

∂r

)

rh

= 0. (21)

The boundary condition at the inner surface of the duct is given
by,

ur =
D0ζr

Dt
. (22)

NUMERICAL RESULTS
In this section, numerical results are presented for the far

field sound pressure level of the acoustic radiation from an
infinite aluminum cylindrical shell which is filled and sub-
merged with water. The sound pressure level is defined as
20log10 limR→∞ |RPe f (R,φ,θ)|+120, corresponding to reference
pressure of 1 micro-pascal. We define the non-dimensional vari-
ables of wavenumber and frequency as, α∗ = αa, and ω∗ = ωa

c2
,

where a is the radius of the shell and c2 = 1482m/s is the speed
of sound in water. The following parameters for the shell and rib
were used in the numerical calculations. The aluminum cylin-
drical shell has radius 1.0m and thickness 0.01m. The steel rib
dimensions are depth 0.06m and width 0.06m. The rib spacing is
1.0m. The structural damping, η = 0.02, is introduced.

Dispersion Curves
The dispersion relation is the relation between frequency

and wavenumber for which the resonance occurs. For a shell
with no ribs, the dispersion equation is simply,

∣

∣

∣

∣

∣

∣

S11 S12 S13
S21 S22 S23
S31 S32 S33 +Fl

∣

∣

∣

∣

∣

∣

= 0, (23)

Note that although S12, S21, S13, and S31 depend on α while the
other coefficients of Eq. (23) depend on α2, the determinant it-
self depends on even powers of α ensuring a symmetry about
α = 0 with respect to the wavenumber. By solving the dispersion
equation, we find there are three propagating waves in the shell
which correspond to flexure, compression and torsion waves. We
are interested in the flexure waves because the flexure waves are
related with the radiated sound, and the curves of the flexure
waves can be used to explain the strong acoustic radiation from
the shell.
5
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Figure 3. Wavenumber versus frequency dispersion plot of a water-filled

Aluminum shell surrounded by a vacuum, for circumferential harmonic

m=0.

Figure 4. Flexure waves of a water-filled Aluminum cylinder surrounded

by a vacuum excited by a unit force, for circumferential harmonic m=0.

The color scale represents the log10 displacement value in meters.

Figure 3 presents the dispersion curves of a water-filled Alu-
minum shell surrounded by a vacuum for circumferential har-
monic m=0, which is obtained by finding the roots of the dis-
persion equation. The two outside branches in figure 3 are the
flexure waves. Figure 4 shows the radial displacements of a
water-filled Aluminum shell surrounded by a vacuum for cir-
cumferential harmonic m=0, which is obtained by calculating
the radial displacements excited by a unit radial traction (force
per unit area). When the radial displacements representing flex-
ural modes are large, they indicate resonant conditions. Figure
4 shows this representation for a simple shell (no ribs) and is
compared for validation with figure 3 calculated analytically.

The dispersion equation for the rib-stiffened duct is only
Copyright c© 2008 by ASME
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Figure 5. Flexure waves of a water-filled Aluminum shell surrounded by

water for circumferential harmonic m=0, which is excited by a unit force.

The color scale represents the log10 displacement value in meters.

known numerically. We apply a single radial force at the duct
boundary and solve for the radial displacements. Figure 5 shows
the flexure waves of a water-filled aluminum unribbed shell sur-
rounded by water for circumferential harmonic m=0. We see that
the yellow branches are the flexure waves. Figure 6 presents the
flexure waves of a water-filled aluminum ribbed shell surrounded
by water for circumferential harmonic m=0. Comparing the two
figures, it is seen that when the cylindrical shell is stiffened by
ribs, the ribs strongly change the dispersion curves and lead to
free modes with much smaller wavelength. We also find that for
the shell without ribs, there are always free flexure modes for all
the frequencies. But, for the shell with ribs, there are no free
flexure modes for some frequency zones, which means that the
far field radiated sound is very weak for these frequencies. Those
zones are called silence zones. And the control ribs can be used
to reduced noise for some frequencies.

We also calculate the flexure waves for higher mode num-
bers, m = 5,8, and the results are shown in figure 7 and 8, respec-
tively. For different mode numbers, the flexure curves are differ-
ent and the locations of silence zones are different too. These
results clearly show the strong influence of the ribs on the radi-
ated sound. Further examination is underway for the nature of
flexure waves and their possible interaction with acoustic modes
for frequencies below the coincidence frequency.

Mechanical Point Force Excitation
We have used a radial point force excitation to determine

the dispersion relation. Here, we show the broadside far field
sound pressure levels in figure 9. Comparing the far field sound
pressure level of the shell with ribs and that of the shell without
ribs, we find that the control ribs strongly change the far field
sound radiations. The peaks in the spectrum can be associated
6
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Figure 6. Flexure waves of a water-filled Aluminum ribbed shell sur-

rounded by water for circumferential harmonic m=0, which is excited by

a unit force. The color scale represents the log10 displacement value in

meters.

Figure 7. Flexure waves of a water-filled Aluminum ribbed shell sur-

rounded by water for circumferential harmonic m=5, which is excited by

a unit force. The color scale represents the log10 displacement value in

meters.

with the flexure waves in the shell. At some frequencies, the
sound level of ribbed shell is much lower than that of unribbed
shell, the reason could be the cancellation between the waves due
to control ribs.

Figure 10 shows 45o off broadside far field sound pressure
levels when the excitation is a unit radial force. Again, we can
find that the control ribs strongly change the far field sound radi-
ations.
Copyright c© 2008 by ASME
e: http://www.asme.org/about-asme/terms-of-use



Do
Figure 8. Flexure waves of a water-filled Aluminum ribbed shell sur-

rounded by water for circumferential harmonic m=8, which is excited by

a unit force. The color scale represents the log10 displacement value in

meters.
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Figure 9. Far field sound pressure levels at broadside (φ = π/2,θ = 0)

of ribbed and unribbed cylindrical shells caused by a unit radial point force.

Monopole Excitation
In this part, the excitation is considered as a monopole lo-

cated at different radial positions, r0 = 0.1a,0.3a,0.5a and 0.8a.
The radiated sound pressure is normalized to the free field pres-
sure of a monopole.

Figures 11 and 12 show the far field sound pressure levels of
the unribbed and ribbed cylindrical shells by a monopole at the
observation angle φ = π/3, respectively. It is seen that the radial
locations of the monopole do not have much effects on the far
field sound radiation. Because of the interaction with the control
ribs, the flexure modes cause significant change to the radiated
sound. The peaks in the spectrum can be associated with the
flexure modes in the flexure curves.
7
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Figure 10. Far field sound pressure levels at 45o off broadside (φ =
π/4,θ = 0) of ribbed and unribbed cylindrical shells caused by a unit

radial point force.
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Figure 11. Far field sound pressure levels at φ = π/3 of the unribbed

cylindrical shell caused by a monopole.

Dipole Excitation
In this part, the excitations are considered as axial, radial,

and circumferential dipoles. We put the dipoles at different ra-
dial locations, r0 = 0,0.1a,0.3a,0.5a and 0.8a. Two observation
angles are chosen for different values of φ. The radiated sound
pressure is normalized to the free field pressure of a dipole.

Figure 13 shows the far field sound pressure levels of the un-
ribbed cylindrical shell caused by axial dipoles at the observation
angle φ = π/3. It is seen that the farfield sound radiation depends
on the radial location of axial dipoles. When ω∗ is less than 3.5,
the far field sound level increases as the location of the dipoles
changes from r0 = 0.0 to r0 = 0.8a. But, when ω∗ is more than
3.5, the far field sound levels of axial dipoles located at r0 = 0.5a
and r0 = 0.8a, decrease as the frequency increases. Figure 14
Copyright c© 2008 by ASME
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Figure 12. Far field sound pressure levels at φ = π/3 of the ribbed

cylindrical shell caused by a monopole.
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Figure 13. Far field sound pressure levels at φ = π/3 of the unribbed

cylindrical shell caused by an axial dipole.

shows the far field sound pressure levels of the ribbed cylindrical
shell caused by axial dipoles at the observation point φ = π/3.
The control ribs change the far field sound level. The peaks in
the plot occur near the shell flexure modes.

Figures 15 and 16 show the far field sound pressure levels of
the unribbed and ribbed cylindrical shells caused by axial dipoles
at the observation angle φ = π/4. The results are similar to figure
13 and 14 and do not exhibit the strong dependence of the obser-
vation angle φ observed in figures 9 and 10. It is noticed that the
far field sound level increases about 9 dB as the location of axial
dipole moves from the axis of the shell to r0 = 0.8a.

Figures 17 and 18 shows the far field sound pressure levels
of the unribbed and ribbed cylindrical shells caused by circum-
ferential dipoles at the observation angle φ = π/2. Figures 19 and
20 shows the far field sound pressure levels of the unribbed and
8
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Figure 14. Far field sound pressure levels at φ = π/3 of the ribbed

cylindrical shell caused by axial dipoles.
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Figure 15. Far field sound pressure levels at φ = π/4 of the unribbed

cylindrical shell caused by axial dipoles.

ribbed cylindrical shells caused by circumferential dipoles at the
observation angle φ = π/4. From these figures, it is found that
the far field sound level increases as the location of the dipole
changes from r0 = 0 to r0 = 0.8a, which means the circumfer-
ential dipole has stronger effect on the far field sound radiation
when the location of the circumferential dipole is closer to the
cylindrical shell.

Figures 21 and 22 show the far field sound pressure levels
of the unribbed and ribbed cylindrical shells caused by radial
dipoles at the observation angle φ = π/2. It is observed that the
far field sound levels decrease as the location of radial dipoles
changes from r0 = 0.0 to r0 = 0.8a. The results of the far field
sound pressure levels of unribbed and ribbed cylindrical shells
caused by radial dipoles at the observation angle φ = π/4 are
shown in figures 23 and 24, respectively. We note that as the
Copyright c© 2008 by ASME
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Figure 16. Far field sound pressure levels at φ = π/4 of the ribbed

cylindrical shell caused by axial dipoles.
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Figure 17. Far field sound pressure levels at φ = π/2 of the unribbed

cylindrical shell caused by circumferential dipoles.

radial dipoles move toward the shell, the far field sound level is
reduced. This is contrary to the results of axial and circumferen-
tial dipoles. These results have been checked and we do not have
a simple explanation for this behavior.

The results of the sound pressure level radiated from a dipole
inside a duct with or without ribs clearly show strong dependence
of the sound pressure level on the radial position of the dipole and
its orientation. Figures 13 to 24 show sound pressure level radi-
ations can reach more than 10 dB. These results demonstrate the
inadequate assumption often used in structural acoustics wherein
distributed dipole sources are treated as a single “blocked dipole”
when the acoustic transfer function is calculated.
9
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Figure 18. Far field sound pressure levels at φ = π/2 of the ribbed

cylindrical shell caused by circumferential dipoles.
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Figure 19. Far field sound pressure levels at φ = π/4 of the unribbed

cylindrical shell caused by circumferential dipoles.

Coupling the Propeller with the Shell
In this part, we present preliminary results for nonuniform

flow interaction with a propeller in an elastic duct. The boundary
conditions are as follows. A quasi-periodicity condition is im-
plemented circumferentially. This implies a quasi-periodic de-
pendence on θ of the form eimθ, where m = 2πn/B, where n is an
integer and B is the number of propeller blades. Non-reflecting
boundary conditions are imposed at the inlet and outlet. The
boundary conditions at the hub radius and on the stator’s surfaces
are impermeability condition. At the duct wall, the boundary
condition is given by Eq. (22). As an example for the preliminary
results we present, the number of rotor blades is 2 and the num-
ber of the stator blades is 10. The mean-flow total Mach number
is M = 0.05 and the hub-tip ratio is 0.6. We choose frequency
ω∗ = 1 and use a grid of {nx ×nθ×nr} = {121×41×41}. The
Copyright c© 2008 by ASME
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Figure 20. Far field sound pressure levels at φ = π/4 of the ribbed

cylindrical shell caused by circumferential dipoles.
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Figure 21. Far field sound pressure levels at φ = π/2 of the unribbed

cylindrical shell caused by radial dipoles.

material of the duct is aluminum.
Figure 25 shows the real and imaginary parts of the duct wall

displacements in response to the unsteady pressure excitations of
rotor-stator interaction assuming a rigid wall when computing
the blade unsteady pressure. The wall displacements are non-
dimensionalized with respect to the radius of the duct. Figure
26 shows the duct wall displacements in response to unsteady
pressure excitations of rotor-stator interaction assuming an elas-
tic wall when computing the blade unsteady pressure. For the
rigid wall, there are no propagating acoustic waves in the duct.
On the other hand, for the elastic wall, there are three propagating
acoustic waves corresponding to mode numbers, m = 12,2,−8.
This accounts for the larger wall displacements shown in figure
26.

Figure 27 shows a polar plot of the sound pressure directiv-
10
wnloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Us
1 2 3 4 5 6 7 8
60

70

80

90

100

110

120

130

ω *

S
ou

nd
 le

ve
l (

dB
)

 

 

r
0
 = 0

r
0
 = 0.1a

r
0
 = 0.3a

r
0
 = 0.5a

r
0
 = 0.8a

Figure 22. Far field sound pressure levels at φ = π/2 of the ribbed

cylindrical shell caused by radial dipoles.
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Figure 23. Far field sound pressure levels at φ = π/4 of the unribbed

cylindrical shell caused by radial dipoles.

ity of the rigid wall and elastic wall excitations. The acoustic
pressure is non-dimensionalized with respect to ρ2Uxug, where
Ux is mean velocity in x direction, and ug is the gust upwash. For
the present results, ug = 0.1Ux. For the rigid wall excitation, the
peak value of the pressure is 0.037, for the elastic wall excitation,
the peak value of the pressure is 0.048. The acoustic pressure is
enhanced when the elastic duct is coupled to the propeller by
more than 2 dB.

CONCLUSIONS
The results of a numerical study of the far field sound radi-

ation from an infinite thin cylindrical shell with control ribs are
reported here.

It is found that when the cylindrical shell is stiffened by the
Copyright c© 2008 by ASME
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Figure 24. Far field sound pressure levels at φ = π/4 of the ribbed

cylindrical shell caused by radial dipoles.
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Figure 25. The real and imaginary parts of the duct wall displacements

in response to rotor-stator interaction by the rigid wall excitation. The

displacement is normalized to the duct mean radius in meters.

ribs, the control ribs strongly change the dispersion curves, and
the silence zones are found for the shell with ribs. This suggests
that control ribs can be used to reduce noise for some frequen-
cies.

When the source excitation is a radial point force, the control
ribs strongly change the far field sound radiations. The peaks in
the spectrum are associated with the flexure waves in the shell.
And for some frequencies the far field sound level can be reduced
by the cancellation between the waves due to the control ribs.

For different radial positions of a monopole in a rib-stiffened
duct, the locations of the peaks in the spectrum are almost same,
although the magnitude are different. The peaks in the spectrum
11
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Figure 26. The real and imaginary parts of the duct wall displacements

in response to rotor-stator interaction by the elastic wall excitation. The

displacement is normalized to the duct mean radius in meters.
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Figure 27. Comparison of sound pressure directivity of the aluminum

duct between the rigid wall excitation and the elastic wall excitation.

The acoustic pressure is non-dimensionalized with respect to ρ2Uxug,

where Ux is mean velocity in x direction, and ug is the gust upwash,

ug = 0.1Ux.

are associated with the flexure modes in the flexure curves.
For dipoles, the radial positions significantly change the

sound pressure level for the axial, radial and circumferential ori-
entations.

Preliminary results for the coupling between the propeller
and the elastic duct are presented. It is founded that the elasticity
of the shell enhances the acoustic sources and add more than 2
dB to the radiated acoustics pressure. The results suggest that for
different combinations of rotor/stator blade counts, it is possible
Copyright c© 2008 by ASME
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to have low circumferential mode number, which is an efficient
radiator of acoustic energy. The results also indicate that when
free shell modes exist, we have propagating shell modes which
force acoustic modes inside the duct and yield higher acoustic
radiation outside the duct.
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