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a b s t r a c t

In Mokni et al. [Mokni L, Belhaq M, Lakrad F. Effect of fast parametric viscous damping exci-
tation on vibration isolation in sdof systems. Commun Nonlinear Sci Numer Simulat
2011;16:1720–1724], it was shown that in a single degree of freedom system a fast non-
linear parametric damping enhances vibration isolation with respect to the case where
the nonlinear damping is time-independent. The present work proposes additional
enhancement of vibration isolation using delayed nonlinear damping. Attention is focused
on assessing the contribution of a delayed nonlinear damping over a fast parametric damp-
ing in terms of minimizing transmissibility. The results show that a nonlinear damping
with delay greatly improves vibration isolation.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

To improve dynamic performance of support structures subjected to vibrations, significant efforts have been made
toward investigating new strategies for reducing transmitted vibrations to such equipment; see for instance [1–4] and ref-
erences therein. A standard technique uses viscous damping in the vibration isolation device to enhance isolation perfor-
mance. However, when the viscous damping is linear, the transmissibility is reduced near the resonance, but increased
elsewhere. To overcome this issue and enhance vibration isolation in the whole frequency range, cubic nonlinear viscous
damping has been introduced [3]. It was revealed in the case of a single degree of freedom (sdof) spring damper system that
cubic nonlinear damping can produce an ideal vibration isolation such that the non-resonant regions remain unaffected [4].
Recently, a new technique was proposed to improve transmitted vibrations to a support structure [5]. This strategy, based on
adding a nonlinear parametric viscous damping to the basic cubic nonlinear damper, significantly enhanced vibration isola-
tion comparing to the case where the nonlinear damping is time-independent. Specifically, it was concluded that increasing
the amplitude of the parametric damping enhances substantially the vibration isolation over the whole frequency range.

In the present paper, additional efforts are directed toward bringing further improvement in enhancing isolation perfor-
mance with respect to the strategy proposed in [5]. In this effort, we introduce a delayed nonlinear damping in the system
considered in [5] and we investigate its influence on vibration isolation when acting alone or in the presence of a parametric
damping.

The introduction of time delay is inspired by Shin and Kim [6] in which a time delay control is applied to a pneumatic
isolator to enhance the isolation performance by controlling the pressure in chamber. The effectiveness of this active control
technique was shown experimentally in a single pneumatic chamber and using numerical simulation [6]. Here we use a hys-
teretic nonlinear suspension with time delay. Note that a delayed feedback was used to quench undesirable vibrations in a
van der Pol type system [7].
. All rights reserved.
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To achieve our analysis, we perform a direct partition of motion (DPM) followed by averaging method [8] to obtain the
slow dynamic and then, we implement the multiple scales method [9] on the slow dynamic to derive its slow flow. Exam-
ination of steady state solutions of this slow flow yields indications on transmissibility (TR) versus the system parameters.
More precisely, the contribution of delayed nonlinear damping over the fast parametric viscous damping [5] is evaluated in
term of vibration isolation.
2. Equation of motion and slow dynamic

Following [5], we consider a sdof model of a suspension system with nonlinear stiffness, nonlinear parametric viscous
damping and delayed nonlinear damping in the form
€X þx2X þ B1X3 þ ðB2
_X þ B3

_X3Þ 1þ bm2cosðmtÞ
� �

¼ �g þ YX2cosXt þ k1
_Xðt � sÞ þ k2ð _Xðt � sÞÞ3; ð1Þ
where x2 ¼ k1
m ; B1 ¼ k2

m ; B2 ¼ c1
m and B3 ¼ c2

m. Here m is the body mass, k1 and k2 are the linear and nonlinear stiffness coeffi-
cients, c1 and c2 are the linear and nonlinear damping components, g is the acceleration gravity and X is the relative vertical
displacement of the mass. The parameters Y and X denote, respectively, the amplitude and the frequency of the external
excitation, bm2 and m are the acceleration amplitude and the frequency of the fast parametric excitation, respectively, while
k1 and k2 denote the gains of the delayed states, and s is the time delay.

In the new model given by Eq. (1), the procedure of applying a time delay control technique to the pneumatic isolator is
motivated by the experimental and numerical work [6], in which the effectiveness of this active control technique in
enhancement of transmissibility performance was demonstrated by controlling the pressure in chamber. In the model (1),
the control strategy is performed using a hysteretic nonlinear suspension with time delay.

The particular case of linear stiffness (B1 = 0), time-independent damping (b = 0) and undelayed state feedback
(k1 = k2 = 0) was studied in [3], while the case B1 – 0, b – 0 and k1 = k2 = 0 was treated in [5]. It was demonstrated that adding
nonlinear parametric damping (b – 0) to the basic nonlinear damping enhances significantly the vibration isolation. The pur-
pose here is to study the contribution of delayed nonlinear damping over the parametric damping on vibration isolation of
system (1).

It is worthy to notice that a similar delayed nonlinear system to Eq. (1) was investigated near primary resonances [10] in
the absence of parametric damping (b = 0). Attention was focused on performing an approach to analyse the dynamic of the
system with arbitrarily large gains.

Eq. (1) contains a slow dynamic due to the external excitation and a fast dynamic produced by the fast excitation. Follow-
ing [5], we use the method of DPM [8,11–17] which consists in introducing two different time scales, a fast time T0 = mt and a
slow time T1 = t, and splitting up X(t) into a slow part z(T1) and a fast part /(T0,T1) as
XðtÞ ¼ zðT1Þ þ /ðT0; T1Þ: ð2Þ
Thus
Xðt � sÞ ¼ zðT1 � sÞ þ /ðT0 � ms; T1 � sÞ; ð3Þ
where z describes the slow main motions at time-scale of oscillations and / stands for an overlay of the fast motions. The fast
part / and its derivatives are assumed to be 2p-periodic functions of fast time T0 with zero mean value with respect to this
time, so that <X(t) > = z(T1) and <X(t � s) > = z(T1 � s) where <>� 1

2p

R 2p
0 ðÞ; dT0 defines time-averaging operator over one per-

iod of the fast excitation with the slow time T1 fixed. Introducing Dj
i � @j

@jTi
yields d

dt ¼ mD0 þ D1;
d2

dt2 ¼ m2D2
0 þ 2mD0D1 þ D2

1 and
substituting Eqs. (2) and (3) into Eq. (1) gives
€zþ €/þx2zþx2/þ B1ðzþ /Þ3 þ B2 _zþ B2
_/þ B2bm2 cosðmtÞ _zþ B2bm2 cosðmtÞ _/þ B3ð _zþ _/Þ3

þ B3bm2 cosðmtÞð _zþ _/Þ3 ¼ �g þ YX2 cosðXtÞ þ k1 _zðT1 � sÞ þ _/ðT0 � ms; T1 � sÞ
� �

þ k2 _zðT1 � sÞ þ _/ðT0 � ms; T1 � sÞ
� �3

: ð4Þ
Averaging (4) leads to
€zþx2zþ B1z3 þ 3B1z < /2 > þB1 < /3 > þB2 _zþ B2bm2 < cosðmtÞ _/ > þB3 _z3 þ 3B3 _z < _/2 > þB3 < _/3 >

þ 3B3bm2 _z2 < cosðmtÞ _/ > þ3B3bm2 _z < cosðmtÞ _/2 > þB3bm2 < cosðmtÞ _/3 >

¼ �g þ YX2 cosðXtÞ þ k1 _zðT1 � sÞ þ k2 _z3ðT1 � sÞ þ 3k2 _zðT1 � sÞ < _/2ðT0 � ms; T1 � sÞ >
þ k2 < _/3ðT0 � ms; T1 � sÞ > : ð5Þ
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Subtracting (5) from (4) yields
€/þx2/þ 3B1z2/þ 3B1z/2 � 3B1z < /2 > þB1/
3 � B1 < /3 > þB2

_/þ B2bm2 cosðmtÞ _/� B2bm2 < cosðmtÞ _/ >

þ 3B3 _z2 _/þ 3B3 _z _/2 � 3B3 _z < _/2 > þB3
_/3 � B3 < _/3 >

þ 3B3bm2 _z2 _/ cosðmtÞ � 3B3bm2 _z2 < _/ cosðmtÞ > þ3B3bm2 _z _/2 cosðmtÞ � 3B3bm2 _z < _/2 cosðmtÞ >
þ B3bm2 _/3 cosðmtÞ � B3bm2 < _/3 cosðmtÞ > �k1

_/ðT0 � ms; T1 � sÞ � 3k2 _z2ðT1 � sÞ _/ðT0 � ms; T1 � sÞ
þ 3k2 _z2ðT1 � sÞ < _/ðT0 � ms; T1 � sÞ > �3k2 _zðT1 � sÞ _/2ðT0 � ms; T1 � sÞ
þ 3k2 _z2ðT1 � sÞ < _/2ðT0 � ms; T1 � sÞ > �k2 < _/3ðT0 � ms; T1 � sÞ >¼ �bm2ðB2 _zþ B3 _z3Þ cosðmtÞ:

ð6Þ
Using the so-called inertial approximation [5,8], i.e. all terms in the left-hand side of Eq. (6), except the first, are ignored, one
obtains
/ ¼ bðB2 _zþ B3 _z3Þ cosðmtÞ: ð7Þ
This simplification when solving Eq. (6) consists in finding / in the form of a sum of a small number of harmonics of the fast
time T0 taking into account that / is small as compared to z and then it is possible to consider only the linear dominant terms
in the left-hand side of Eq. (6). For more details on this approximation, the reader can refer to chapter 2 in [8].

Inserting / from Eq. (7) into Eq. (5), using that <cos2T0 > = 1/2, and neglecting terms of orders greater than three in z, give
the equation governing the slow dynamic of the motion
€zþx2zþ B1z3 þ B2 _zþ H1z _z2 þ H2 _z3 ¼ �g þ YX2cosXt þ k1 _zðt � sÞ þ H3 _z3ðt � sÞ; ð8Þ
where H1 ¼ 3
2 B1B2

2b2
; H2 ¼ B3 1þ 3

2 B2
2b2m2

� �
and H3 ¼ k2 1þ 3

2 B2
2b2m2

� �
.

3. Frequency response and transmissibility

To obtain the frequency response equation and TR, we perform a perturbation method. Introducing a bookkeeping param-
eter � and scaling Y ¼ �eY ; B1 ¼ �eB1; B2 ¼ �eB2; H1 ¼ �eH1; H2 ¼ �eH2; H3 ¼ �eH3 and k1 ¼ �~k1, Eq. (8) reads
€zþx2z ¼ �g þ � eYX2cosXt � eB1z3 � eB2 _z� eH1z _z2 � eH2 _z3 þ ~k1 _zðt � sÞ þ eH3ð _zðt � sÞÞ3
h i

ð9Þ
Using the multiple scales technique [9], we seek a two-scale expansion of the solution in the form
XðtÞ ¼ z0ðT0; T1Þ þ �z1ðT0; T1Þ þ Oð�2Þ; ð10Þ
where Ti = �it. In terms of the variables Ti, the time derivatives become d
dt ¼ D0 þ �D1 þ Oð�2Þ and d2

dt2 ¼ D2
0 þ 2�D0D1 þ Oð�2Þ,

where Dj
i ¼ @j

@jTi
. Substituting Eq. (10) into Eq. (9), we obtain the following equation
ðD2
0 þ 2�D0D1Þðz0 þ �z1Þ þx2ðz0 þ �z1Þ ¼ �g þ � eYX2 cosðXtÞ � eB2ðD0 þ �D1Þðz0 þ �z1Þ � eB1ðz0 þ �z1Þ3

h
� eH1ðz0 þ �z1Þ ðD0 þ �D1Þðz0 þ �z1Þð Þ2 � eH2 ðD0 þ �D1Þðz0 þ �z1Þð Þ3 þ ~k1ðD0 þ �D1Þðz0ðt � sÞ

þ �z1ðt � sÞÞ þ eH3 ðD0 þ �D1Þðz0ðt � sÞ þ �z1ðt � sÞÞð Þ3
i

ð11Þ
and equating coefficients of the same power of �, we obtain at different orders
D2
0z0 þx2z0 ¼ �g; ð12Þ

D2
0z1 þx2z1 þ 2D1D0z0 ¼ eYX2 cosðXtÞ � eB1z3

0 � eB2D0z0 � eH1z0ðD0z0Þ2 � eH2ðD0z0Þ3 þ ~k1D0z0ðt � sÞ

þ eH3 D0z0ðt � sÞð Þ3: ð13Þ
In the case of the principal resonance, i.e. X = x + �r, where r is a detuning parameter, standard calculations yield the first-
order solution
zðtÞ ¼ � g
x2 þ a cosðXt � cÞ þ Oð�Þ; ð14Þ
where the amplitude a and the phase c are given by the modulation equations
_a ¼ eY X2

2x sinðcÞ � s1a� s2a3

a _c ¼ eY X2

2x cosðcÞ � s3a� s4a3

8<: ð15Þ
Here s1 ¼
eB2
2 �

~k1 cosðxsÞ
2 ; s2 ¼ 3eH2x2

8 � 3eH3x2 cosðxsÞ
8 ; s3 ¼ 3eB1

2
g2

x5 � r� ~k1 sinðxsÞ
2 and s4 ¼ H1x

8 þ
3eB1
8x �

3eH3x2 sinðxsÞ
8 . Periodic solutions of

Eq. (9) corresponding to stationary regimes ð _a ¼ _c ¼ 0Þ of the modulation Eq. (15) are given by the algebraic equation
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ðs2
2 þ s2

4Þa6 þ ð2s1s2 þ 2s3s4Þa4 þ ðs2
1 þ s2

3Þa2 � YX2

2x

 !2

¼ 0: ð16Þ
On the other hand, the relationship between displacement transmissibility (TR) and the system parameters is defined by
TR ¼ X
Y
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

Y
cosðcÞ

� �2
þ a

Y

� �2
sin2ðcÞ

r
: ð17Þ
4. Influence of delayed damping

The model we consider consists in pneumatic vibration isolation table in which the mass of payload is m = 240 kg,
k1 = 160000 N/m, k2 = �30,000 N/m3, c1 = 250 N s/m and c2 = 25 N s3/m3. The parameters m and Y are fixed as in [5]
(m = 400 and Y = 0.11).
Fig. 1. Amplitude a versus X, for k1 = 0.01, k2 = 0.01, s = 0.1, b = 0. Analytical prediction: solid line, numerical simulation: circles.

(b)

Fig. 2. Transmissibility versus r for s = 0.1. (a) k2 = 0, (b) k1 = 0. Undelayed case: heavy line (from [5]).



Fig. 3. Transmissibility versus r for s = 0.1 and for different values of k1 and k2. Undelayed case: heavy line (from [5]).

Fig. 4. Transmissibility versus r for s = 0.1, b = 0.01. Undelayed case: heavy line (from [5]).
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To begin, we illustrate in Fig. 1 the relative amplitude of motion a versus the frequency X, as given by Eq. (16) (solid line),
and for validation we plot the result obtained by numerical integration using a Runge–Kutta method (circles).

In Fig. 2a is shown the TR versus r ¼ X
x for various feedback gain k1 and for k2 = 0. It can be seen in this figure that the TR

reduces by increasing k1 from 0.01 to 15 (see the corresponding curves for b = 0). The effect of the feedback gain k2 (with
k1 = 0) on the TR is also illustrated in Fig. 2b showing also a decrease of TR (see the corresponding curves for b = 0). The plots
in the figures indicate that to ensure a significant decrease of TR, a small increase in the nonlinear gain k2 is sufficient while a
larger value of the linear gain k1 is necessary to have an equivalent effect.

Fig. 3 depicts the effect of the feedback gains k1 and k2 when applied simultaneously showing the TR decrease in this com-
bined case. To show the superiority of the delayed damping over the parametric damping in term of vibration isolation, we
plot in Figs. 2 and 3 the TR curve (heavy line) in the presence of fast parametric damping (b – 0) and without time delay
(k1 = 0, k2 = 0) [5]. It can be clearly seen that the delayed damping provides more improvement of vibration isolation com-
pared to the case of parametric damping without delay (heavy line).

In Fig. 4, we plot the effect of the feedback gains k1 and k2 on TR in the presence of parametric damping. This figure indi-
cates that adding the gains simultaneously induces more improvement of vibration isolation comparing to the case where
the gains are acting separately. Finally, Fig. 5 shows the variation of TR with respect to time delay s for different values of the
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Fig. 5. Transmissibility versus r for r = 1. (a) k2 = 0, (b) k1 = 0.
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gains k1 and k2. It can be seen that increasing the gains causes TR to reduce drastically in repeated periodic intervals of s. In
addition, only a small increase of k2 (k2 = 0.3) produces this reduction (Fig. 5b), while a large value of k1 (k1 = 10) should be
introduced to obtain a comparable effect (Fig. 5a).

5. Conclusions

Nonlinear fast parametric damping has been successfully used to reduce transmitted vibrations to a support structure [5].
In the present work, a strategy based on adding hysteretic nonlinear suspension with time delay to parametric damping was
explored. The analytical predictions, using the averaging method and the multiple scale technique, shown clearly that
increasing the amplitude gains of the delay induces more vibration isolation over the whole frequency range demonstrating
its superiority over the nonlinear fast parametric damping. The results revealed that the case where the gains are acting
simultaneously improves greatly vibration isolation comparing to the case where the gains are applied separately. When
the gains are acting separately, this effect can be obtained for a small increase of the nonlinear gain k2, while a large increase
of the linear gain k1 is required to obtain a comparable effect. It is also shown that for small values of the nonlinear delay gain
k2, vibration isolation can be reduced to its minimum in repeated periodic intervals of time delay, whereas a large value of
the linear delay gain k1 is needed to obtain a similar result.
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