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INESC@IWSLT

o First Participation

— A strong motivation to build “our own” MT system
— To submerge in MT

e Task

— translation of spontaneous conversations in the travel domain from Italian to English
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Corpora

e Training corpora
— Iltalian/English: 19 845 sentence pairs

e Development corpora

— Dev1: IWSLTO05 Written: 506 * 7
— Dev2: IWSLT06 Speech (read): 489 sentence pairs
— Dev3: IWSLTO7 Speech (spont): 996 sentence pairs

e Test corpora

— ltalian/English Clean: 724 sentence pairs
— ltalian/English ASR: 724 sentence pairs
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Baseline

e Standard phrase-based architecture (GIZA++, Moses, SRLIM)

— Phrase features:

* Direct and inverse phrase probability
 Direct and inverse IBM1 model
* Phrase and word penalties

— 5-gram LM
— Minimum error training (BLEU)
— First pass

Devl

Baseline | 56.60
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Experiments

1.Corpora fattening

2.Pre-processing

3.Phrase based first pass decoding
4.Filtered Phrase Table
5.Reranker

6.Post-processing
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e Collect data in the travel domain, namely:

— dictionary of verb forms
- Why?
— As ltalian is very inflected, many forms were not available on the training corpus
* How?
— Select the infinitive form of every verb in the training data
— verbix (on-line conjugator)
— translation into english by off-the-shelf version of Systran
— manual verification
— a dictionary of tourism terms
* Why?
— To decrease the number of unknown nouns
* How?
— Terms were collected from phrase books
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* Abbreviation expansion (as they do not appear in the speech
transcription)

— ex: Ms. --> Mister
e Some changes in the tokenization script
¢ Punctuation removed from ltalian (source)
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3. Phrase Based first pass decoding — “lisboa

o Use TreeTagger from Institute for Computational Linguistics of the
University of Stuttgart (POS + lemma annotation) in 2 experiments:

— POS distortion model
— Lemmas for alignment
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Baseline + fat corpus - Pre-processing
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— all phrases with periods or question marks in the middle

Configuration

Not Filtered

Filtered

Baseline + Original corpus + Pre-

17.22

17.45

Lemma + Original corpus + Pre-processing

16.72

16.89

Lemma + Fat corpus + Pre-processing

17.30

17.34
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e Features according to a log-linear model in order to maximise
BLEU

¢ 1000-best hypotheses




technology
from seed

5. Reranker

e Sentence features:

— first pass score
— ratio between target and source sentence length
— some question features

— 3,4 and 5-grams target words LMs
— 3,4 and 5-grams target POS LMs

— Direct and inverse IBM1 model
— POS similarities
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e POS similarities

— assume that the number of certain tags should be similar in each pair
ltalian/English

* ex: NOM (it) and NNS + NN (en)
— the Euclidean distance was used to calculate the feature score
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5. Reranker

e POS similarities

— assume that the number of certain tags should be similar in each pair
ltalian/English

* ex: NOM (it) and NNS + NN (en)
— the Euclidean distance was used to calculate the feature score

e POS unlikely sequences

— assume that certain sequences of tags are very unlikely
« ex: DT DT (en)

— sentences with these sequences should be penalised
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5. Reranker

e Features results

— Some features don’t give good results by its own, but are responsible for
bleu increasing when combined with other features
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o Add/remove question marks or periods according with sentences types

— ex: where ... --> where ...?

» Make changes in specific words
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¢ Primary System:

— pre-processing + first pass + re-ranker + post-processing
e Secondary System:

— pre-processing + first pass + post-processing
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¢ Primary System:

— pre-processing + first pass + re-ranker + post-processing
e Secondary System:

— pre-processing + first pass + post-processing

Condition | Primary system | Secondary system

IE clean 26.57 26.35
H ASR 24.16 24.35
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¢ We introduced the INESC-ID MT system being developed at L2F
(Spoken Language Systems Lab) from INESC-ID, Lisboa.
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Summary “ lisboa

¢ We introduced the INESC-ID MT system being developed at L2F
(Spoken Language Systems Lab) from INESC-ID, Lisboa.

e We participated in the Track of translating spontaneous conversation in
the travel domain from Italian to English

e We used a re-rank step where the 1000 n-best hypotheses were
analysed. Several features where used at this step, including POS-
based features.
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— Bigger gains came from pre and pos- processing of the data!!!!
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Conclusions and Future Work

e Conclusions

— The re-ranker gain is not significant
— Bigger gains came from pre and pos- processing of the data!!!!

e Future Work

— Understand what went wrong with the re-ranker
— Perform a more systematic study of the POS-based features
— Explore the domain adaptation
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