
ARTICLE IN PRESS
0026-2692/$ - se

doi:10.1016/j.m

�Correspond
E-mail addr

bbhaskaran@n

(A. Singh), smi

URL: http:/

Please cite th

(2007), doi:10
Microelectronics Journal] (]]]])]]]–]]]

www.elsevier.com/locate/mejo
Automated energy calculation and estimation for delay-insensitive
digital circuits

Venkat Satagopan, Bonita Bhaskaran, Anshul Singh, Scott C. Smith�

Department of Electrical Engineering, University of Arkansas, 3185 Bell Engineering Center, Fayetteville, AR 72701

Received 4 January 2006; accepted 21 August 2007
Abstract

With increasingly smaller feature sizes and higher on-chip densities, the power dissipation of VLSI systems has become a primary

concern for designers. This paper first describes a procedure to simulate a transistor-level design using a VHDL testbench, and then

presents a fast and efficient energy estimation approach for delay-insensitive (DI) systems, based on gate-level switching. Specifically, the

VHDL testbench reads the transistor-level design’s outputs and supplies the inputs accordingly, also allowing for automatic checking of

functional correctness. This type of transistor-level simulation is absolutely necessary for asynchronous circuits because the inputs

change relative to handshaking signals, which are not periodic, instead of changing relative to a periodic clock pulse, as do synchronous

systems. The method further supports automated calculation of power and energy metrics. The energy estimation approach produces

results three orders of magnitude faster than transistor-level simulation, and has been automated and works with standard industrial

design tool suites, such as Mentor Graphics and Synopsys.

Both methods are applied to the NULL Convention Logic (NCL) DI paradigm, and are first demonstrated using a simple NCL

sequencer, and then tested on a number of different NCL 4-bit� 4-bit unsigned multiplier architectures. Energy per operation is

automatically calculated for both methods, using an exhaustive testbench to simulate all input combinations and to check for functional

correctness. The results show that both methods produce the desired output for all circuits, and that the gate-level switching approach

developed herein produces results more than 1000 times as fast as transistor-level simulation, that fall within the range obtained by two

different industry-standard transistor-level simulators. Hence, the developed energy estimation method is extremely useful for quickly

determining how architecture changes affect energy usage.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Asynchronous circuits; Energy; Power; Transistor-level simulation; VHDL
1. Introduction

For the last two decades the focus of digital design has
been primarily on synchronous, clocked architectures.
However, as clock rates have significantly increased while
feature size has decreased, clock skew and fabrication
process variations have become major problems. High-
performance chips must dedicate increasingly larger por-
tions of their area for clock drivers to achieve acceptable
skew, assuming normal (expected) fabrication process
e front matter r 2007 Elsevier Ltd. All rights reserved.

ejo.2007.08.004

ing author. Tel.: +1479 575 6587; fax: +1 479 575 7967.

esses: vsatagopan@nvidia.com (V. Satagopan),

vidia.com (B. Bhaskaran), anshulsingh@gmail.com

thsco@uark.edu (S.C. Smith).

/comp.uark.edu/�smithsco (S.C. Smith).

is article as: V. Satagopan, et al., Automated energy calculatio

.1016/j.mejo.2007.08.004
variations, causing these chips to dissipate increasingly
higher power, especially at the clock edge, when switching
is most prevalent. As these trends continue, the clock is
becoming more and more difficult to manage. This has
caused renewed interest in asynchronous digital design. As
demand continues for higher performance, higher complex-
ity, and decreased feature size, asynchronous paradigms
will become more widely used in the industry. The 2003
International Technology Roadmap for Semiconductors
[1] predicts that asynchronous paradigms will become more
widely used in the industry to increase circuit robustness,
decrease power, and alleviate many clock-related issues;
and the 2005 edition [2] estimates that asynchronous
circuits will account for 19% of chip area within the next
5 years, and 30% of chip area within the next 10 years.
n and estimation for delay-insensitive digital circuits, Microelectron. J

www.elsevier.com/locate/mejo
dx.doi.org/10.1016/j.mejo.2007.08.004
mailto:vsatagopan@nvidia.com
mailto:bbhaskaran@nvidia.com
mailto:anshulsingh@gmail.com
mailto:anshulsingh@gmail.com
mailto:smithsco@uark.edu
http://comp.uark.edu/∼smithsco
http://comp.uark.edu/∼smithsco
dx.doi.org/10.1016/j.mejo.2007.08.004

ARTICLE IN PRESS
V. Satagopan et al. / Microelectronics Journal] (]]]])]]]–]]]2
Delay-insensitive (DI) asynchronous paradigms, like
NULL Convention Logic (NCL) [3], have numerous
advantages over their clocked Boolean counterparts,
including reduced timing effort, power, noise, and electro-
magnetic interference, increased robustness and design
reusability, and suitability for System-on-Chip design.
Delay insensitivity also yields average-case, versus worst-
case performance, no glitch power, and distributes the
demand for power over time and area, reducing the
occurrence of hot spots and peak power demand [4].
However, asynchronous circuits have not yet gained
widespread industrial popularity due mostly to the lack
of industry-standard CAD tool support.

Since low power is one of the main advantages of
asynchronous systems, power/energy usage is an important
benchmark for DI circuits. The standard method for
transistor-level simulation and power/energy calculation is
to manually force the inputs (i.e., change the inputs at
predetermined points in time). Many tools including the
following use this method: Cadence, Synopsys, and Mentor
Graphics. However, there are numerous drawbacks for
applying this approach to asynchronous circuits. For
synchronous circuits, the inputs can be changed relative
to a constant clock period, making this forcing method
acceptable. But for asynchronous circuits, the inputs must
be changed based on handshaking signal outputs; thus,
inputs do not change relative to a constant period, making
the forcing method highly inadequate. Since asynchronous
circuit inputs change relative to external handshaking
signals and not relative to a constant period, these
handshaking signals must be read by the tool, such that
the inputs can be changed based on the status of the
handshaking outputs.

A VHDL testbench allows input signals to be changed in
response to output signal changes, hence, the desire to use a
VHDL testbench to control transistor-level simulations.
Since an asynchronous circuit’s outputs can change at any
time, this ability to be able to control the circuit inputs
based on the circuit outputs is absolutely necessary,
especially for large designs. This VHDL testbench method
of controlling a transistor-level simulation also has many
additional advantages that are applicable to both asyn-
chronous and synchronous paradigms: (1) the same VHDL
testbench for testing the VHDL design can also be used to
test the transistor-level design, saving time and effort to
generate forced inputs; (2) circuit outputs can be auto-
matically checked against calculated results; (3) input rise
and fall times can be easily changed; and (4) a variety of
waveforms can be plotted, various characteristics ex-
tracted, and calculations performed, such as calculation
of energy per operation. Hence, this tool can be used for
both synchronous and asynchronous circuits, but is
imperative for asynchronous circuits, where the inputs do
not change relative to a constant clock frequency.

Traditional transistor-level simulators are quite powerful
and yield very accurate results; however, they require an
extremely long runtime even for moderately sized circuits.
Please cite this article as: V. Satagopan, et al., Automated energy calculatio

(2007), doi:10.1016/j.mejo.2007.08.004
DI circuits do not rely on a global clock tree network;
instead, they use local handshaking signals for synchroni-
zation. Furthermore, they only consume significant energy
when performing useful work; the rest of the time no
switching occurs, so energy consumption is nominal, when
using static CMOS gates. It is therefore feasible to utilize
gate-level switching instead of transistor-level switching for
estimating energy consumption of DI circuits, which
promises to dramatically decrease simulation time.
This paper is divided into seven sections. Section 2 gives

a brief overview of NCL. Section 3 overviews the previous
work, including the derivation of an energy metric for
asynchronous circuits, transistor-level simulation, and
gate-level energy estimation. Section 4 describes the
VHDL-controlled transistor-level simulation method de-
veloped herein; Section 5 details the gate-level energy
estimation technique developed by the authors; Section 6
compares the two methods developed herein with each
other and with a traditional transistor-level simulation
technique, as applied to calculating energy consumption
for a number of different NCL multiplier architectures;
and Section 7 provides conclusions.

2. NCL overview

NCL is a self-timed logic paradigm in which control is
inherent in each datum. NCL follows the so-called weak
conditions of Seitz’s DI signaling scheme [5]. Like other DI
logic methods, the NCL paradigm assumes that forks in
wires are isochronic [6]. Various aspects of the paradigm,
including the NULL (or spacer) logic state from which
NCL derives its name, have origins in Muller’s work on
speed-independent circuits in the 1950s and 1960s [7].

2.1. Delay insensitivity

NCL utilizes symbolic completeness of expression to
achieve DI behavior. A symbolically complete expression
depends only on the relationships of the symbols present in
the expression without reference to their time of evaluation
[3]. In particular, dual-rail and quad-rail signals, or other
mutually exclusive assertion groups, incorporate data and
control information into one mixed control/data path to
eliminate time reference. For NCL, and other DI
paradigms, to be DI, assuming isochronic wire forks [6],
they must meet the input-completeness and observability
criteria [8].
Completeness of input requires that all outputs of a

combinational circuit may not transition from NULL to
DATA until all inputs have transitioned from NULL to
DATA, and that all outputs of a combinational circuit may
not transition from DATA to NULL until all inputs have
transitioned from DATA to NULL. In circuits with
multiple outputs, it is acceptable, according to Seitz’s weak
conditions [5], for some of the outputs to transition without
having a complete input set present, as long as all outputs
cannot transition before all inputs arrive. Observability
n and estimation for delay-insensitive digital circuits, Microelectron. J

dx.doi.org/10.1016/j.mejo.2007.08.004

ARTICLE IN PRESS
V. Satagopan et al. / Microelectronics Journal] (]]]])]]]–]]] 3
requires that no orphans may propagate through a gate [9].
An orphan is defined as a wire that transitions during the
current DATA wavefront, but is not used in the determina-
tion of the output. Orphans are caused by wire forks and can
be neglected through the isochronic fork assumption [6], as
long as they are not allowed to cross a gate boundary. This
observability condition, also referred to as indicatability or
stability, ensures that every gate transition is observable at the
output, meaning that each gate transition is required to
transition at least one of the outputs. Furthermore, when
circuits use the bit-wise completion strategy with selective
input-incomplete components, they must also adhere to the
completion-completeness criterion [10], which requires that
completion signals only be generated such that no two
adjacent DATA wavefronts can interact within any combina-
tional component.

Most multi-rail DI systems, including NCL, have at least
two register stages, one at both the input and the output.
Two adjacent register stages interact through request and
acknowledge lines, Ki and Ko, to prevent the current
DATA wavefront from overwriting the previous DATA
wavefront by ensuring that the two are always separated by
a NULL wavefront.
2.2. Logic gates

NCL differs from other DI paradigms, like [5], which use
only one type of state-holding gate, the C-element [7]. A
C-element behaves as follows: when all inputs assume the
same value, the output assumes this value; otherwise, the
output does not change. On the other hand, all NCL gates
are state holding. NCL uses threshold gates as its basic
logic elements [11]. The primary type of threshold gate is
the THmn gate (1pmpn). THmn gates have n inputs. At
least m of the n inputs must be asserted before the output
becomes asserted. Because NCL threshold gates are
designed with hysteresis, all asserted inputs must be
deasserted before the output is deasserted. Hysteresis ensures
a complete transition of inputs back to NULL before
asserting the output associated with the next wavefront of
input data. NCL threshold gates may also include a reset

input to initialize their output. Circuit diagrams designate
resettable gates by either a D or an N appearing inside the
gate, along with the gate’s threshold. D denotes the gate as
being reset to logic 1, and N to logic 0.
3. Previous work

3.1. Energy metric

Energy consumption and power dissipation are two
metrics of assessing performance of VLSI systems and are
closely related to each other. Power is an instantaneous
value, and is defined as the source voltage, Vdd, multiplied
by the current through Vdd, IVdd. Average power can then
be calculated by plotting IVdd�Vdd and finding the average
Please cite this article as: V. Satagopan, et al., Automated energy calculatio

(2007), doi:10.1016/j.mejo.2007.08.004
value of this waveform. The total energy is equal to the
area under the power waveform,

R
(IVdd�Vdd).

A popular metric in synchronous circuits is energy per

clock cycle. This is calculated by dividing the total energy
for the simulation by the number of clock cycles in the
simulation. Since there is no clock in asynchronous circuits,
a meaningful metric is energy per operation [12] (e.g., the
amount of energy it takes to perform one multiplication
operation on average). The metric is a direct measure of the
average amount of work done per operation, providing a
measure of how battery life will be affected, and is good for
determining the effects that different architectures have on
energy usage. A comparable value for synchronous circuits
can be calculated by multiplying energy per clock cycle by
the average number of clock cycles per operation, to obtain
energy per operation. The equation for energy per
operation is given below:

E ¼

R t

0 IVDDðtÞVDD dt

number of operations
J: (1)

3.2. Transistor-level simulation

Transistor-level simulation can be performed with
Cadence, Synopsys, or Mentor Graphics tools, among
others, for precise calculation of power or energy
consumption. The following example pertains to using
the Mentor Graphics toolset for power/energy calculation.
First, a structural VHDL description of the circuit is
transformed to an EDIF netlist using the synthesis tool,
Leonardo Spectrum. This file consists solely of threshold
gates, which are in the form of black boxes. Next, the
EDIF 200 Netlister tool is used to map the black box
threshold gates to their equivalent transistor-level circuits.
Schematic Generator is then used to automatically generate
the transistor-level circuit diagram. Using Design Archi-
tect, the transistor-level circuit diagram is opened and its
viewpoint is created. Finally, the transistor-level circuit is
simulated using Accusim II, an analog circuit simulator,
which yields the necessary voltage and current waveforms
used to calculate power and energy with the Waveform
Calculator.
This process is extensive and the simulation time is very

long. Another major drawback to this technique is that the
designer needs to manually create and specify force files for
the circuit inputs. This is a well-established method for
synchronous circuits, and is easy to use when the inputs
change relative to a periodic clock pulse. However, the
inputs to DI systems change in response to handshaking
outputs, which are not periodic. Therefore, changing the
inputs at regular intervals is not appropriate.
3.3. Energy estimation

Since transistor-level simulation is an extremely time
consuming process, it would be highly desirable to be able
n and estimation for delay-insensitive digital circuits, Microelectron. J

dx.doi.org/10.1016/j.mejo.2007.08.004

ARTICLE IN PRESS
V. Satagopan et al. / Microelectronics Journal] (]]]])]]]–]]]4
to estimate energy consumption by only considering the
switching activity of gates within a circuit, without having
to consider switching of the internal circuitry, or transis-
tors, within each gate. To this end, a technique was
developed in [13] for DI systems to estimate the prob-
ability, for each gate, that it would switch during the
current DATA wavefront. These probabilities could then
be used to calculate the number of gates that did indeed
switch during the current DATA wavefront, Num, which
could then be used in the following equation [14] to
calculate energy consumption:

E ¼
X

gates

1

2
Cgate�loadV 2

dd Num: (2)

The paper applied the approach to calculate the switch-
ing activity of an unsigned NCL 4-bit� 4-bit dual-rail
multiplier [15], and compared the calculated switching
activity to that measured through VHDL simulation,
showing that the calculated switching activity was fairly
accurate. However, the calculated switching activity was
not used to estimate the circuit’s energy consumption or
compared with the circuit’s actual energy consumption.
Another drawback of this approach is that a gate’s
switching probability is circuit dependent; hence each
circuit would have to be extensively analyzed to calculate
each gate’s switching probability, before energy could be
estimated.

4. VHDL-controlled transistor-level simulation

ADVance MS (ADMS), an extension of Mentor
Graphics Eldo simulator, can be used to simulate a
VHDL-AMS (analog/mixed-signal) model that includes
Eldo/Spice subcircuits as components, an Eldo/Spice
netlist with VHDL-AMS, VHDL, Verilog-AMS, and/or
Verilog modules as components, or even a pure Eldo (or
Eldo RF)/Spice netlist. An Eldo command file is necessary
to define simulation parameters when the design to
simulate contains analog or mixed analog/digital compo-
nents, even if no Eldo netlist or subcircuits are used.

ADMS allows for multiple languages within the
description of a single design. However, this is not a co-
simulation. There is only one netlist (or description) even if
different languages are used at different levels of hierarchy
in the design. This produces a unified hierarchy, or netlist,
using VHDL-AMS, Verilog-AMS, Eldo/Spice, or Mod-
elsim VHDL/Verilog on top of the design.

4.1. Files

The method presented herein uses a VHDL-on-top
configuration to instantiate an Eldo/Spice child (i.e., the
transistor-level circuit is the unit-under-test within the top-
level VHDL testbench). The following files are required to
simulate and use a top-level VHDL architecture for
instantiating an Eldo/Spice subcircuit:
Please cite this article as: V. Satagopan, et al., Automated energy calculatio

(2007), doi:10.1016/j.mejo.2007.08.004
(a)
n an
Spice Model File: This is the Spice model parameter file
that contains the attributes of the technology being
used, and should be the same model file used to create
viewpoints for each transistor-level schematic and main
design schematic. This file can be obtained from the
MOSIS website [16].
(b)
 SUBCKT File: This file contains the Eldo/Spice netlist
of the transistor-level circuit to be simulated. A
subcircuit file has the extension .ckt and contains
one or more Eldo subcircuit(s).
(c)
 VHDL Entity: This file contains the entity description
of the circuit to be simulated, including the ports,
which must be equivalent to the Spice netlist ports in
terms of name, number, and order. This VHDL entity
does not contain a corresponding architecture. The
Spice subcircuit architecture will be attached to the
VHDL entity. This entity will be used as a component
in the top-level VHDL architecture.
(d)
 Top-level VHDL Architecture (i.e., testbench): This file
uses the VHDL entity, described above, as the
component to be simulated, generates the circuit
inputs, and tests the outputs for functional correctness,
if desired.
(e)
 Command File: The command file is used for simulation
commands, options, inserting A/D and D/A boundary
elements, including the Spice model library, declaring
global variables, defining waveforms, extracting char-
acteristics, etc.
4.2. Commands

The order in which commands are executed and files
complied, as shown in Fig. 1, is extremely important. The
Mentor Graphics environment must also be set before
compiling or simulating (i.e., set user library and working
directory variables). Once ADMS is invoked, the design
and command file can be loaded and the simulation run.
This step can also be automated by using a simulation
macro.

4.3. NCL sequencer example

To illustrate simulating a transistor-level circuit using a
VHDL testbench, the method is applied to a 4-stage NCL
sequencer [17,18]. The first six steps consist of obtaining the
transistor-level design of the circuit to simulate. This can be
generated from the VHDL structural model, as overviewed
in Section 3.2.
(1)
d

Transform the structural VHDL description of the
circuit to an EDIF netlist (sequencer.edf) using
Leonardo Spectrum. The original VHDL description
is shown in Fig. 2.
(2)
 Issue the command: enread sequencer.edf –rcf map.cfg

to map the EDIF components to their respective
transistor-level equivalent circuits. The configuration
file, map.cfg, is shown in Fig. 3.
estimation for delay-insensitive digital circuits, Microelectron. J

dx.doi.org/10.1016/j.mejo.2007.08.004

ARTICLE IN PRESS

create Spice design library
(valib spicelib)

compile VHDL entity file
(vcom VHDL_entity_file.vhd)

create Spice architecture for VHDL entity
(vaspi -f VHDL_entity_name subcircuit_name@subcircuit_file_name.ckt)

create ADMS design library
(valib admslib)

compile and import top-level VHDL architecture

into ADMS library
(vacom top-level_VHDL_file.vhd -ms)

invoke ADMS simulator
(vasim)

Fig. 1. ADMS command sequence.

library ieee;
use ieee.std_logic_1164.all;
entity sequencer is
 port (ki, rst: IN std_logic;
 s1, s2: OUT std_logic);

end sequencer;
architecture arch of sequencer is
 signal d0, d1, d2, d3: std_logic;
 signal r0, r1, r2, r3: std_logic;
 component th33nx0
 port(a: in std_logic;
 b: in std_logic;
 c: in std_logic;
 rst: in std_logic;
 z: out std_logic);
 end component;
 component th33dx0
 port(a: in std_logic;
 b: in std_logic;
 c: in std_logic;
 rst: in std_logic;
 z: out std_logic);
 end component;

 component invx0
 port(i: in std_logic;
 zb: out std_logic);
 end component;

begin
g0: th33nx0 port map(ki, d3, r1, rst, d0);
g1: th33dx0 port map(ki, d0, r2, rst, d1);

V. Satagopan et al. / Microelectronics Journal] (]]]])]]]–]]] 5
(3)

g2: th33nx0 port map(ki, d1, r3, rst, d2);
g3: th33nx0 port map(ki, d2, r0, rst, d3);
i0: invx0 port map(d0, r0);
i1: invx0 port map(d1, r1);
i2: invx0 port map(d2, r2);
i3: invx0 port map(d3, r3);
s1 <= d2;
s2 <= d0;

Plea

(200
Generate the transistor-level circuit diagram: open
Schematic Generator and choose File-Open com-
ponent from Model from the pull down menu; click
on the Navigator button and choose work/
sequencer/arch; click OK twice; press the F2 key
to load the generic library components; press the F3
key to generate the schematic; save the design and exit.
end arch;
(4)
Fig. 2. Sequencer VHDL description.

map library $USERLIB/th33dx0 work/th33dx0 -external
map library $USERLIB/th33nx0 work/th33nx0 -external
map library $USERLIB/invx0 work/invx0 –external
Create the design viewpoint for the generated sche-
matic, work/sequencer/arch, using the Spice
model file. For large circuits, multi-sheet designs
may be generated; hence, a viewpoint must be created
for each sheet. The generated schematic is shown in
Fig. 4.
(5)

Fig. 3. Configuration gate mapping file.
Open AccuSim II from within Design Manager and
select: work/sequencer/default. From the drop
down menu select: Report-Netlist-Write
Netlist. A Report Netlist/Write Netlist
to Named File window will popup. Enter sequen-
cer.ckt and click OK.
(6)
 Open this netlist/subcircuit file in a text editor for
modification. Delete the .options, .temp, and
V_Dcinit lines. Add the subcircuit name and ports
to the 2nd line of the netlist file. Make sure that the
port names are the same as that in the VHDL entity in
Fig. 2. The 1st line of the netlist file can be used for the
title of the subcircuit, so no command or declaration
should be given. Note that * is used for commenting in
netlist and command files. Next, delete all contents
after and including .op NO_SMALL_SIGNAL. Finally,
add .ENDS as the last line. The modified sequen-
cer.ckt file is shown in Fig. 5.
(7)
 Create a VHDL entity for the Spice subcircuit created
in the steps above. The entity name, port names, and
port order must be the same as in the netlist file
se cite this article as: V. Satagopan, et al., Automated energy calculation and

7), doi:10.1016/j.mejo.2007.08.004
created in the previous step. The port directions must
be the same as in the structural VHDL file from Step
1. The VHDL entity, seq.vhd, is shown in Fig. 6.
(8)
 Augment the VHDL testbench to use the transistor-
level circuit instead of the VHDL version: include the
spicelib library; change the unit-under-test (UUT)
component to the transistor-level netlist; and port
map this component. Note that if the design is small,
additional wait statements may have to be added in
the testbench to let the outputs stabilize before
changing the inputs. This depends on the threshold
level of the A/D converters, which is specified in the
command file, and on the delay through the circuit. In
this case, a 5 ns delay was added after the output
change was detected and before the Ki input changed
accordingly, since the A/D converter threshold
voltage was set as 1/2 Vcc and the circuit delay was
estimation for delay-insensitive digital circuits, Microelectron. J

dx.doi.org/10.1016/j.mejo.2007.08.004

ARTICLE IN PRESS

Fig. 4. Generated sequencer schematic.

Design: /home/g2/astxb/NCL/SEQ_TRAN/sequencer.default
.SUBCKT seq ki rst s1 s2
M_I$577_M103 I$577_N$217 ki 0 0 cmosn W=12u 2u
M_I$577_M110 I$577_N$11 rst 0 0 cmosn W=4u L=2u

.

.

.
M_I$576_M2 I$576_N$9 d1 I$576_N$4 VCC cmosp W=24u L=2u
.ENDS

Fig. 5. Modified sequencer subcircuit netlist.

Library IEEE;
use IEEE.std_logic_1164.all;
entity SEQ is
 port(ki, rst : in std_logic;

 s1, s2: out std_logic);
end SEQ;

Fig. 6. Sequencer VHDL entity.

Library IEEE;
use IEEE.std_logic_1164.all;
library spicelib;
entity tb_seq is
end;
architecture TESTBENCH of tb_seq is
 signal rst,ki,s1,s2: std_logic;
 component SEQ
 port(ki, rst : in std_logic;
 s1, s2: out std_logic);
 end component;
begin

UUT: ENTITY spicelib.seq
 port map(ki=>ki, rst=>rst, s1=>s1, s2=>s2);

OUTPUTS: process
begin

rst <= '1';
ki <= '0';
wait until S1 = '0' and S2 = '0';
wait for 5 ns;
rst <= '0';
ki <= '1';
wait until S1 = '1';
wait for 5 ns;
ki <= '0';
wait until S1 = '0';
wait for 5 ns;

V. Satagopan et al. / Microelectronics Journal] (]]]])]]]–]]]6

Plea

(200
small. This testbench, tb_seq.vhd, is shown
in Fig. 7.
ki <= '1';
.
(9)
.

.
wait until S2 = '1';
wait for 5 ns;
ki <='0';
wait until S2 = '0';
wait;

end process;
end TESTBENCH;

Fig. 7. Modified sequencer testbench.
Create a command file to control the simulation, as
shown in Fig. 8. The first line includes the Spice model
file. The second and third lines define Vcc as 3.3V. The
next four lines deal with inserting Digital to Analog
and Analog to Digital converters so that the digital
testbench can communicate with the analog transis-
tor-level simulation. The D/A converters are specified
as having rise and fall times of 1 ns, and the A/D
converters are specified as having a threshold voltage
of 1.65V, which is 1/2 Vcc. The .DEFHOOK command
allows ADMS to automatically insert the appropriate
boundary elements (i.e., D/A for inputs and A/D for
outputs). The following line specifies that a transient
simulation is to be run for 100 ns, with a time step of
se cite this article as: V. Satagopan, et al., Automated energy calculation and

7), doi:10.1016/j.mejo.2007.08.004
0.1 ns. The .OPTPWL command is used to set the
tolerance parameter,RELTOL, to 10�5 s, instead of
using the default value, 10�3 s. Decreasing RELTOL
estimation for delay-insensitive digital circuits, Microelectron. J

dx.doi.org/10.1016/j.mejo.2007.08.004

ARTICLE IN PRESS

.LIB spice

.GLOBAL VCC
VCC VCC 0 DC 3.3
.MODEL d2a_bit D2A MODE=std_logic
+vhi=3.3 vlo=0.0 trise=1n tfall=1n
.MODEL a2d_bit A2D MODE=std_logic vth=1.65
.DEFHOOK d2a_bit a2d_bit
.TRAN 0.1ns 100ns
.OPTPWL RELTOL=(0,1e-5s)
.OPTION AEX
.defwave power= (3.3*(I(VCC)))
.plot tran w(power)
.extract integ(w(power))

Fig. 8. Sequencer command file.

view structure nets wave
add wave :tb_seq:uut:rst
add wave :tb_seq:uut:ki
add wave :tb_seq:uut:s1
add wave :tb_seq:uut:s2
run -all

Fig. 9. Sequencer simulation macro.

V. Satagopan et al. / Microelectronics Journal] (]]]])]]]–]]] 7

Plea

(200
increases measurement accuracy, but also increases
simulation time. For the sequencer example, decreas-
ing RELTOL resulted in a much smoother power curve
without spurious transitions; however, the energy
calculation was within 2% using the default value.
The command .OPTION AEX is used to save extracted
waveform characteristics, such as total energy usage,
in a file with the same name as the command file, but
with extension .aex. The last three lines define and
plot the power waveform, and extract the circuit’s
total energy usage from it.
(10)
 Create a simulation macro to control which signals are
viewed. This step is optional; instead, the ADMS GUI
can be used. The advantage to using a simulation
macro is that it automatically configures the simula-
tion, so this does not need to be done manually each
time. The simulation macro for the sequencer,
seq.do, is shown in Fig. 9. This is the same macro
used for the VHDL simulation, except for the
additional first line.
(11)
 The circuit is now ready to simulate. Issue the
commands given in Section 4.2 in the specified order.
For the sequencer example, the following commands
would be run:
(i) valib spicelib
(ii) vcom seq.vhd
(iii) vaspi –f seq seq@sequencer.ckt
(iv) valib admslib
(v) vacom tb_seq.vhd –ms
(vi) vasim –cmd com.cmd tb_seq –do seq.do
se cit

7), do
The last command will automatically load the design,
simulate it as specified in the command file, and plot the
waveforms specified in the command file and simulation
macro. Fig. 10 shows the resulting sequencer simulation.
Notice that both the digital and analog waveforms are
displayed, along with the power waveform, as specified in
the command file. The total energy used during the
simulation was extracted, as specified in the command file,
and stored in com.aex. This value was 78 pJ. Since there are
four operations, the average energy per operation, as
specified in Eq. (1), is 19.5 pJ.
e this article as: V. Satagopan, et al., Automated energy calculatio

i:10.1016/j.mejo.2007.08.004
5. Energy estimation technique for DI circuits

There are three main contributing factors to power
dissipation in CMOS VLSI systems: dynamic, short-circuit,
and static power. Dynamic dissipation results whenever
there is a transition in the outputs due to the charging and
discharging of capacitance. Short-circuit dissipation occurs
when the p-type and n-type networks are both momentarily
ON, leading to a direct connection path between Vdd and
ground. This also occurs during output transitions. Static
dissipation is due to leakage current in the transistors when
they are not switching. Ideally, static CMOS circuits have
very little leakage current; however, the leakage currents do
become significant for very-high-density chips. In DI
CMOS circuits, static power dissipation is negligible
compared to the dynamic and short-circuit power; there-
fore, only the switching power needs to be taken into
consideration when estimating energy consumption.
Hence, a significant amount of energy is only used when
a gate transitions.

5.1. Assumptions

Fig. 11 shows a transistor-level simulation of an NCL
TH33 gate, and its corresponding energy waveform, using
the Mentor Graphics Accusim II tool. There are a few key
points to note that make the gate-level switching approach
developed herein viable for NCL DI systems:
(a)
n an
Inputs continuously alternate between DATA and
NULL, such that all wires asserted in a DATA
wavefront are always deasserted in the corresponding
NULL wavefront. Fig. 11 shows that NCL gates that
do not transition during a DATA wavefront utilize an
insignificant amount of energy, which can be ignored.
Specifically, from 0 to 50 ns, two inputs, A and B, of the
TH33 gate are asserted during the DATA wavefront,
but the 3rd is not asserted, so the output, Z, is not
asserted. The inputs are then deasserted during the
NULL wavefront. Fig. 11b shows that these transitions
only require 0.07 pJ, whereas approximately 33 times
more energy (2.34 pJ) is required when the gate
switches; hence, the non-switching energy is insignif-
icant and can be ignored.
(b)
 Fig. 11b shows that the static power is indeed
negligible, since the energy only changes when the
inputs change, and remains relatively constant other-
wise; hence, this static power can also be ignored.
d estimation for delay-insensitive digital circuits, Microelectron. J

dx.doi.org/10.1016/j.mejo.2007.08.004

ARTICLE IN PRESS

Fig. 10. Sequencer simulation waveforms.

Analog Trace

0 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n

t (Time:sec)

-500m
0

500m
1

1.5
2

2.5
3

3.5

/Z
 (

V
o
lt
a
g
e
:v

)

0

500m

1

1.5

2

2.5

3

3.5

/C
 (

V
o
lt
a
g
e
:v

)

0

500m

1

1.5

2

2.5

3

3.5

/B
 (

V
o
lt
a
g
e
:v

)

0

500m

1

1.5

2

2.5

3

3.5

/A
 (

V
o
lt
a
g
e
:v

)

/A
/A:v

/B
/B:v

/C
/C:v

/Z
/Z:v

Fig. 11. (a) TH33 gate I/O waveforms; (b) TH33 gate energy waveform.

V. Satagopan et al. / Microelectronics Journal] (]]]])]]]–]]]8

Please cite this article as: V. Satagopan, et al., Automated energy calculation and estimation for delay-insensitive digital circuits, Microelectron. J

(2007), doi:10.1016/j.mejo.2007.08.004

dx.doi.org/10.1016/j.mejo.2007.08.004

ARTICLE IN PRESS

0 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n

TIME (Time:sec)

-2.5p

-2p

-1.5p

-1p

-500f

0

500f

1p

1.5p

2p

2.5p

Y

Y

integ(3.3*i(/vcc))

Fig. 11. (Continued)

V. Satagopan et al. / Microelectronics Journal] (]]]])]]]–]]] 9
(c)
Ple

(20
Since inputs continuously alternate between DATA
and NULL, such that all wires asserted in a DATA
wavefront are always deasserted in the corresponding
NULL wavefront, all gates asserted in the DATA
wavefront will be deasserted in the NULL wavefront.
Therefore, the total energy for a gate to transition (0-
1-0) can be added on the 0-1 transition, with no
energy added for the 1-0 transition.
(d)
 Also note that the order and timing in which the inputs
transition does not significantly change the amount of
energy used in the gate transition (i.e., for the TH33
gate, asserting A, then B, then C, requires approxi-
mately the same amount of energy as when A, B, and C

are all asserted simultaneously).

(e)
 However, for gates with multiple set conditions, the

specific asserted input set causing the gate to become
asserted does significantly affect the amount of energy
required to assert the gate’s output, because each set
condition corresponds to a unique transistor network
having a different capacitance to be charged and
discharged. Hence, a different energy for each set
condition must be used by the estimation tool for every
gate. Take for example a TH23 gate. The transition due
to AB requires 5.85 pJ; the one due to AC requires
5.07 pJ; and the transition due to BC requires 3.83 pJ.
Note that asserting the 3rd input once the gate is
already asserted does not require any significant
energy; hence, this transition can be ignored.
(f)
 Finally, note that NCL systems adhere to monotonic
transitions between DATA and NULL, which means
ase cite this article as: V. Satagopan, et al., Automated energy calculation an

07), doi:10.1016/j.mejo.2007.08.004
that there are no glitches. This is important because
glitches can require a significant amount of energy,
and would be hard to incorporate into the tool
using the proposed method because they could lead
to gates only partially transitioning (i.e., a gate’s
output may start to rise, but if the inputs change,
the output may then fall back to zero, or vise versa),
which requires a significant amount of energy,
even though the gate’s output did not completely
switch.
The energy estimation technique developed herein is
based on gate-level transitions, instead of transistor-level
transitions, making it extremely fast. It operates more than
1000 times as fast as equivalent transistor-level methods,
producing results that fall within a range obtained by two
different industry-standard transistor-level simulators;
hence, it is very useful for quickly comparing the energy
consumption of alternative circuit architectures.
Energy consumption is calculated from a VHDL

simulation of a structural DI design, using modified
fundamental gates that include energy and fanout informa-
tion. The output of the tool is an estimate of the energy
consumed during the simulation, which can then be divided
by the number of operations in the simulation to generate
the desired value of energy per operation. This method
consists of two main parts: creating a VHDL energy library
and transforming the structural VHDL model to use the
energy library.
d estimation for delay-insensitive digital circuits, Microelectron. J

dx.doi.org/10.1016/j.mejo.2007.08.004

ARTICLE IN PRESS

library ieee;
use ieee.std_logic_1164.all;
entity th23x0 is
 generic(fo: natural);
 port(energy: out real;

 a: in std_logic;
 b: in std_logic;
 c: in std_logic;
 z: out std_logic);

end th23x0;
architecture archth23x0 of th23x0 is
 signal zt: std_logic;
begin
 th23: process(a, b, c)
 begin

 if (a = ‘0’ and b = ‘0’ and c = ‘0’) then
zt <= transport ‘0’ after tdr_th23;

 elsif (a = ‘1’ and b = ‘1’) then
 zt <= transport ‘1’ after tdf_th23;

 elsif (a = ‘1’ and c = ‘1’) then
 zt <= transport ‘1’ after tdf_th23;

 elsif (b = ‘1’ and c = ‘1’) then
zt <= transport ‘1’ after tdf_th23;

 end if;
 end process;
 z <= zt;
 energy_calc: process(zt)
 begin

 if zt'event and zt = ‘1’ then
 if (a = ‘1’ and b = ‘1’) then

 energy <= 5.85 + (2.0 * real(fo));
 elsif (a = ‘1’ and c = ‘1’) then

 energy <= 5.07 + (2.0 * real(fo));
 elsif (b = ‘1’ and c = ‘1’) then

 energy <= 3.83 + (2.0 * real(fo));
 else

 energy <= 0.0;
 end if;

 else
 energy <= 0.0;

 end if;
 end process;
end archth23x0;

Fig. 13. TH23 energy library component.

V. Satagopan et al. / Microelectronics Journal] (]]]])]]]–]]]10
5.2. Library creation

First off, the energy for all set condition transitions (0-
1-0) must be calculated for each fundamental gate, for a
fanout of 0. In this paper the NCL DI paradigm is used for
testing the tool, so the energy for all transitions for each of
the 27 fundamental NCL gates [8], including the necessary
inverting and resettable variants, was calculated. To do
this, static transistor-level designs of all threshold gates
were created using a 3.3V, 0.5 mm CMOS process in Design
Architect, and simulated with Accusim II using input rise
and fall times of 1 ns.

After calculating the energy for all set condition
transitions for each threshold gate, the VHDL energy
library was created by including this information along
with each gate’s functional description. Specifically, an
additional energy output of type real was added to each
gate; and the gate’s functional description was modified,
such that whenever an output transition of 0-1 occurs,
the gate’s energy per transition value is output on the
additional real type energy output.

A generic input to denote the gate’s fanout was also
added to each gate. This fanout information is used to
increase the energy output by a gate that switches when it
has a fanout greater than 0. The gate’s fanout affects its
transition energy because a larger fanout means that the
gate is switching a larger capacitance, and therefore
requires a larger amount of energy to do so. To simplify
the estimation technique, the average size of a static NCL
gate was calculated as 17 transistors. The TH34w32 gate,
which consists of 17 transistors, was then used to test the
effect that increasing a gate’s fanout would have on its
energy usage. It was found that increasing the fanout for
any gate resulted in approximately an extra 2.0 pJ per
additional gate fanout. For example, Fig. 12 contains the
graph of energy usage versus fanout for the TH33 gate,
connected to TH34w32 gates, showing a linear trend line
with a slope of 2.03. Hence, the equation for a gate’s
switching energy is the transition energy for the specific
input combination with a fanout of 0, plus 2.0 times the
20

18

16

14

E
n
e
rg

y
 (

p
J
)

12

10

8

6

4

2

0

0 1 2 3 4

Fanout

y = 2.0317x + 2.1622

5 6 7 8

Fig. 12. Energy versus fanout for the TH33 gate.

Please cite this article as: V. Satagopan, et al., Automated energy calculatio

(2007), doi:10.1016/j.mejo.2007.08.004
gate’s fanout, fo. Fig. 13 shows the VHDL energy library
component for the TH23 gate.

5.3. Library usage

After the energy library has been created, as described in
the previous section, the VHDL circuit file must be
modified to use the new library. As with the previously
mentioned transistor-level techniques, a structural VHDL
description of the circuit is required. The method then
follows the steps shown in Fig. 14. First, the structural
VHDL description is loaded into Leonardo Spectrum and
output as a VHDL file, so that it is in a standard format.
Next, a C-language program reads this VHDL file and
converts it so that it uses the new energy library. Finally,
the original testbench is run on the VHDL energy file to
produce the total energy consumed during the simulation.
The developed C-program executes the following steps

to convert the original structural VHDL file to its energy
calculating equivalent. It first calculates each gate’s fanout,
and includes the energy library file, which contains the
n and estimation for delay-insensitive digital circuits, Microelectron. J

dx.doi.org/10.1016/j.mejo.2007.08.004

ARTICLE IN PRESS

Replace Components with
Energy Library Components

Insert Energy Calculation Process

Write VHDL Energy File

Structural
VHDL File

C code

Energy
in Joules

Run Testbench
to Simulate
Energy File

Include
Energy
 Library

Compute
Gates’
Fanout

Fig. 14. Energy estimation flow.

Table 1

Multiplier comparison (exhaustive test)

Multiplier architecture Energy per operation (pJ) % error

ADMS Estimation tool

Dual-rail non-pipelined 736 572 22

Dual-rail bit-wise pipelined 1376 1040 24

Dual-rail full-word pipelined 1785 1318 26

Quad-rail non-pipelined 529 449 15

Quad-rail bit-wise pipelined 795 656 17

Quad-rail full-word pipelined 1009 802 21

V. Satagopan et al. / Microelectronics Journal] (]]]])]]]–]]] 11
component declarations for all of the energy library
components, by adding the line: use work.energy_li-
b.all;. Next, it replaces each original gate with its energy
library equivalent in the circuit architecture, and declares
an added real type energy signal for each gate, and a real

type energy accumulator signal called energy_acc,
which is initialized to zero. The tool then inserts a process
that calculates the energy consumption, which works by
accumulating every transition on any gate’s energy output.
This process watches for a transition on any gate’s energy
output, and when a transition is detected, the gate’s energy
output is added to energy_acc. Finally, the program
writes the VHDL energy file named *_energy.vhd,
where * represents the original VHDL file name.

The VHDL energy file can then be compiled and
simulated using the original VHDL testbench. After the
simulation is complete, energy_acc contains the total
energy consumed during the simulation. energy_acc can
then be divided by the number of operations to calculate
energy per operation. For many circuits an exhaustive test
can be used, where all input combinations are tested. For
example, a 4-bit� 4-bit multiplier requires 256 input
vectors for an exhaustive test. This requires less than one
minute to estimate the energy consumption using the
method developed herein. For very large circuits a
representative set of test vectors should be used in lieu of
an exhaustive test.
Please cite this article as: V. Satagopan, et al., Automated energy calculatio

(2007), doi:10.1016/j.mejo.2007.08.004
5.4. NCL sequencer example

The estimation tool was first tested on the NCL
sequencer in Fig. 2, comparing the results with both the
ADMS and Accusim II tools. An exhaustive test (8 input
combinations) was run using all three methods, resulting in
an energy per operation of 15.3 pJ from Accusim II, 18.5 pJ
using the developed VHDL-based estimation tool, and
19.5 pJ using the ADMS method developed herein. Note
that ADMS and Accusim II are both transistor-level
simulators, and that both use the same Spice model
parameter file. The estimation tool’s result falls within
the range between the Accusim II and ADMS values.
6. Application to NCL DI multipliers

The previous section tested the developed estimation tool
on a very small design, while this section tests it using
various 4-bit� 4-bit unsigned multiplier architectures
[15,19]. Exhaustive 256-input combination simulations
were run on all designs using both the estimation tool
and the ADMS process for simulating a transistor-level
circuit using a VHDL testbench, presented in Section 4,
with the results presented in Table 1. Note that exhaustive
testing of these designs is not feasible using Accusim II due
to the required non-periodic signal transitioning, as
described in Section 3.2. Both simulation methods used
exhaustive 256-input combination testbenches that auto-
matically check for functional correctness. If any output
result was not correct, an incorrect signal would be asserted
and remain asserted throughout the simulation. incorrect

remained deasserted throughout all simulations for both
methods, showing that all designs produced the desired
output for all 256 input combinations. Note that these
multiplier designs are much larger than the sequencer, with
more delay, so no additional delay had to be added in the
ADMS testbench, as was necessary for the sequencer
example. Each ADMS simulation took slightly more than
24 h to run on a 900MHz Sun machine; whereas, the gate-
level estimation tool simulations required less than 1min.
As shown in the previous section, there is a range of

acceptable results that falls between the ADMS and
Accusim II values, so the purpose of these simulations is
n and estimation for delay-insensitive digital circuits, Microelectron. J

dx.doi.org/10.1016/j.mejo.2007.08.004

ARTICLE IN PRESS

Table 2

Multiplier comparison (one operation)

Multiplier architecture Energy (pJ)

ADMS Estimation tool Accusim II

Dual-rail non-pipelined 756 623 616

Dual-rail bit-wise pipelined 1520 1258 1240

Dual-rail full-word pipelined 1864 1755 1470

Quad-rail non-pipelined 559 477 434

Quad-rail bit-wise pipelined 923 851 717

Quad-rail full-word pipelined 1107 1068 857

V. Satagopan et al. / Microelectronics Journal] (]]]])]]]–]]]12
not to compare actual energy values, but instead to
compare the relative values, to show that the estimation
tool can accurately estimate the relative energy require-
ments for various architectures. Table 1 shows that both
ADMS and the developed estimation tool accurately
predict the relative energy usage for the various multiplier
architectures. Both methods show that the full-word
pipelined designs require the most energy per operation,
followed by the bit-wise pipelined designs, with the non-
pipelined designs requiring the least amount of energy per
operation, for both dual-rail and quad-rail logic. This is
intuitively correct because the pipelined designs would be
expected to require additional energy per operation
compared to their respective non-pipelined versions be-
cause of the additional registers and completion logic, and
the full-word pipelined designs would be expected to
require more energy per operation than their respective
bit-wise pipelined versions because they require additional
registers and completion logic. Furthermore, both methods
show that the quad-rail designs require less energy per
operation compared to their respective dual-rail versions.
This is also intuitively correct since there are half as many
signals transitions for quad-rail logic (i.e., two dual-rail
signals transition for each corresponding quad-rail signal
transition).

To further test the absolute accuracy of the developed
method, it was used to calculate the energy required for
only one multiplication operation on all architectures, and
the results compared with both the Accusim II and ADMS
values for this operation. 10102� 01012 was chosen as the
test operation and was simulated on the various architec-
tures using Accusim II, the developed estimation tool, and
ADMS. The simulations show that the estimation tool’s
results fall between the Accusim II and ADMS values for
all multiplier architectures, as summarized in Table 2.
7. Conclusions

This paper describes one approach for simulating a
transistor-level design with a VHDL testbench, using the
Mentor Graphics digital design tool suite. The VHDL-
controlled transistor-level simulation method is absolutely
necessary for asynchronous circuits because the inputs do
not change relative to a periodic clock pulse, but instead
Please cite this article as: V. Satagopan, et al., Automated energy calculatio

(2007), doi:10.1016/j.mejo.2007.08.004
change value at various times based on handshaking
signals. The method supports automatic calculation of
power and energy metrics and automated testing of
functional correctness. Furthermore, this method works
equally well for synchronous circuits, and can also be used
for simulating digital circuits at other levels of abstraction,
including post-layout simulation.
This paper also develops an automated gate-level

switching method for estimating the energy required for
NCL DI designs. The approach is very useful for quickly
determining how architecture changes affect energy usage.
For example, Table 1 shows that the quad-rail bit-wise
pipelined multiplier provides a good tradeoff between
energy usage and speed, since it requires slightly more
energy than the dual-rail non-pipelined version and much
less energy than the dual-rail pipelined versions, and is
much faster than the non-pipelined versions [10,15,19],
which is not intuitive. This technique was tested on a
number of multiplier architectures, and the results were
shown to fall within the range of values from two different
industry-standard transistor-level simulators, ADMS and
Accusim II, while producing the results three orders of
magnitude faster than either. Furthermore, this technique
is also applicable to other gate-level DI paradigms, such as
[5,20–23].
References

[1] /http://www.itrs.net/Links/2003ITRS/Design2003.pdfS (available

August 2007).

[2] /http://www.itrs.net/Links/2005ITRS/Design2005.pdfS (available

August 2007).

[3] K.M. Fant, S.A. Brandt, NULL convention logic: a complete and

consistent logic for asynchronous digital circuit synthesis, in:

International Conference on Application Specific Systems, Architec-

tures, and Processors, 1996, pp. 261–273.

[4] J. McCardle, D. Chester, Measuring an asynchronous processor’s

power and noise, in: Synopsys User Group Conference, 2001.

[5] C.L. Seitz, System timing, in: C. Mead, L. Conway (Eds.),

Introduction to VLSI Systems, Addison-Wesley, Reading, MA,

1980, pp. 218–262.

[6] C.H. (Kees) van Berkel, M. Rem, R. Saeijs, VLSI programming, in:

IEEE International Conference on Computer Design: VLSI in

Computers and Processors, 1998, pp. 152–156.

[7] D.E. Muller, Asynchronous logics and application to information

processing, in: H. Aiken, W.F. Main (Eds.), Switching Theory in

Space Technology, Stanford University Press, California, 1963,

pp. 289–297.

[8] S.C. Smith, R.F. DeMara, J.S. Yuan, D. Ferguson, D. Lamb,

Optimization of NULL convention self-timed circuits, integration,

VLSI J. 37/3 (2004) 135–165.

[9] A. Kondratyev, L. Neukom, O. Roig, A. Taubin, K. Fant, Checking

delay-insensitivity: 104 gates and beyond, in: Eighth International

Symposium on Asynchronous Circuits and Systems, 2002,

pp. 149–157.

[10] S.C. Smith, Completion-completeness for null convention digital

circuits utilizing the bit-wise completion strategy, in: The 2003

International Conference on VLSI, 2003, pp. 143–149.

[11] G.E. Sobelman, K.M. Fant, CMOS circuit design of threshold gates

with hysteresis, in: IEEE International Symposium on Circuits and

Systems (II), 1998, pp. 61–65.
n and estimation for delay-insensitive digital circuits, Microelectron. J

http://www.itrs.net/Links/2003ITRS/Design2003.pdf
http://www.itrs.net/Links/2005ITRS/Design2005.pdf
dx.doi.org/10.1016/j.mejo.2007.08.004

ARTICLE IN PRESS
V. Satagopan et al. / Microelectronics Journal] (]]]])]]]–]]] 13
[12] P.A. Beerel, C. Hsieh, S. Wadekar, Estimation of energy

consumption in speed-independent control circuits, IEEE

Trans. Comput.-Aided Des. Integr. Circuits Systems 16/6 (1996)

672–680.

[13] J. Di, J.S. Yuan, M. Hagedorn, Switching activity modeling of multi-

rail speed-independent circuits—a probabilistic approach, in: 45th

Midwest Symposium on Circuits and Systems, vol. 1, 2002,

pp. 475–478.

[14] P.A. Beerel, K.Y. Yun, S.M. Nowick, P-C. Yeh, Estimation and

bounding of energy consumption in burst-mode control circuits, in:

IEEE/ACM International Conference on Computer-Aided Design,

1995, pp. 26–31.

[15] S.C. Smith, R.F. DeMara, J.S. Yuan, M. Hagedorn, D. Ferguson,

Delay-insensitive gate-level pipelining, integration, VLSI J. 30/2

(2001) 103–131.

[16] /http://www.mosis.org/Technical/Testdata/S (available August 2007).

[17] S.C. Smith, Speedup of NULL convention digital circuits using

NULL cycle reduction, J. Syst. Archit. 52/7 (2006) 411–422.

[18] S.C. Smith, R.F. DeMara, J.S. Yuan, M. Hagedorn, D. Ferguson,

Speedup of delay-insensitive digital systems using null cycle reduc-

tion, in: 10th International Workshop on Logic and Synthesis, 2001,

pp. 185–189.

[19] S.K. Bandapati, S.C. Smith, M. Choi, Design and characterization of

NULL convention self-timed multipliers, IEEE Des. Test Comput.:

Spec. Issue Clockless VLSI Des. 30/6 (2003) 26–36.

[20] N.P. Singh, A design methodology for self-timed systems, Master’s

Thesis, MIT/LCS/TR-258, Laboratory for Computer Science, MIT

Press, Cambridge, MA, 1981.

[21] T.S. Anantharaman, A delay insensitive regular expression recogni-

zer, IEEE VLSI Technol. Bull. (1986).

[22] I. David, R. Ginosar, M. Yoeli, An efficient implementation of

Boolean functions as self-timed circuits, IEEE Trans. Comput. 41/1

(1992) 2–10.

[23] J. Sparso, J. Staunstrup, M. Dantzer-Sorensen, Design of delay

insensitive circuits using multi-ring structures, in: European Design

Automation Conference, 1992, pp. 15–20.

Venkat Satagopan received his Ph.D. in Compu-

ter Engineering from the University of Missouri–

Rolla (UMR) in May 2007, an M.S. degree in

Electrical Engineering from UMR in December

2002, and a B.E. degree in Electronics and

Communications Engineering from the Univer-

sity of Madras, India, in 1999. He is currently a

Signal Integrity Hardware Engineer with NVI-

DIA in Santa Clara, CA. Dr. Satagopan’s

research interests include asynchronous VLSI
Please cite this article as: V. Satagopan, et al., Automated energy calculatio

(2007), doi:10.1016/j.mejo.2007.08.004
design, VLSI testing, computer architecture, reconfigurable hardware,

and signal integrity.

Bonita Bhaskaran received her Ph.D. in Compu-

ter Engineering from the University of Missouri–

Rolla (UMR) in May 2007, an M.S. degree in

Electrical Engineering from UMR in December

2002, and a B.E. degree in Electronics and

Communications Engineering from the Univer-

sity of Madras, India, in May 2000. She is

currently a Signal Integrity Hardware Engineer

with NVIDIA in Santa Clara, CA. Dr. Bhaskar-

an’s research interests include asynchronous
VLSI design, VLSI design/testing, and signal integrity.

Anshul Singh is a Process Design Kit Engineer at

Silvaco Data Systems, Massachusetts. His inter-

ests include EDA tool development, computer

architecture, ASIC design, VLSI, and asynchro-

nous logic. He received his Bachelor of Technol-

ogy degree in Electronics and Communications

Engineering from the Institute of Engineering

and Technology, MJPR University—Bareilly,

India in 2001. He then received an M.S. in

Electrical Engineering from the University of
Missouri—Rolla in December of 2004.

Scott C. Smith received B.S. degrees in Electrical

Engineering and Computer Engineering from the

University of Missouri—Columbia in May 1996,

an M.S. in Electrical Engineering from the

University of Missouri—Columbia in May of

1998, and a Ph.D. in Computer Engineering from

the University of Central Florida, Orlando in

May of 2001. He started as an Assistant

Professor at the University of Missouri - Rolla

in August 2001, was promoted to Associate
Professor in March 2007 (to be effective September 2007), and is currently

an Associate Professor at University of Arkansas. He has authored 11

journal publications, 24 conference papers, 3 US/international patents,

and 2 additional international patents, all of which can be viewed from his

website: http://comp.uark.edu/�smithsco/. His research interests include

computer architecture, asynchronous logic design, CAD tool develop-

ment, embedded system design, VLSI, FPGAs, trustable hardware, and

self-reconfigurable logic. Dr. Smith is a member of Sigma Xi, Eta Kappa

Nu, Tau Beta Pi, ASEE, and a Senior Member of IEEE.
n and estimation for delay-insensitive digital circuits, Microelectron. J

http://www.mosis.org/Technical/Testdata/
http://comp.uark.edu/~smithsco/
http://comp.uark.edu/~smithsco/
dx.doi.org/10.1016/j.mejo.2007.08.004

	Automated energy calculation and estimation for delay-insensitive digital circuits
	Introduction
	NCL overview
	Delay insensitivity
	Logic gates

	Previous work
	Energy metric
	Transistor-level simulation
	Energy estimation

	VHDL-controlled transistor-level simulation
	Files
	Commands
	NCL sequencer example

	Energy estimation technique for DI circuits
	Assumptions
	Library creation
	Library usage
	NCL sequencer example

	Application to NCL DI multipliers
	Conclusions
	References

