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Pressure Dewelopment in the 
Entrance Region and Fully 
Deweloped Region of Generalized 
Channel Turbulent Flows 
In this paper, the pressure drops in the developing length of generalized turbulent chan
nel flows are investigated, and the effects of Reynolds number and distance from the 
channel entrance are examined. The numerical method is also used to predict the pres
sure drops in simple channel flows for very high Reynolds numbers (of the order of 
100,000). Excellent agreement is obtained between experimental data and numerical 
predictions. 

Significant Contribution of This Paper 

Generalized turbulent channel flows, i.e., turbulent flows occur
ring in channels one wall of which is in motion, have important 
and immediate technical applications in the prediction of bearing 
performance associated with the hydrodynamic lubrication of a 
sleeve bearing, and in the design of tube flight vehicles which are 
under consideration for transportation systems. In addition to 
these, such flows are sufficiently basic to invite intrinsic interest. 

This paper presents the first attempt in the published literature 
to analyze the pressure development in the entrance region of gen
eralized turbulent channel flows under the influence of both pres
sure and shear forces. 'This work is expected to lay the foundation 
for future research in this field. 

Introduction 

Generalized turbulent channel flows, i.e., turbulent flows occur
ring in channels one wall of which is in motion, have important 
and immediate technical applications. One such application which 
may come to mind is associated with the hydrodynamic lubrication 
of a sleeve bearing; here the circumferential shear flow is coupled 
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to both a parallel and an orthogonal pressure flow. Prediction of 
bearing performance in the turbulent regime is becoming vital to 
industry due to today's trend toward higher rotational speeds, the 
use of lower viscosity fluids as lubricants and the ever-increasing 
size of rotating machinery. The type of flow in bearings varies from 
pure shear flow to shear flow coupled with pressure flows. Success
ful design of such bearings will depend upon an understanding of 
the nature of turbulent flow for the aforementioned flow condi
tions. In developing a consistent turbulent lubrication theory, in 
which all significant effects are accounted for, a thorough and 
basic knowledge of occurring flow, i.e., the generalized turbulent 
channel flow, is essential. Analytical expressions for the predic
tions of pressure development, velocity development, etc., must be 
available for design purposes, so that the overall performance of 
the bearing may be analyzed. 

Another possible future application of the generalized channel 
flows involves the tube flight vehicles which are under consider
ation for transportation systems. In addition to having direct and 
immediate practical application, these flows are sufficiently basic 
to invite intrinsic interest. When laminar and fully developed, they 
pose no great theoretical problems. If, however, they occur in the 
entrance region of a conduit, or if in the turbulent regime, the the
oretical treatment of these flows may be only approximate. The 
stumbling block in the analysis is of mathematical nature in the 
first case; in the second case it originates mainly from a lack of sat
isfactory constitutive theory. 

Types of Turbulence Models. In general, there are three 
main types of turbulence models, the first two of which employ 
Boussinesq's suggestion that the stress-rate of strain law for time-
averaged turbulent flows could be represented in the same form as 
that for a Newtonian fluid in laminar motion. The first type are 
those models in which the turbulent viscosity is found by way of 
algebraic formulas, involving only properties of the mean velocity 
profile as unknowns; the second type are those models in which the 
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turbulent viscosity is determined from the solution of the differen
tial equations for one or more properties of the turbulent motion. 
The third class of models includes those which dispense with the 
notion of the effective turbulent transport properties and, instead, 
provide differential transport equations for the turbulent fluxes 
themselves. 

Mode] Requirements. A basis for comparison, particularly in
teresting to those who pay for computer time at commercial rates, 
is the number of differential equations employed; for, the greater 
the number of equations, the greater is the computing time. Mod
els referred to as the algebraic turbulent viscosity type employ no 
differential equations; they are the simplest ones available. 
Prandtl 's mixing-length model is a representative of this class. 

In our selection of turbulence models for the problem under in
vestigation, we can best convey what is required of a turbulence 
model by naming four attributes we should like it to possess. They 
are (i) simplicity, (ii) economy of computer time, (Hi) width of ap
plicability, and (iv). accuracy. The first two requirements restrict 
our choices to algebraic models. The width of applicability is one 
of the main objectives of this study. Here we want to investigate 
the possibility of using the simple eddy viscosity correlations of 
fully developed flow for the coupled pressure and shear flows in 
channel entrance. The fourth requirement guides us in our final 
choice as to which models best predict the flow characteristics. 

Selection of Turbulence Models. The choice of which turbu
lence models to employ in the mathematical analysis is mainly de
termined by the model requirements just discussed. The basic and 
most important requirement is the simplicity of the model. Since 
algebraic formulations of eddy viscosity are the simplest, the selec
tion is restricted to this type of model. The selection was further 
restricted to one-equation models of turbulence that are applicable 
over the whole width of the channel. More sophisticated models, 
such as a number of "law-of-the-wall" models, were not chosen due 
to difficulties that might be encountered in the numerical proce
dure when one tries to match the laminar sublayer to the core re
gion. It is believed that such models would give good results, but 
since good agreement with experimental data was already obtained 
using the simple one-equation models, it was felt that no addition
al advantage would be obtained from using more elaborate models. 

R e c e n t S tud ie s 
The development of the velocity profile in the entrance region of 

a channel under the influence of pressure and shear forces was first 
investigated by Szeri, et al. [I].2 This analysis was restricted only 
to laminar regime and the analytical technique was based upon a 
linearization of the equation of motion. 

For the development of the velocity profile in the turbulent re
gime a recent investigation [2] has been completed. In this case, 
the analysis is based upon the application of the finite-cell tech
nique to the transformed form of the equations of motion in terms 
of vorticity and stream function. The conclusions of this research 
which have already been reported [3] state that the most satisfac
tory constitutive theory is the eddy viscosity model proposed by 
Reichardt [4]. 

The foregoing sources do not concern themselves with the devel
opment of pressure in the entrance region of generalized channel 
flows. This paper is an extension of the same line of research and is 
concerned first with the application of the method developed by 
Hai [2] to the problem of predicting the pressure development in 
the entrance region of generalized turbulent channel flows, and 
second with the evaluation of these predictions through compari
son with experimental data. Since it has already been shown that 
Reichardt's local eddy viscosity model gives the best predictions of 
flow development in this type of flow, the results of this research 
are based upon Reichardt's local model. 

Other models that were employed in the original study include 
Prandtl's mixing-length model, Schlicting's fourth-order polyno
mial model, and van Driest's local model. The comparison of the 
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Fig. 1 Schematic representation of apparatus, dimensions approximate 

results obtained by using these models and their agreements with 
experimental data can be found in reference [3]. 

It is believed that this work supplements the previous work re
ported on the subject of generalized channel flows, and lays the 
foundation for future research in this field. 

E x p e r i m e n t a l S tud ie s of C h a n n e l F l o w 
In order to investigate experimentally the coupling mechanism 

that exists between simple flows in the turbulent regime, a parallel 
plate-type apparatus is the best choice. Such apparatus was em
ployed first by Reichardt [5] and shortly after by Robertson [6]. 
Each developed a belt-type apparatus to obtain plane-couette 
flows experimentally. Their apparatus, though conceptually simi
lar, differed in design. Reichardt studied the flow phenomena 
using two moving surfaces, while Robertson's system consisted of a 
moving belt and a fixed plate. However, to achieve pure shear flow 
with only one boundary moving, he had to use an auxiliary fan to 
provide sufficient mass flow. 

Recently, an apparatus with configuration similar to Robert
son's was developed by Szeri, et al. [1]. The essential difference 
was the different entrance conditions; in Robertson's apparatus 
both the channel entrance and exit were over the pulley, while in 
the latter's apparatus the moving belt extended ahead of and be
hind the channel. Gada [7] and later Jaramillo [8] investigated the 
flow characteristics of generalized turbulent channel entrance re
gion using the latter apparatus. 

The work by Szeri, et al. [3], discusses the experimental results 
of Gada and Jaramillo and gives a full description of the experi
mental apparatus, so this will not be repeated here, except that 
Fig. 1 represents the experimental apparatus schematically. 

In this work the experimental results of Gada [7] and Jaramillo 
[8] are used as bases for comparison with the predicted values of 
pressure development in the entrance region of generalized turbu
lent channel flows. For the case of fully developed turbulent chan
nel flow, the experimental results of Laufer [9] are used for com
parison with predicted results. 

A word of caution is necessary at this point regarding the values 
of Reynolds number cited in this paper. Gada [7] claims that his 
measurements were taken at a Reynolds number of 8300, where 
the belt speed and channel height were taken as characteristic ve
locity and length, respectively. Unfortunately, this is not correct. 
Using the stated belt speed and channel height, one arrives at a 
Reynolds number of 6760. It seemed that a wrong value of kine
matic viscosity had been used in the calculation. This assertion 
was later confirmed [2] and the values of Reynolds number have 
been corrected accordingly. Also, Laufer [9] gives the results of his 
experimental investigations for Reynolds numbers of 30,800 and 
61,600. In his definition of the Reynolds number he uses the maxi
mum velocity at the channel center line as the velocity parameter, 
and half height of the channel as the characteristic length parame
ter. Here, we have consistently based the Reynolds number on the 
full height of the channel, and hence Laufer's results for Reynolds 
numbers of 30,800 and 61,600 are comparable with our results for 
Reynolds numbers of 61,600 and 123,200, respectively. 

Analysis 
Governing Differential Equations. The fundamental conser-
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vation laws of mass and momentum provide the basic differential 
equations. Auxiliary relations for the transport properties and con
stitutive behavior supplement the differential equations; and the 
proper specification of the boundary condition equations make the 
mathematical problem complete. 

In Cartesian tensor notation the differential equations of mass 
and momentum conservation take the following forms: 

P.t = —(pui),i 

p(Ui),t = -(.pUiUj + pSij - Tij)j + pBi 

(1) 

(2) 

The dependent variables have their usual fluid dynamic interpre
tation, with p the mass density, u; the local velocity vector, B; the 
applicable body force, rij the stress tensor, and p the pressure. In 
these equations, the comma denotes vector differentiation of a ten
sor, while a comma by t indicates the partial derivative with re
spect to time. 

The solution of these two equations requires specification of a 
constitutive relationship between the dependent variables, the 
stress tensor nj and the viscosity p.. At this juncture, we assume 
that either (1) the fluid is Newtonian or (2) turbulent flow is ade
quately characterized by the laminar flow equations with the mo
lecular viscosity replaced by a scalar effective viscosity. In both 
cases, the following equation defines the stress tensor constitutive 
relationship to velocity gradient and viscosity 

nj = 2p (Eij Ekk&ij) 

where 

E i} = - (";,; + "; , ; ) • 

(3) 

(4) 

It might be argued that this is a rather simplistic misrepresenta
tion of the time-averaging and Reynolds stress modeling that com
prise the development of analytical models for turbulent flow, be
cause the effective viscosity model for turbulent shear is developed 
for shear stresses and the use of the same viscosity for normal 
stresses cannot be justified in a shear flow where the turbulence is 
anisotropic. Although this is a valid objection to the adoption of 
the aforementioned second assumption regarding the constitutive 
behavior of turbulent flow, yet many investigators such as Gos-
man, et al. [10], Baker [11], and Roache [12] recommend the use of 
this rather simplistic formulation in view of the fact that more so
phisticated modeling is not warranted when one is only concerned 
with the macroscopic behavior of flow, or when the microscopic 
structure of turbulence is not of prime interest to the investigator. 
Moreover, the final judge is always the experimental data, and 
since good agreement between theory and experiment has been ob
tained for a variety of flow regimes using this simple modeling, the 
results of the theoretical analysis are satisfactory for most, if not 
all, engineering applications of this type of flow. 

The value of the effective viscosity p is obtained from Re-
ichardt's local eddy viscosity model by the following relationships: 

p- = po + P-t 

• = 0.4[y+ - 10.7 tanh (y+/10.7)] 

(5) 

(6) 

where po is the molecular viscosity, pt is the turbulent or eddy vis
cosity, and y+ is defined by 

p u r 
r =y-

The local shear velocity, « i + , is given by 

V.I dy I 

(7) 

(8) 

Development of Differential Equations of Motion. There 
are various points of view as to which of the possible forms of the 
equation of motion is most suitable for numerical solutions. Some 

workers, for example, Harlow and Welch [13] prefer to retain the 
velocities and pressure as dependent variables. However, the ma
jority of researchers, such as Fromm [14], Aziz and Heliums [15], 
and Patankar and Spalding [16] feel that the coupling and non-
linearities associated with the presence of pressure in the equa
tions make it advantageous to use the vorticity and stream func
tion as dependent variables. 

The derivation of the equations of motion in terms of vorticity 
and stream function is quite tedious when kept general. The read
er will find these in detail in reference [2]. Here, only some results 
are cited. 

The vorticity and the stream function are defined by the equa
tions 

1 
(3ijUj,i 

pUi = • " tsijtpj + pua&i3-

(9) 

(10) 

Here, w is the vorticity, \p is the stream function, etjk is the Carte
sian alternating tensor, while a and r are defined as follows: 

In equations (9) and (10), a is nonzero only for spherical coordi
nates when it is unity, r is set equal to unity (and if 3 = 0) for rec
tangular coordinates. Equation (10) identically satisfies the conti
nuity equation (1) in Cartesian, cylindrical, and spherical coordi
nate systems, for both compressible and unsteady incompressible 
flows. Further development of the equations of motion yield the 
following equations in terms of vorticity and stream function: 

co = ( ; \p,k I 
r" \pr sin" cj> I ,k 

I V sin" <*/ ,k 2 \pr sin" <pl ,1 

(11) 

+ \pust3u( — ) } + \n(rao>)ik-n,k(r"a) 
I \prsin"c*/,3j,*J L 

-2pj( p- ) 1 +M,*«3*;"3,3.-. (12) 
\pr sin" (/>/ ,kj,k 

(pU3),t = -«3i; ( 7^ "3 ) - (P"3W3),3 ~ P,3 
\r sm" <h I ,i 

+ (p. Us,k).k + -M"3,33 + P,huk,i- (13) 

The transformed form of the equations of motion in terms of 
vorticity and stream function are solved by a "successively con
verged" successive substitution finite-cell technique developed by 
Hai [2] and Gosman, et al. [10]. The details of the successive sub
stitution technique are found in references [3, 10], and the method 
of "successive convergence" is discussed in reference [2]. These 
will not be repeated here, except to say a few words about the 
method of successive convergence. 

Instead of recalculating the effective viscosity field at each stage 
of the method of successive substitutions, it was decided to work 
out intermediate convergent solutions with frozen effective viscosi
ty profiles. Such an intermediate convergent solution was then 
used to evaluate the effective viscosity profile that was kept frozen 
during the next round of iterations by successive substitutions. 

B o u n d a r y Condi t ions 
Elliptic partial differential equations must be supported by con

ditions on the variables at all points of a closed boundary sur
rounding the field. Satisfactory boundary conditions for a depen
dent variable (1̂  or w) are of three general types: 

1 The specifications of the values which \p or u must assume 
along the boundary. 

2 The specification of the values of the component of the gra
dient of i/' or a) at the normal to the boundary. 

3 The provision of some algebraic relation which connects the 
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value of \p or w to the values of their normal components along the 
boundary. 

In fact, it is usual for values to be specified at some parts of a 
boundary, and for gradients to be specified at other parts. Also, 
when several differential equations are to be solved simultaneous
ly, there is no need for the boundary conditions for each equation 
to be of the same type. 

It is necessary here only to give examples of the boundary condi
tions which are encountered in our present problem. The field of 
flow is bounded in four ways: 

1 By the stationary wall. 
2 By the moving wall. 
3 By the inlet end. 
4 By the outlet end. 

Each of these will be discussed separately. For simplicity the equa
tions will be expressed in rectangular coordinates (x, y) for the 
case of steady incompressible flow applicable to the entrance flow 
problem. 

Boundary Conditions at the Stationary Wall. Stream Func
tion. Since the wall is impermeable to matter, the stream func
tion must have a constant value along its whole length. The speci
fication of this value, in the data of the problem, constitutes the 
boundary condition on the stream function for this part of the 
boundary. 

Vorticity. It is rare for the vorticity at the wall to be specified, 
and even the vorticity gradient along the normal, which is con
nected with the pressure gradient along the wall, is not often 
known at the start. The boundary condition for the vorticity, 
therefore, has to be deduced from other information. Usually this 
is the requirement that there should be no slipping between the 
wall and the fluid adjacent to it. 

Near a wall, gradients in the direction parallel to the wall are 
much smaller than those in the normal direction. They may, there
fore, be neglected. Considering n to be the direction normal to the 
wall, the simplified form of equation (12) for the case of steady in
compressible flow in rectangular coordinates can be integrated 
twice, to yield 

A J exp \g(j))]dri + B 

ft exp [g(n)} 

with g(tj) defined as 

i (a\j/hx) 

Jo IX 
df 

(14) 

(15) 

where A and B are integration constants, and f and t\ are dummy 
variables. 

We also need a second equation to link vorticity and stream 
function; this is equation (11), which yields the following after a 
double integration: 

i-^o' So" P[fJ"d^\dv' (16) 

Here, the no-slip condition has been introduced, for [atp/an)o has 
been taken as zero. The subscript 0 refers to the value at the wall. 

How equations (14) and (16) together yield the boundary condi
tion for vorticity is best depicted by considering the case of uni
form viscosity and zero mass transfer through the wall. Then the 
solution to these two equations becomes 

p /An3, Bn\ 
(17) 

Now, B is equal to the vorticity at the wall, wo, multiplied by vis
cosity; and A is equal to the gradient of vorticity at the wall, (aW 
an)o, multiplied by the same quantity. Thus equation (17) binds 
together the vorticity gradient and vorticity, and so constitutes a 
satisfactory boundary condition. 

Boundary Conditions at the Moving WTall. Stream Func
tion. As in the case of the stationary wall, since the wall is imper

meable to matter, the boundary condition specification is the 
same. 

Vorticity. If the wall moves at a velocity Vp in its own plane, 
we follow the same procedure as in the case of the stationary wall, 
with the exception of the no-slip condition. Instead of (a\p/an)o = 0, 
we have 

\an/o 
•pVp. (18) 

Upon using this boundary condition in the integration of equation 
(11), we obtain the following, instead of equation (16): 

'-<*—r'[j>f-v*] d-q. (19) 

Boundary Conditions at the Inlet End. Stream Function. 
The initial velocity profile u\(0, y) is known from the experimental 
data. Equation (10) is used to find the initial stream function pro
file. 

\M0,y) "f " i ( 0 , rj)dri (20) 

where y = a is the point at which the stream function is considered 
to be zero. 

Vorticity. The boundary condition on vorticity is the profile of 
vorticity distribution at the inlet boundary. Knowing the initial 
velocity distribution, Equation (9) is used to determine this pro
file. 

o)(0,y) = -
BUi(Q,y) 

sy 
(21) 

where the gradient of the y-component of velocity with respect to 
the *-direction has not been considered due to its negligible con
tribution to the vorticity profile. 

Boundary Conditions at the Outlet End. Since the flow is 
considered to be fully developed at the outlet end, the gradients of 
stream function and vorticity with respect to the flow direction 
should vanish at the boundary. These provide the normal bound
ary conditions at the outlet end. 

R e c o v e r y of P r e s s u r e 
The purpose of introducing the vorticity and stream function 

was to allow pressure, p , to be eliminated from the equations, for 
its presence made them harder to solve. However, once the solu
tion has been obtained, the pressure distribution is recovered from 
the vorticity-stream function characterization of this problem class 
by enforcing linear momentum conservation. Equation (2) can be 
transformed to the Laplacian on pressure by an additional differ
entiation and solved as a boundary-value problem. Since this is not 
a well-posed description for pressure, the preferable approach is to 
integrate the momentum equation [11], 

Contract the momentum equation, in the absence of the body 
forces, with the infinitesimal vector, dxi, and integrate, yielding 

JpjSijdx; = -JlpuiLi Tijljdxt SpUidxt. (22) 
dt 

Note that the left-hand side of equation (22) is the integral of a 
perfect differential and thus independent of path. Hence the pres
sure at any point in the field can be determined, in comparison to 
some reference value, by integrating over an arbitrary (the easiest, 
of course) path between the two points. In the case of the problem 
under investigation, the formulation of the problem is simpler, 
since we are only concerned with two-dimensional flows. In such a 
case we have the following algorithm for the evaluation of pres
sure. 

Knowing the velocity field, one is able to apply the principle of 
momentum conservation, and obtain the following two equations 
for the distribution of pressure in the two coordinate directions. 

ap_ 
dX ax L \ sx I J ay L \ ay ax I J 
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+ 1 - pUxU.2 

ay ax I Kl>( 2^\-PuA (24) ap 
= I M l 1 I — M " l « 2 I 1 I Ml *• I 

ay ax L V ay ax I J ay L \ ay I 
Since the right-hand side of these two equations are known, a 

simple integration will yield the pressure difference between any 
two points in the flow field. In the special case of the flow in a 
channel, the variation of pressure in the y -direction is negligible in 
comparison to the variation of pressure in the x -direction. These 
equations have been used to evaluate the development of pressure 
in the entrance region of the channel. 

When only the fully developed portion of the channel is consid
ered, these equations take simpler forms. Here the partial deriva
tives with respect to x vanish, also we may assume that the second 
component of velocity (112) is negligible, and the pressure across 
the channel is uniform, i.e., p = p(x). With these assumptions, 
equations (23) and (24) reduce to 

and 

±„±\J2±1)] 
dx ay L V ay I J 

(25) 

(26) 
ay. 

The simultaneous solution of these equations yields 

aui 
M = ky + constant (27) 

ay 

where k is the pressure drop per unit length in the x -direction such 
that 

dp 

dx 
k. (28) 

If the interest is primarily on the fully developed region, then 
equation (27) can be used to evaluate k and hence determine the 
pressure drop. 

Results and Discussion 
Employing the foregoing algorithm and embodying it in the 

same computer program that calculates the velocity development 
in the channel entrance, we are able to predict the pressure varia
tions for any Reynolds number and any inlet velocity profile. 

Fig. 2 shows the experimental values of pressure development 
along the channel length for various Reynolds numbers. It is clear 
that the values of pressure drops (i.e., p — patm) are a function of 
Reynolds number and the distance from the channel entrance. 
Here Reynolds number is defined by 

Rey 
PoVph 

MO 
(29) 

where p is the fluid (in this case air) density, Vp is the belt veloci
ty, h is the channel height, and MO is the molecular viscosity. 

All of the measurements reported in this paper were taken with 
a "round entrance" in position (see Fig. 1). The contour of this en
trance consisted of a partial arc of 5.7 cm rad and its horizontal 
tangent plane 5.0 cm in length. The mass flow rate did not meet 
the requirement of pure shear (Couette) flow in any of the experi
ments. One parameter which affects this mass flow rate is the ratio 
of the length of the open belt upstream of the channel to the 
height of the channel. Average velocities of different experiments 
were calculated by numerically integrating the curve of the en
trance velocity profiles. In the four cases where such profiles were 
available, the author discovered that all the average velocities were 
in the range of 38 to 41 percent of the belt velocity, showing an in
crease of 0.08 Vp to 0.11 Vp over the value reported by Robertson 
[6]. It is believed that this increase in mass flow rate was caused 
mainly by the presence of the open belt ahead of the channel. Rob
ertson's apparatus did not have an open belt ahead of the channel 
entrance. It is a matter of conjecture at this point that by selecting 
the correct combination of entrance shape, channel aspect ratio, 
channel length, and length of the open belt ahead of the channel 
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Fig. 2 Experimental values of pressure development In generalized chan
nel entrance flow. 
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Fig. 3 Comparison of measured and predicted values of pressure devel
opment for various Reynolds numbers in generalized turbulent channel en
trance flow 

entrance, it would be feasible for a pure shear (Couette) flow to 
occur in a belt-type apparatus. In the experiments reported here, 
the data were all taken with the aforementioned variables being 
kept constant and only varying the Reynolds number via varying 
the belt speed. It is then believed that the minor variations among 
the values of average to belt speed ratios are due to experimental 
error, rather than due to another factor. 

Since the data from the belt-type apparatus involves a pressure 
gradient, it is evidently a combined pressure (Poiseuille) and shear 
(Couette) flow, because shear flow alone will not have a pressure 
gradient. The pressure gradient is characterized by two parame
ters; one is the Reynolds number (Rey) and the other is ratio of av
erage to belt velocity (U = V^g/Vp) which would be 0.5 for pure 
shear flows (with no pressure gradient). 
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Fig. 4 Gada's experimentally determined turbulent velocity profile at the 
entrance to the channel 

Little benefit is accrued from a representation such as Fig. 2, but 
if we plot the dimensionless pressure drop, P' = 2(p — patm)/ 
iPoVp2, versus the dimensionless distance from the channel en
trance (see Fig. 3), it becomes evident that the dimensionless pres
sure drop is not a very strong function of the Reynolds number. In 
this figure it is seen that the data coalesce to a very narrow band, 
and it cannot be ascertained what the effect of the second parame
ter (i.e., the ratio of average to belt velocity) is on the pressure 
drop, because all the data reported on Fig. 3 have values of U = 
Vavg/Vp within five percent of one another. 

In fact, the values of U could be considered almost equal for all 
the cases shown, because the minor variations could be attributed 
to the experimental errors in the data and to the numerical errors 
in the integration procedure in obtaining the average velocity. 
With this in mind, the conclusions become more specific, in that 
the effect of the parameter U is eliminated from the analysis and 
the pressure drop profile exhibits only a weak dependence on 
Reynolds number. 

Two distinct regions are seen in Fig. 3. The first region, which is 
effectively the entrance length of the channel and in which the 
flow development takes place, extends only to a distance of ap
proximately 40 h. In this region the effect of the Reynolds number 
is more than the effect of the distance from the channel entrance. 
However, in the second region, which is essentially the fully devel
oped region, the familiar straight-line pressure-drop curve is ob
tained with little dependence on Reynolds number. 

The numerical prediction of the pressure drop for generalized 
channel entrance flow for Reynolds numbers of 6760 and 11,326 
have been obtained and are displayed in Fig. 3. The comparison 
shows excellent agreement between experimental data and pre
dicted values. 

Schlichting [17] has shown that the entrance length (i.e., the di
mensionless distance, x/h, from the channel entrance to the point 
of fully developed flow) is only a linear function of the Reynolds 
number for parallel plate channels and pipes. This is true only if 
we keep the shape of the inlet velocity profile the same. Schlicht
ing has derived his results using a uniform velocity (i.e., a rectan
gular velocity) profile at the entrance to the channel or the pipe. It 
is evident that the entrance length is reduced as the shape of the 
entrance velocity profile approaches that of the fully developed 
profile, and this entrance length is reduced to zero when the en
trance velocity profile is identical with the fully developed profile 
at which point the flow is fully developed at the entrance to the 
channel. 

In view of the foregoing, one might conclude that 

Rey =61,600: 

o Experimental Data 
Numerical Prediction 

Rey =123,200 

/ • / h =Channel Height 
Vfl =Max Velocity 

Rey =123,200: 

n Experimental Data 
-—Numerical Prediction 

Fig. 5 
data for 

0 2 4 6 8 10 
Dimensionless Distance Along Channel (x/h) 

Comparison of predicted pressure drop and Laufer's experimental 
fully developed turbulent channel flow 

— = (constant) • Rey • 4? 
h 

where $ is a shape factor function which depends upon the degree 
to which the inlet velocity profile differs from the fully developed 
velocity profile. 

In the experiments reported here, the inlet velocity distributions 
all had an S-shaped profile similar to the one shown on Fig. 1, but 
they differed to some extent from one another. A sample velocity 
profile at the channel entrance is shown in Fig. 4. All that could be 
said at this point is that the development length for these cases 
considered had x/h values of between 35 and 45 (or approximately 
40). The reader is warned against using this criterion to situations 
other than those that closely resemble the velocity profile shape 
and Reynolds number range discussed in this paper. "Similar" ve
locity profiles, i.e., inlet velocity distributions whose nondi-
mensionalized velocity profiles are identical to one another, have 
the same shape factor function 4>, and hence their x/h ratio can be 
represented by 

— = (constant) Rey. 
h 

Such similar velocity profiles have the same ratio of average to belt 
velocity {U = Vavg/Vp). However, nonsimilar velocity profiles that 
have different shape factor functions (<j>) may have equal ratios of 
average to belt velocity. As an example, one may consider a set of 
two such profiles: 

1 A uniform profile with Ui(0, y) = 0.5 VP. 
2 A linearly varying profile with ui(0, y) = (1 — {y/h))Vp. 

These two profiles have different shape factor functions, but they 
both have U = %. 

An interesting case is to compare the experimental data and nu
merically predicted values of pressure drop in the fully developed 
portion of a simple channel flow for very high Reynolds numbers 
(of the order of 100,000). Such data exists in literature and is due 
to Laufer [9]. This case has already been solved by other mathe
matical techniques using various turbulence models and good 
agreement has been obtained with experimental data. The purpose 
of the numerical prediction here is not to present a duplication of 
past techniques, but rather to show that the present numerical 
technique and the adopted constitutive theory of turbulent flow 
can be used to predict the pressure development in such flows with 
accuracy and relative ease. Fig. 5 shows.such a comparison where 
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the present method of pressure recovery calculations for fully de
veloped flow has been employed to predict the pressure drop in a 
channel for Reynolds numbers of 61,600 and 123,200. In this case 
also, the agreement is excellent and we obtain the straight-line re
lationship between the dimensionless pressure drop, P' = 2(p\ — 
PiilpaVa2, and the dimensionless distance along the channel. 
There is little dependence of pressure drop on Reynolds number. 

Conclusions 
In closing, the following main conclusions are offered: 

1 The vorticity-stream function formulation of the two-dimen
sional boundary-value problem in fluid mechanics which has been 
used to calculate the velocity development in the entrance region 
of generalized turbulent channel flows is also capable of yielding 
stable solutions for the pressure development in the entrance re
gion, as well as fully developed region of channel flows. 

2 If the actual values of manometer readings (pressure drops) 
are plotted versus the distance from the channel entrance, the data 
is very scattered; but when the dimensionless pressure drops are 
plotted versus the dimensionless distance from the channel en
trance, the data coalesce to a very narrow band and two regions of 
flow are distinguished. 

3 The entrance length necessary for flow development is a 
function of channel height, Reynolds number and shape of the en
trance velocity profile for the flow regimes considered here. 

4 The entrance length necessary for pressure development is 
approximately 40 times the channel height for the range of Reyn
olds numbers and the particular entrance velocity profiles consid
ered in this investigation. This criterion cannot be applied to other 
flow geometries. 

5 There is excellent agreement between the experimental data 
and predicted results for a wide range of Reynolds numbers con
sidered (from approximately 5000 to approximately 120,000). 
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